메뉴 건너뛰기




Volumn 25, Issue 2, 2012, Pages 243-269

Finding density-based subspace clusters in graphs with feature vectors

Author keywords

Dense subgraphs; Graph clustering; Networks

Indexed keywords

ARBITRARY SHAPE; ATTRIBUTE INFORMATION; ATTRIBUTE SIMILARITY; CLUSTERING APPROACH; CLUSTERING SOLUTIONS; DATA SOURCE; DENSITY-BASED; FEATURE VECTORS; FIXED POINT ITERATION; GRAPH CLUSTERING; GRAPH DENSITY; KNOWLEDGE EXTRACTION; MINING TECHNIQUES; NETWORK INFORMATION; SUBGRAPH MINING; SUBGRAPHS; SUBSPACE CLUSTERING; SUBSPACE CLUSTERS;

EID: 84864555859     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10618-012-0272-z     Document Type: Conference Paper
Times cited : (20)

References (31)
  • 2
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • SIGMOD, Seattle
    • Agrawal R, Gehrke J, Gunopulos D, Raghavan P (1998) Automatic subspace clustering of high dimensional data for data mining applications. In: SIGMOD, pp 94-105. SIGMOD, Seattle
    • (1998) SIGMOD , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 3
    • 69049115385 scopus 로고    scopus 로고
    • Edsc: Efficient density-based subspace clustering
    • CIKM, Glasgow
    • Assent I, Krieger R, Müller E, Seidl T (2008) EDSC: efficient density-based subspace clustering. In: CIKM, pp 1093-1102. CIKM, Glasgow
    • (2008) CIKM , pp. 1093-1102
    • Assent, I.1    Krieger, R.2    Müller, E.3    Seidl, T.4
  • 4
    • 84947205653 scopus 로고    scopus 로고
    • When is "nearest neighbor"meaningful?
    • ICDT, Mont Blanc
    • Beyer KS, Goldstein J, Ramakrishnan R, Shaft U (1999) When is "nearest neighbor"meaningful? In: ICDT, pp 217-235. ICDT, Mont Blanc
    • (1999) ICDT , pp. 217-235
    • Beyer, K.S.1    Goldstein, J.2    Ramakrishnan, R.3    Shaft, U.4
  • 5
    • 33144463206 scopus 로고    scopus 로고
    • K-core organization of complex networks
    • Dorogovtsev S, Goltsev A, Mendes J (2006) K-core organization of complex networks. Phys Rev Lett 96(4):40-601
    • (2006) Phys Rev Lett , vol.96 , Issue.4 , pp. 40-601
    • Dorogovtsev, S.1    Goltsev, A.2    Mendes, J.3
  • 6
    • 43749091772 scopus 로고    scopus 로고
    • Community detection in large-scale social networks
    • SNA-KDD, San Jose
    • Du N, Wu B, Pei X, Wang B, Xu L (2007) Community detection in large-scale social networks. In: Web-KDD/SNA-KDD, pp 16-25. SNA-KDD, San Jose
    • (2007) Web-KDD/SNA-KDD , pp. 16-25
    • Du, N.1    Wu, B.2    Pei, X.3    Wang, B.4    Xu, L.5
  • 7
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • KDD, Portland
    • Ester M, Kriegel HP, S J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, pp 226-231. KDD, Portland
    • (1996) KDD , pp. 226-231
    • Ester, M.1    Kriegel, H.P.S.J.2    Xu, X.3
  • 8
    • 33745484604 scopus 로고    scopus 로고
    • Joint cluster analysis of attribute data and relationship data: The connected k-center problem
    • SDM, Bethesda
    • Ester M, Ge R, Gao BJ, Hu Z, Ben-Moshe B (2006) Joint cluster analysis of attribute data and relationship data: The connected k-center problem. In: SDM. SDM, Bethesda
    • (2006) SDM
    • Ester, M.1    Ge, R.2    Gao, B.J.3    Hu, Z.4    Ben-Moshe, B.5
  • 9
    • 74549217295 scopus 로고    scopus 로고
    • Detection of orthogonal concepts in subspaces of high dimensional data
    • CIKM, Hong Kong
    • Günnemann S, Müller E, Färber I, Seidl T (2009) Detection of orthogonal concepts in subspaces of high dimensional data. In: CIKM, pp 1317-1326. CIKM, Hong Kong
    • (2009) CIKM , pp. 1317-1326
    • Günnemann, S.1    Müller, E.2    Färber, I.3    Seidl, T.4
  • 10
    • 79951736796 scopus 로고    scopus 로고
    • Subspace clustering meets dense subgraph mining: A synthesis of two paradigms
    • ICDM, Sydney
    • Günnemann S, Färber I, Boden B, Seidl T (2010) Subspace clustering meets dense subgraph mining: A synthesis of two paradigms. In: ICDM, pp 845-850. ICDM, Sydney
    • (2010) ICDM , pp. 845-850
