-
2
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
SIGMOD, Seattle
-
Agrawal R, Gehrke J, Gunopulos D, Raghavan P (1998) Automatic subspace clustering of high dimensional data for data mining applications. In: SIGMOD, pp 94-105. SIGMOD, Seattle
-
(1998)
SIGMOD
, pp. 94-105
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
3
-
-
69049115385
-
Edsc: Efficient density-based subspace clustering
-
CIKM, Glasgow
-
Assent I, Krieger R, Müller E, Seidl T (2008) EDSC: efficient density-based subspace clustering. In: CIKM, pp 1093-1102. CIKM, Glasgow
-
(2008)
CIKM
, pp. 1093-1102
-
-
Assent, I.1
Krieger, R.2
Müller, E.3
Seidl, T.4
-
4
-
-
84947205653
-
When is "nearest neighbor"meaningful?
-
ICDT, Mont Blanc
-
Beyer KS, Goldstein J, Ramakrishnan R, Shaft U (1999) When is "nearest neighbor"meaningful? In: ICDT, pp 217-235. ICDT, Mont Blanc
-
(1999)
ICDT
, pp. 217-235
-
-
Beyer, K.S.1
Goldstein, J.2
Ramakrishnan, R.3
Shaft, U.4
-
6
-
-
43749091772
-
Community detection in large-scale social networks
-
SNA-KDD, San Jose
-
Du N, Wu B, Pei X, Wang B, Xu L (2007) Community detection in large-scale social networks. In: Web-KDD/SNA-KDD, pp 16-25. SNA-KDD, San Jose
-
(2007)
Web-KDD/SNA-KDD
, pp. 16-25
-
-
Du, N.1
Wu, B.2
Pei, X.3
Wang, B.4
Xu, L.5
-
7
-
-
85170282443
-
A density-based algorithm for discovering clusters in large spatial databases with noise
-
KDD, Portland
-
Ester M, Kriegel HP, S J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, pp 226-231. KDD, Portland
-
(1996)
KDD
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.P.S.J.2
Xu, X.3
-
8
-
-
33745484604
-
Joint cluster analysis of attribute data and relationship data: The connected k-center problem
-
SDM, Bethesda
-
Ester M, Ge R, Gao BJ, Hu Z, Ben-Moshe B (2006) Joint cluster analysis of attribute data and relationship data: The connected k-center problem. In: SDM. SDM, Bethesda
-
(2006)
SDM
-
-
Ester, M.1
Ge, R.2
Gao, B.J.3
Hu, Z.4
Ben-Moshe, B.5
-
9
-
-
74549217295
-
Detection of orthogonal concepts in subspaces of high dimensional data
-
CIKM, Hong Kong
-
Günnemann S, Müller E, Färber I, Seidl T (2009) Detection of orthogonal concepts in subspaces of high dimensional data. In: CIKM, pp 1317-1326. CIKM, Hong Kong
-
(2009)
CIKM
, pp. 1317-1326
-
-
Günnemann, S.1
Müller, E.2
Färber, I.3
Seidl, T.4
-
10
-
-
79951736796
-
Subspace clustering meets dense subgraph mining: A synthesis of two paradigms
-
ICDM, Sydney
-
Günnemann S, Färber I, Boden B, Seidl T (2010) Subspace clustering meets dense subgraph mining: A synthesis of two paradigms. In: ICDM, pp 845-850. ICDM, Sydney
-
(2010)
ICDM
, pp. 845-850
-
-
Günnemann, S.1
Färber, I.2
Boden, B.3
Seidl, T.4
-
11
-
-
84870458769
-
Subspace clustering for uncertain data
-
SDM, Bethesda
-
Günnemann S, Kremer H, Seidl T (2010) Subspace clustering for uncertain data. In: SDM, pp 385-396. SDM, Bethesda
-
(2010)
SDM
, pp. 385-396
-
-
Günnemann, S.1
Kremer, H.2
Seidl, T.3
-
12
-
-
80052417297
-
Db-csc: A density-based approach for subspace clustering in graphs with feature vectors
-
ECML, Athens
-
