-
1
-
-
36849057742
-
-
The third international knowledge discovery and data mining tools competition dataset kdd99-cup, 1999
-
The third international knowledge discovery and data mining tools competition dataset kdd99-cup, 1999.
-
-
-
-
2
-
-
36849029262
-
Bayesian networks for detecting anomalies in internet-based services
-
Bronstein A., Das J., Duro M., Friedrich R., Kleyner G., Mueller M., Singhal S., and Cohen I. Bayesian networks for detecting anomalies in internet-based services. In International Symposium on Integrated Network Management, 2001.
-
(2001)
International Symposium on Integrated Network Management
-
-
Bronstein, A.1
Das, J.2
Duro, M.3
Friedrich, R.4
Kleyner, G.5
Mueller, M.6
Singhal, S.7
Cohen, I.8
-
4
-
-
36849034567
-
-
Rich Tsui Andrew Moore, Greg Cooper and Mike Wagner. Summary of biosurveillance-relevant technologies
-
Rich Tsui Andrew Moore, Greg Cooper and Mike Wagner. Summary of biosurveillance-relevant technologies.
-
-
-
-
5
-
-
79953674064
-
Discovering hidden association rules
-
M.-A. Balderas, F. Berzal, J.-C. Cubero, E. Eisman, and N. Marn. Discovering hidden association rules. In Proc. International Workshop on Data Mining Methods for Anomaly Detection (KDD 05), 2005.
-
(2005)
Proc. International Workshop on Data Mining Methods for Anomaly Detection (KDD 05)
-
-
Balderas, M.-A.1
Berzal, F.2
Cubero, J.-C.3
Eisman, E.4
Marn, N.5
-
6
-
-
0001471775
-
Unsupervised learning
-
H. B. Barlow. Unsupervised learning. In Neural Computation, volume 1, page 295311, 1989.
-
(1989)
Neural Computation
, vol.1
, pp. 295311
-
-
Barlow, H.B.1
-
7
-
-
0034497613
-
An oscillatory neural network model of sparse distributed memory and novelty detection
-
R. Borisyuk, M. Denham, F. Hoppensteadt, Y. Kazanovich, and O. Vinogradova. An oscillatory neural network model of sparse distributed memory and novelty detection. In BioSystems, pages 265-272, 2000.
-
(2000)
BioSystems
, pp. 265-272
-
-
Borisyuk, R.1
Denham, M.2
Hoppensteadt, F.3
Kazanovich, Y.4
Vinogradova, O.5
-
8
-
-
36849051525
-
-
P. K. Chan, M. V. Mahoney, and M. H. Arshad. A machine learning approach to anomaly detection
-
P. K. Chan, M. V. Mahoney, and M. H. Arshad. A machine learning approach to anomaly detection.
-
-
-
-
9
-
-
9444223825
-
Internet security: Malicious e-mails detection and protection
-
Sep
-
Shih Dong-Her, Chiang Hsiu-Sen, Chan Chun-Yuan, and Binshan Lin. Internet security: malicious e-mails detection and protection. Industrial Management and Data Systems, 104:613-623, Sep 2004.
-
(2004)
Industrial Management and Data Systems
, vol.104
, pp. 613-623
-
-
Dong-Her, S.1
Hsiu-Sen, C.2
Chun-Yuan, C.3
Lin, B.4
-
11
-
-
0344439823
-
-
data
-
E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo. A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data, 2002.
-
(2002)
A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled
-
-
Eskin, E.1
Arnold, A.2
Prerau, M.3
Portnoy, L.4
Stolfo, S.5
-
12
-
-
0009900351
-
Anomaly detection over noisy data using learned probability distributions
-
Morgan Kaufmann, San Francisco, CA
-
Eleazar Eskin. Anomaly detection over noisy data using learned probability distributions. In Proc. 17th International Conf. on Machine Learning, pages 255-262. Morgan Kaufmann, San Francisco, CA, 2000.
-
(2000)
Proc. 17th International Conf. on Machine Learning
, pp. 255-262
-
-
Eskin, E.1
-
13
-
-
85084160308
-
-
A. Ghosh and A. Schwartzbard. A study in using neural networks for anomaly and misuse detection. In In Proceedings of the 8th USENIX Security Symposium, 1999.
-
A. Ghosh and A. Schwartzbard. A study in using neural networks for anomaly and misuse detection. In In Proceedings of the 8th USENIX Security Symposium, 1999.
-
-
-
-
15
-
-
0031192274
-
A statistically base system for prioritizing information exploration under uncertainty
-
P. Helman and J. Bhangoo. A statistically base system for prioritizing information exploration under uncertainty. In IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, volume 27(4), pages 449-466, 1997.
-
(1997)
IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans
, vol.27
, Issue.4
, pp. 449-466
-
-
Helman, P.1
Bhangoo, J.2
-
16
-
-
0032313923
-
Intrusion detect using sequences of system calls
-
S. A. Hofmeyr, Stephanie Forrest, and A. Somayaji. Intrusion detect using sequences of system calls. In Journal of Computer Security, volume 6, pages 151-180, 1998.