    • Günnemann, S.1    Färber, I.2    Boden, B.3    Seidl, T.4
  • 11
    • 84870458769 scopus 로고    scopus 로고
    • Subspace clustering for uncertain data
    • SDM, Bethesda
    • Günnemann S, Kremer H, Seidl T (2010) Subspace clustering for uncertain data. In: SDM, pp 385-396. SDM, Bethesda
    • (2010) SDM , pp. 385-396
    • Günnemann, S.1    Kremer, H.2    Seidl, T.3
  • 12
    • 80052417297 scopus 로고    scopus 로고
    • Db-csc: A density-based approach for subspace clustering in graphs with feature vectors
    • ECML, Athens
    • Günnemann S, Boden B, Seidl T (2011) DB-CSC: A density-based approach for subspace clustering in graphs with feature vectors. In: ECML/PKDD (1), pp 565-580. ECML, Athens
    • (2011) ECML/PKDD , Issue.1 , pp. 565-580
    • Günnemann, S.1    Boden, B.2    Seidl, T.3
  • 13
    • 83055191163 scopus 로고    scopus 로고
    • External evaluation measures for subspace clustering
    • CIKM, Glasgow
    • Günnemann S, Färber I, Müller E, Assent I, Seidl T (2011) External evaluation measures for subspace clustering. In: CIKM, pp 1363-1372. CIKM, Glasgow
    • (2011) CIKM , pp. 1363-1372
    • Günnemann, S.1    Färber, I.2    Müller, E.3    Assent, I.4    Seidl, T.5
  • 14
    • 0038014879 scopus 로고    scopus 로고
    • Co-clustering of biological networks and gene expression data
    • HanischD, Zien A, ZimmerR, Lengauer T (2002) Co-clustering of biological networks and gene expression data. Bioinformatics 18:145-154
    • (2002) Bioinformatics , vol.18 , pp. 145-154
    • HanischD Zien, A.1    ZimmerR Lengauer, T.2
  • 15
    • 85140527321 scopus 로고    scopus 로고
    • An efficient approach to clustering in large multimedia databases with noise
    • KDD, New York
    • Hinneburg A,Keim DA(1998) An efficient approach to clustering in large multimedia databases with noise. In: KDD, pp 58-65. KDD, New York
    • (1998) KDD , pp. 58-65
    • Hinneburg, A.1    Keim, D.A.2
  • 16
    • 33846659833 scopus 로고    scopus 로고
    • Asimple solution to the k-core problem
    • Janson S, LuczakM (2007) Asimple solution to the k-core problem. Rand StructAlgorithm 30(1-2):50-62
    • (2007) Rand StructAlgorithm , vol.30 , Issue.1-2 , pp. 50-62
    • Janson S LuczakM1
  • 17
    • 2942588997 scopus 로고    scopus 로고
    • Density-connected subspace clustering for high-dimensional data
    • SDM, Bethesda
    • Kailing K, Kriegel HP, Kroeger P (2004) Density-connected subspace clustering for high-dimensional data. In: SDM, pp 246-257. SDM, Bethesda
    • (2004) SDM , pp. 246-257
    • Kailing, K.1    Kriegel, H.P.2    Kroeger, P.3
  • 18
    • 67149084291 scopus 로고    scopus 로고
    • Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
    • Kriegel HP, Kröger P, Zimek A (2009) Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. Trans Knowl Discov Data 3(1):1-58
    • (2009) Trans Knowl Discov Data , vol.3 , Issue.1 , pp. 1-58
    • Kriegel, H.P.1    Kröger, P.2    Zimek, A.3
  • 19
    • 33745151016 scopus 로고    scopus 로고
    • Tractable group detection on large link data sets
    • ICDM, Sydney
    • Kubica J, Moore AW, Schneider JG (2003) Tractable group detection on large link data sets. In: ICDM, pp 573-576. ICDM, Sydney
    • (2003) ICDM , pp. 573-576
    • Kubica, J.1    Moore, A.W.2    Schneider, J.G.3
  • 20
    • 33749541707 scopus 로고    scopus 로고
    • Unsupervised learning on k-partite graphs
    • KDD, Portland
    • Long B,Wu X, Zhang ZM, Yu PS (2006) Unsupervised learning on k-partite graphs. In: KDD, pp 317-326. KDD, Portland
    • (2006) KDD , pp. 317-326
    • Long, B.1    Wu, X.2    Zhang, Z.M.3    Yu, P.S.4
  • 21
    • 36849020504 scopus 로고    scopus 로고
    • Aprobabilistic framework for relational clustering
    • KDD, Portland
    • Long B, Zhang ZM,Yu PS (2007)Aprobabilistic framework for relational clustering. In: KDD, pp 470-479. KDD, Portland
    • (2007) KDD , pp. 470-479