Günnemann S, Boden B, Seidl T (2011) DB-CSC: A density-based approach for subspace clustering in graphs with feature vectors. In: ECML/PKDD (1), pp 565-580. ECML, Athens
-
(2011)
ECML/PKDD
, Issue.1
, pp. 565-580
-
-
Günnemann, S.1
Boden, B.2
Seidl, T.3
-
13
-
-
83055191163
-
External evaluation measures for subspace clustering
-
CIKM, Glasgow
-
Günnemann S, Färber I, Müller E, Assent I, Seidl T (2011) External evaluation measures for subspace clustering. In: CIKM, pp 1363-1372. CIKM, Glasgow
-
(2011)
CIKM
, pp. 1363-1372
-
-
Günnemann, S.1
Färber, I.2
Müller, E.3
Assent, I.4
Seidl, T.5
-
14
-
-
0038014879
-
Co-clustering of biological networks and gene expression data
-
HanischD, Zien A, ZimmerR, Lengauer T (2002) Co-clustering of biological networks and gene expression data. Bioinformatics 18:145-154
-
(2002)
Bioinformatics
, vol.18
, pp. 145-154
-
-
HanischD Zien, A.1
ZimmerR Lengauer, T.2
-
15
-
-
85140527321
-
An efficient approach to clustering in large multimedia databases with noise
-
KDD, New York
-
Hinneburg A,Keim DA(1998) An efficient approach to clustering in large multimedia databases with noise. In: KDD, pp 58-65. KDD, New York
-
(1998)
KDD
, pp. 58-65
-
-
Hinneburg, A.1
Keim, D.A.2
-
16
-
-
33846659833
-
Asimple solution to the k-core problem
-
Janson S, LuczakM (2007) Asimple solution to the k-core problem. Rand StructAlgorithm 30(1-2):50-62
-
(2007)
Rand StructAlgorithm
, vol.30
, Issue.1-2
, pp. 50-62
-
-
Janson S LuczakM1
-
17
-
-
2942588997
-
Density-connected subspace clustering for high-dimensional data
-
SDM, Bethesda
-
Kailing K, Kriegel HP, Kroeger P (2004) Density-connected subspace clustering for high-dimensional data. In: SDM, pp 246-257. SDM, Bethesda
-
(2004)
SDM
, pp. 246-257
-
-
Kailing, K.1
Kriegel, H.P.2
Kroeger, P.3
-
18
-
-
67149084291
-
Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
-
Kriegel HP, Kröger P, Zimek A (2009) Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. Trans Knowl Discov Data 3(1):1-58
-
(2009)
Trans Knowl Discov Data
, vol.3
, Issue.1
, pp. 1-58
-
-
Kriegel, H.P.1
Kröger, P.2
Zimek, A.3
-
19
-
-
33745151016
-
Tractable group detection on large link data sets
-
ICDM, Sydney
-
Kubica J, Moore AW, Schneider JG (2003) Tractable group detection on large link data sets. In: ICDM, pp 573-576. ICDM, Sydney
-
(2003)
ICDM
, pp. 573-576
-
-
Kubica, J.1
Moore, A.W.2
Schneider, J.G.3
-
20
-
-
33749541707
-
Unsupervised learning on k-partite graphs
-
KDD, Portland
-
Long B,Wu X, Zhang ZM, Yu PS (2006) Unsupervised learning on k-partite graphs. In: KDD, pp 317-326. KDD, Portland
-
(2006)
KDD
, pp. 317-326
-
-
Long, B.1
Wu, X.2
Zhang, Z.M.3
Yu, P.S.4
-
21
-
-
36849020504
-
Aprobabilistic framework for relational clustering
-
KDD, Portland
-
Long B, Zhang ZM,Yu PS (2007)Aprobabilistic framework for relational clustering. In: KDD, pp 470-479. KDD, Portland
-
(2007)
KDD
, pp. 470-479
-
-
Long, B.1
Zhang, Z.M.2
Yu, P.S.3
-
22
-
-
65449163900
-
Finding non-redundant, statistically significant regions in high dimensional data: A novel approach to projected and subspace clustering
-
KDD, Portland
-
