메뉴 건너뛰기




Volumn , Issue , 2008, Pages 512-521

DisCo: Distributed Co-clustering with Map-Reduce: A case study towards petabyte-scale end-to-end mining

Author keywords

[No Author keywords available]

Indexed keywords

CO-CLUSTERING; COLLABORATIVE FILTERING; COMMODITY HARDWARE; DATA SETS; DATA STORAGE; DISTRIBUTED DATA; DISTRIBUTED PROCESSING; EXECUTION ENGINE; GRAPH MINING; LARGE DATASETS; MANAGEMENT COMPONENTS; MINING PROCESS; MINING TASKS; OPEN SOURCES; PRE-PROCESSING; REAL-WORLD APPLICATION; TEXT MINING;

EID: 67149126890     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2008.142     Document Type: Conference Paper
Times cited : (167)

References (38)
  • 1
    • 67149100815 scopus 로고    scopus 로고
    • Hadoop. http://hadoop.apache.org/core/.
    • Hadoop
  • 2
    • 67149146165 scopus 로고    scopus 로고
    • HBase. http://hadoop.apache.org/hbase/.
    • HBase
  • 3
    • 67149105501 scopus 로고    scopus 로고
    • PIG. http://incubator.apache.org/pig/.
    • PIG
  • 4
    • 12244261221 scopus 로고    scopus 로고
    • A generalized maximum entropy approach to Bregman co-clustering and matrix approximation
    • A. Banerjee, I. Dhillon, J. Ghosh, S. Nerugu, and D. S. Modha. A generalized maximum entropy approach to Bregman co-clustering and matrix approximation. In KDD, 2004.
    • (2004) KDD
    • Banerjee, A.1    Dhillon, I.2    Ghosh, J.3    Nerugu, S.4    Modha, D.S.5
  • 8
    • 0034566393 scopus 로고    scopus 로고
    • Biclustering of expression data
    • Y. Cheng and G.M. Church. Biclustering of expression data. In ISMB, 2000.
    • (2000) ISMB
    • Cheng, Y.1    Church, G.M.2
  • 9
    • 12244302673 scopus 로고    scopus 로고
    • Minimum sumsquared residue co-clustering of gene expression data
    • H. Cho, I. Dhillon, Y. Guan, and S. Sra. Minimum sumsquared residue co-clustering of gene expression data. In SDM, 2004.
    • (2004) SDM
    • Cho, H.1    Dhillon, I.2    Guan, Y.3    Sra, S.4
  • 12
    • 85030321143 scopus 로고    scopus 로고
    • MapReduce: Simplified data processing on large clusters
    • J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In OSDI, 2004.
    • (2004) OSDI
    • Dean, J.1    Ghemawat, S.2
  • 13
    • 37549003336 scopus 로고    scopus 로고
    • MapReduce: Simplified data processing on large clusters
    • J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. CACM, 51(1), 2008.
    • (2008) CACM , vol.51 , Issue.1
    • Dean, J.1    Ghemawat, S.2
  • 17
    • 55649105542 scopus 로고    scopus 로고
    • SPADE: The system S declarative stream processing engine
    • B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo. SPADE: The System S declarative stream processing engine. In SIGMOD, 2008.
    • (2008) SIGMOD
    • Gedik, B.1    Andrade, H.2    Wu, K.-L.3    Yu, P.S.4    Doo, M.5
  • 18
    • 34548591807 scopus 로고    scopus 로고
    • A scalable collaborative filtering framework based on co-clustering
    • T. George and S. Merugu. A scalable collaborative filtering framework based on co-clustering. In ICDM, 2005.
    • (2005) ICDM
    • George, T.1    Merugu, S.2
  • 21
    • 57349102267 scopus 로고    scopus 로고
    • FREERIDE-G: Enabling distributed processing of large datasets
    • L. Glimcher and G. Agrawal. FREERIDE-G: Enabling distributed processing of large datasets. In HPDC, 2008.
    • (2008) HPDC
    • Glimcher, L.1    Agrawal, G.2
  • 23
    • 63149115819 scopus 로고    scopus 로고
    • Data mining using high performance clouds: Experimental studies using sector and sphere
    • R. L. Grossman and Y. Gu. Data mining using high performance clouds: Experimental studies using sector and sphere. In KDD, 2008.
    • (2008) KDD
    • Grossma, R.L.1    Gu, Y.2
  • 24
    • 84927511887 scopus 로고
    • Direct clustering of a data matrix
    • J. A. Hartigan. Direct clustering of a data matrix. J. Am. Stat. Assoc., 67(337), 1972.
    • (1972) J. Am. Stat. Assoc. , vol.67 , Issue.337
    • Hartigan, J.A.1
  • 25
    • 35448961922 scopus 로고    scopus 로고
    • Dryad: Distributed data-parallel programs from sequential building blocks
    • M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed data-parallel programs from sequential building blocks. In EuroSys, 2007.
    • (2007) EuroSys
    • Isard, M.1    Budiu, M.2    Yu, Y.3    Birrell, A.4    Fetterly, D.5
  • 28
    • 1542310263 scopus 로고    scopus 로고
    • Word clustering and disambiguation based on co-occurence data
    • H. Li and N. Abe. Word clustering and disambiguation based on co-occurence data. In COLING-ACL, 1998.
    • (1998) COLING-ACL
    • Li, H.1    Abe, N.2
  • 29
    • 3142768191 scopus 로고    scopus 로고
    • Biclustering algorithms for biological data analysis: A survey
    • S. C.Madeira and A. L. Oliveira. Biclustering algorithms for biological data analysis: A survey. IEEE/ACM TCBB, 1, 2004.
    • (2004) IEEE/ACM TCBB , vol.1
    • Madeira, S.C.1    Oliveira, A.L.2
  • 31
    • 30344452311 scopus 로고    scopus 로고
    • Interpreting the data: Parallel analysis with sawzall
    • R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the data: Parallel analysis with sawzall. Sci. Prog. J., 13(4), 2005.
    • (2005) Sci. Prog. J. , vol.13 , Issue.4
    • Pike, R.1    Dorward, S.2    Griesemer, R.3    Quinlan, S.4
  • 33
    • 85084163004 scopus 로고    scopus 로고
    • GPFS: A shared-disk file system for large computing clusters
    • F. Schmuck and R. Haskin. GPFS: A shared-disk file system for large computing clusters. In FAST, 2002.
    • (2002) FAST
    • Schmuck, F.1    Haskin, R.2
  • 34
    • 46249133300 scopus 로고    scopus 로고
    • Beyond relational databases
    • M. Seltzer. Beyond relational databases. CACM, 51(7), 2008.
    • (2008) CACM , vol.51 , Issue.7
    • Seltzer, M.1
  • 35
    • 28444458809 scopus 로고    scopus 로고
    • One size fits all: An idea whose time has come and gone
    • M. Stonebraker and U. Cetintemel. One size fits all: An idea whose time has come and gone. In ICDE, 2005.
    • (2005) ICDE
    • Stonebraker, M.1    Cetintemel, U.2
  • 38
    • 67149128058 scopus 로고    scopus 로고
    • Zvents. Hypertable. http://hypertable.org/.
    • Zvents


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.