메뉴 건너뛰기




Volumn , Issue , 2007, Pages 220-229

Detecting anomalous records in categorical datasets

Author keywords

Anomaly detection; Machine learning

Indexed keywords

ANOMALOUS RECORDS; ANOMALY DETECTION; CATEGORICAL ATTRIBUTES;

EID: 36849000353     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1281192.1281219     Document Type: Conference Paper
Times cited : (153)

References (33)
  • 1
    • 36849057742 scopus 로고    scopus 로고
    • The third international knowledge discovery and data mining tools competition dataset kdd99-cup, 1999
    • The third international knowledge discovery and data mining tools competition dataset kdd99-cup, 1999.
  • 4
    • 36849034567 scopus 로고    scopus 로고
    • Rich Tsui Andrew Moore, Greg Cooper and Mike Wagner. Summary of biosurveillance-relevant technologies
    • Rich Tsui Andrew Moore, Greg Cooper and Mike Wagner. Summary of biosurveillance-relevant technologies.
  • 6
    • 0001471775 scopus 로고
    • Unsupervised learning
    • H. B. Barlow. Unsupervised learning. In Neural Computation, volume 1, page 295311, 1989.
    • (1989) Neural Computation , vol.1 , pp. 295311
    • Barlow, H.B.1
  • 7
    • 0034497613 scopus 로고    scopus 로고
    • An oscillatory neural network model of sparse distributed memory and novelty detection
    • R. Borisyuk, M. Denham, F. Hoppensteadt, Y. Kazanovich, and O. Vinogradova. An oscillatory neural network model of sparse distributed memory and novelty detection. In BioSystems, pages 265-272, 2000.
    • (2000) BioSystems , pp. 265-272
    • Borisyuk, R.1    Denham, M.2    Hoppensteadt, F.3    Kazanovich, Y.4    Vinogradova, O.5
  • 8
    • 36849051525 scopus 로고    scopus 로고
    • P. K. Chan, M. V. Mahoney, and M. H. Arshad. A machine learning approach to anomaly detection
    • P. K. Chan, M. V. Mahoney, and M. H. Arshad. A machine learning approach to anomaly detection.
  • 12
    • 0009900351 scopus 로고    scopus 로고
    • Anomaly detection over noisy data using learned probability distributions
    • Morgan Kaufmann, San Francisco, CA
    • Eleazar Eskin. Anomaly detection over noisy data using learned probability distributions. In Proc. 17th International Conf. on Machine Learning, pages 255-262. Morgan Kaufmann, San Francisco, CA, 2000.
    • (2000) Proc. 17th International Conf. on Machine Learning , pp. 255-262
    • Eskin, E.1
  • 13
    • 85084160308 scopus 로고    scopus 로고
    • A. Ghosh and A. Schwartzbard. A study in using neural networks for anomaly and misuse detection. In In Proceedings of the 8th USENIX Security Symposium, 1999.
    • A. Ghosh and A. Schwartzbard. A study in using neural networks for anomaly and misuse detection. In In Proceedings of the 8th USENIX Security Symposium, 1999.
  • 16
  • 18
    • 0141463039 scopus 로고    scopus 로고
    • Finding surprising patterns in a time series database in linear time and space
    • Eamonn Keogh, Stefano Lonardi, and Bill Chiu. Finding surprising patterns in a time series database in linear time and space. In Proc. ACM Knowledge Discovery and Data Mining, pages 550-556, 2002.
    • (2002) Proc. ACM Knowledge Discovery and Data Mining , pp. 550-556
    • Keogh, E.1    Lonardi, S.2    Chiu, B.3
  • 20
    • 27644451472 scopus 로고    scopus 로고
    • An association-based dissimilarity measure for categorical data
    • Si Quang Le and Tu Bao Ho. An association-based dissimilarity measure for categorical data. In Pattern Recognition Letters archive, volume 26, pages 2549-2557, 2005.
    • (2005) Pattern Recognition Letters archive , vol.26 , pp. 2549-2557
    • Si Quang, L.1    Tu Bao, H.2
  • 22
    • 36849062787 scopus 로고    scopus 로고
    • Kingsly Leung and Christopher Leckie. Unsupervised anomaly detection in network intrusion detection using clusters. In Proc. 28th Australasian CS Conf., 38 of CRPITV, 2005.
    • Kingsly Leung and Christopher Leckie. Unsupervised anomaly detection in network intrusion detection using clusters. In Proc. 28th Australasian CS Conf., volume 38 of CRPITV, 2005.
  • 24
    • 0001828003 scopus 로고    scopus 로고
    • Cached sufficient statistics for efficient machine learning with large datasets
    • March
    • Andrew Moore and Mary Soon Lee. Cached sufficient statistics for efficient machine learning with large datasets. Journal of Artificial Intelligence Research, 8:67-91, March 1998.
    • (1998) Journal of Artificial Intelligence Research , vol.8 , pp. 67-91
    • Moore, A.1    Soon Lee, M.2
  • 25
    • 1942452317 scopus 로고    scopus 로고
    • Optimal reinsertion: A new search operator for accelerated and more accurate bayesian network structure learning
    • August
    • Andrew Moore and Weng-Keen Wong. Optimal reinsertion: A new search operator for accelerated and more accurate bayesian network structure learning. In Proceedings of the 20th International Conference on Machine Learning (ICML '03), pages 552-559, August 2003.
    • (2003) Proceedings of the 20th International Conference on Machine Learning (ICML '03) , pp. 552-559
    • Moore, A.1    Wong, W.2
  • 26
    • 2442567436 scopus 로고    scopus 로고
    • P. Patel, E.Keogh, J.Lin, and S.Lonardi. Mining motifs in massive time series databases. In Proceedings of IEEE International Conference on Data Mining (ICDM'02), pages 370-377, December 2002.
    • P. Patel, E.Keogh, J.Lin, and S.Lonardi. Mining motifs in massive time series databases. In Proceedings of IEEE International Conference on Data Mining (ICDM'02), pages 370-377, December 2002.
  • 27
    • 36849033557 scopus 로고    scopus 로고
    • Scalable and practical probability density estimators for scientific anomaly detection
    • Dan Pelleg. Scalable and practical probability density estimators for scientific anomaly detection. In Doctoral Thesis, Carnegie Mellon University, 2004.
    • (2004) Doctoral Thesis, Carnegie Mellon University
    • Pelleg, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.