Moise G, Sander J (2008) Finding non-redundant, statistically significant regions in high dimensional data: A novel approach to projected and subspace clustering. In: KDD, pp 533-541. KDD, Portland
-
(2008)
KDD
, pp. 533-541
-
-
Moise, G.1
Sander, J.2
-
23
-
-
74549169516
-
Mining cohesive patterns from graphs with feature vectors
-
SDM, Bethesda
-
Moser F, Colak R, Rafiey A, Ester M (2009) Mining cohesive patterns from graphs with feature vectors. In: SDM, pp 593-604. SDM, Bethesda
-
(2009)
SDM
, pp. 593-604
-
-
Moser, F.1
Colak, R.2
Rafiey, A.3
Ester, M.4
-
24
-
-
77951149821
-
Relevant subspace clustering: Mining themost interesting non-redundant concepts in high dimensional data
-
ICDM, Sydney
-
Müller E, Assent I, Günnemann S, Krieger R, Seidl T (2009) Relevant subspace clustering: mining themost interesting non-redundant concepts in high dimensional data. In: ICDM, pp 377-386. ICDM, Sydney
-
(2009)
ICDM
, pp. 377-386
-
-
Müller, E.1
Assent, I.2
Günnemann, S.3
Krieger, R.4
Seidl, T.5
-
25
-
-
84865086248
-
Evaluating clustering in subspace projections of high dimensional data
-
VLDB, Singapore
-
Müller E, Günnemann S, Assent I, Seidl T (2009) Evaluating clustering in subspace projections of high dimensional data. In: VLDB, pp 1270-1281. VLDB, Singapore
-
(2009)
VLDB
, pp. 1270-1281
-
-
Müller, E.1
Günnemann, S.2
Assent, I.3
Seidl, T.4
-
26
-
-
17044376078
-
Subspace clustering for high dimensional data: A review
-
Parsons L, Haque E, LiuH (2004) Subspace clustering for high dimensional data: A review. SIGKDD Explor 6(1):90-105
-
(2004)
SIGKDD Explor
, vol.6
, Issue.1
, pp. 90-105
-
-
Parsons, L.1
Haque E LiuH2
-
27
-
-
32344444324
-
On mining cross-graph quasi-cliques
-
KDD, Portland
-
Pei J, Jiang D, Zhang A (2005) On mining cross-graph quasi-cliques. In: KDD, pp 228-238. KDD, Portland
-
(2005)
KDD
, pp. 228-238
-
-
Pei, J.1
Jiang, D.2
Zhang, A.3
-
28
-
-
38349102446
-
An efficient spectral algorithm for network community discovery and its applications to biological and social networks
-
ICDM, Sydney
-
Ruan J, ZhangW(2007) An efficient spectral algorithm for network community discovery and its applications to biological and social networks. In: ICDM, pp 643-648. ICDM, Sydney
-
(2007)
ICDM
, pp. 643-648
-
-
Ruan, J.1
Zhang, W.2
-
29
-
-
34548742517
-
Identification of functionalmodules using network topology and high-throughput data
-
Ulitsky I, ShamirR(2007) Identification of functionalmodules using network topology and high-throughput data. BMC Syst Biol 1(1):8
-
(2007)
BMC Syst Biol
, vol.1
, Issue.1
, pp. 8
-
-
Ulitsky, I.1
Shamir, R.2
-
30
-
-
77955045035
-
Graph clustering based on structural/attribute similarities
-
Zhou Y, Cheng H, Yu JX (2009) Graph clustering based on structural/attribute similarities. PVLDB 2(1):718-729
-
(2009)
PVLDB
, vol.2
, Issue.1
, pp. 718-729
-
-
Zhou, Y.1
Cheng, H.2
Yu, J.X.3
-
31
-
-
79951739260
-
Clustering large attributed graphs: An efficient incremental approach
-
ICDM, Sydney
-
Zhou Y, Cheng H, Yu JX (2010) Clustering large attributed graphs: An efficient incremental approach. In: ICDM, pp 689-698. ICDM, Sydney
-
(2010)
ICDM
, pp. 689-698
-
-
Zhou, Y.1
Cheng, H.2
Yu, J.X.3
|