    • Long, B.1    Zhang, Z.M.2    Yu, P.S.3
  • 22
    • 65449163900 scopus 로고    scopus 로고
    • Finding non-redundant, statistically significant regions in high dimensional data: A novel approach to projected and subspace clustering
    • KDD, Portland
    • Moise G, Sander J (2008) Finding non-redundant, statistically significant regions in high dimensional data: A novel approach to projected and subspace clustering. In: KDD, pp 533-541. KDD, Portland
    • (2008) KDD , pp. 533-541
    • Moise, G.1    Sander, J.2
  • 23
    • 74549169516 scopus 로고    scopus 로고
    • Mining cohesive patterns from graphs with feature vectors
    • SDM, Bethesda
    • Moser F, Colak R, Rafiey A, Ester M (2009) Mining cohesive patterns from graphs with feature vectors. In: SDM, pp 593-604. SDM, Bethesda
    • (2009) SDM , pp. 593-604
    • Moser, F.1    Colak, R.2    Rafiey, A.3    Ester, M.4
  • 24
    • 77951149821 scopus 로고    scopus 로고
    • Relevant subspace clustering: Mining themost interesting non-redundant concepts in high dimensional data
    • ICDM, Sydney
    • Müller E, Assent I, Günnemann S, Krieger R, Seidl T (2009) Relevant subspace clustering: mining themost interesting non-redundant concepts in high dimensional data. In: ICDM, pp 377-386. ICDM, Sydney
    • (2009) ICDM , pp. 377-386
    • Müller, E.1    Assent, I.2    Günnemann, S.3    Krieger, R.4    Seidl, T.5
  • 25
    • 84865086248 scopus 로고    scopus 로고
    • Evaluating clustering in subspace projections of high dimensional data
    • VLDB, Singapore
    • Müller E, Günnemann S, Assent I, Seidl T (2009) Evaluating clustering in subspace projections of high dimensional data. In: VLDB, pp 1270-1281. VLDB, Singapore
    • (2009) VLDB , pp. 1270-1281
    • Müller, E.1    Günnemann, S.2    Assent, I.3    Seidl, T.4
  • 26
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: A review
    • Parsons L, Haque E, LiuH (2004) Subspace clustering for high dimensional data: A review. SIGKDD Explor 6(1):90-105
    • (2004) SIGKDD Explor , vol.6 , Issue.1 , pp. 90-105
    • Parsons, L.1    Haque E LiuH2
  • 27
    • 32344444324 scopus 로고    scopus 로고
    • On mining cross-graph quasi-cliques
    • KDD, Portland
    • Pei J, Jiang D, Zhang A (2005) On mining cross-graph quasi-cliques. In: KDD, pp 228-238. KDD, Portland
    • (2005) KDD , pp. 228-238
    • Pei, J.1    Jiang, D.2    Zhang, A.3
  • 28
    • 38349102446 scopus 로고    scopus 로고
    • An efficient spectral algorithm for network community discovery and its applications to biological and social networks
    • ICDM, Sydney
    • Ruan J, ZhangW(2007) An efficient spectral algorithm for network community discovery and its applications to biological and social networks. In: ICDM, pp 643-648. ICDM, Sydney
    • (2007) ICDM , pp. 643-648
    • Ruan, J.1    Zhang, W.2
  • 29
    • 34548742517 scopus 로고    scopus 로고
    • Identification of functionalmodules using network topology and high-throughput data
    • Ulitsky I, ShamirR(2007) Identification of functionalmodules using network topology and high-throughput data. BMC Syst Biol 1(1):8
    • (2007) BMC Syst Biol , vol.1 , Issue.1 , pp. 8
    • Ulitsky, I.1    Shamir, R.2
  • 30
    • 77955045035 scopus 로고    scopus 로고
    • Graph clustering based on structural/attribute similarities
    • Zhou Y, Cheng H, Yu JX (2009) Graph clustering based on structural/attribute similarities. PVLDB 2(1):718-729
    • (2009) PVLDB , vol.2 , Issue.1 , pp. 718-729
    • Zhou, Y.1    Cheng, H.2    Yu, J.X.3
  • 31
    • 79951739260 scopus 로고    scopus 로고
    • Clustering large attributed graphs: An efficient incremental approach
    • ICDM, Sydney
    • Zhou Y, Cheng H, Yu JX (2010) Clustering large attributed graphs: An efficient incremental approach. In: ICDM, pp 689-698. ICDM, Sydney
    • (2010) ICDM , pp. 689-698
    • Zhou, Y.1    Cheng, H.2    Yu, J.X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.