-
(1998)
Journal of Computer Security
, vol.6
, pp. 151-180
-
-
Hofmeyr, S.A.1
Forrest, S.2
Somayaji, A.3
-
17
-
-
10644281769
-
Towards, parameter-free data mining
-
E. Keogh, S. Lonardi, and C. A. Ratanamahatana. Towards, parameter-free data mining. In Proc. of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 206-215, 2004.
-
(2004)
Proc. of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining
, pp. 206-215
-
-
Keogh, E.1
Lonardi, S.2
Ratanamahatana, C.A.3
-
18
-
-
0141463039
-
Finding surprising patterns in a time series database in linear time and space
-
Eamonn Keogh, Stefano Lonardi, and Bill Chiu. Finding surprising patterns in a time series database in linear time and space. In Proc. ACM Knowledge Discovery and Data Mining, pages 550-556, 2002.
-
(2002)
Proc. ACM Knowledge Discovery and Data Mining
, pp. 550-556
-
-
Keogh, E.1
Lonardi, S.2
Chiu, B.3
-
20
-
-
27644451472
-
An association-based dissimilarity measure for categorical data
-
Si Quang Le and Tu Bao Ho. An association-based dissimilarity measure for categorical data. In Pattern Recognition Letters archive, volume 26, pages 2549-2557, 2005.
-
(2005)
Pattern Recognition Letters archive
, vol.26
, pp. 2549-2557
-
-
Si Quang, L.1
Tu Bao, H.2
-
22
-
-
36849062787
-
-
Kingsly Leung and Christopher Leckie. Unsupervised anomaly detection in network intrusion detection using clusters. In Proc. 28th Australasian CS Conf., 38 of CRPITV, 2005.
-
Kingsly Leung and Christopher Leckie. Unsupervised anomaly detection in network intrusion detection using clusters. In Proc. 28th Australasian CS Conf., volume 38 of CRPITV, 2005.
-
-
-
-
24
-
-
0001828003
-
Cached sufficient statistics for efficient machine learning with large datasets
-
March
-
Andrew Moore and Mary Soon Lee. Cached sufficient statistics for efficient machine learning with large datasets. Journal of Artificial Intelligence Research, 8:67-91, March 1998.
-
(1998)
Journal of Artificial Intelligence Research
, vol.8
, pp. 67-91
-
-
Moore, A.1
Soon Lee, M.2
-
25
-
-
1942452317
-
Optimal reinsertion: A new search operator for accelerated and more accurate bayesian network structure learning
-
August
-
Andrew Moore and Weng-Keen Wong. Optimal reinsertion: A new search operator for accelerated and more accurate bayesian network structure learning. In Proceedings of the 20th International Conference on Machine Learning (ICML '03), pages 552-559, August 2003.
-
(2003)
Proceedings of the 20th International Conference on Machine Learning (ICML '03)
, pp. 552-559
-
-
Moore, A.1
Wong, W.2
-
26
-
-
2442567436
-
-
P. Patel, E.Keogh, J.Lin, and S.Lonardi. Mining motifs in massive time series databases. In Proceedings of IEEE International Conference on Data Mining (ICDM'02), pages 370-377, December 2002.
-
P. Patel, E.Keogh, J.Lin, and S.Lonardi. Mining motifs in massive time series databases. In Proceedings of IEEE International Conference on Data Mining (ICDM'02), pages 370-377, December 2002.
-
-
-
-
27
-
-
36849033557
-
Scalable and practical probability density estimators for scientific anomaly detection
-
Dan Pelleg. Scalable and practical probability density estimators for scientific anomaly detection. In Doctoral Thesis, Carnegie Mellon University, 2004.
-
(2004)
Doctoral Thesis, Carnegie Mellon University
-
-
Pelleg, D.1
-
29
-
-
33745442482
-
A machine learning framework for network anomaly detection using svm and ga
-
T. Shon, Y. Kim, C. Lee, and J. Moon. A machine learning framework for network anomaly detection using svm and ga. In Proc. from the Sixth Annual IEEE Systems, Man and Cybernetics (SMC) Information Assurance Workshop, pages 176-183, 2005.
-
(2005)
Proc. from the Sixth Annual IEEE Systems, Man and Cybernetics (SMC) Information Assurance Workshop
, pp. 176-183
-
-
Shon, T.1
Kim, Y.2
Lee, C.3
Moon, J.4
-
32
-
-
1942484473
-
Bayesian network anomaly pattern detection for disease outbreaks
-
AAAI Press, August
-
Weng-Keen Wong, Andrew Moore, Gregory Cooper, and Michael Wagner. Bayesian network anomaly pattern detection for disease outbreaks. In Proceedings of the Twentieth International Conference on Machine Learning, pages 808-815. AAAI Press, August 2003.
-
(2003)
Proceedings of the Twentieth International Conference on Machine Learning
, pp. 808-815
-
-
Wong, W.1
Moore, A.2
Cooper, G.3
Wagner, M.4
|