메뉴 건너뛰기




Volumn 25, Issue 1, 2015, Pages 9-23

RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response

Author keywords

Phosphorylation; Post translational modification; RPA; SUMOylation; Ubiquitination

Indexed keywords

EUKARYOTA;

EID: 84920274525     PISSN: 10010602     EISSN: 17487838     Source Type: Journal    
DOI: 10.1038/cr.2014.147     Document Type: Review
Times cited : (335)

References (188)
  • 1
    • 0023140133 scopus 로고
    • Replication of simian virus 40 origin-containing DNA in vitro with purified proteins
    • Wobbe CR, Weissbach L, Borowiec JA, et al. Replication of simian virus 40 origin-containing DNA in vitro with purified proteins. Proc Natl Acad Sci USA 1987; 84:1834-1838.
    • (1987) Proc Natl Acad Sci USA , vol.84 , pp. 1834-1838
    • Wobbe, C.R.1    Weissbach, L.2    Borowiec, J.A.3
  • 2
    • 0023992803 scopus 로고
    • Purification and characterization of replication protein A, a cellular protein required for in vitro replication of simian virus 40 DNA
    • Wold MS, Kelly T. Purification and characterization of replication protein A, a cellular protein required for in vitro replication of simian virus 40 DNA. Proc Natl Acad Sci USA 1988; 85:2523-2527.
    • (1988) Proc Natl Acad Sci USA , vol.85 , pp. 2523-2527
    • Wold, M.S.1    Kelly, T.2
  • 3
    • 1842311742 scopus 로고
    • Cellular factors required for multiple stages of SV40 DNA replication in vitro
    • Fairman MP, Stillman B. Cellular factors required for multiple stages of SV40 DNA replication in vitro. EMBO J 1988; 7:1211-1218.
    • (1988) EMBO J , vol.7 , pp. 1211-1218
    • Fairman, M.P.1    Stillman, B.2
  • 4
    • 77954589779 scopus 로고    scopus 로고
    • Oligonucleotide/oligosaccharide-binding fold proteins: A growing family of genome guardians
    • Flynn RL, Zou L. Oligonucleotide/oligosaccharide-binding fold proteins: a growing family of genome guardians. Crit Rev Biochem Mol Biol 2010; 45:266-275.
    • (2010) Crit Rev Biochem Mol Biol , vol.45 , pp. 266-275
    • Flynn, R.L.1    Zou, L.2
  • 5
    • 33749134033 scopus 로고    scopus 로고
    • A dynamic model for replication protein A (RPA) function in DNA processing pathways
    • Fanning E, Klimovich V, Nager AR. A dynamic model for replication protein A (RPA) function in DNA processing pathways. Nucleic Acids Res 2006; 34:4126-4137.
    • (2006) Nucleic Acids Res , vol.34 , pp. 4126-4137
    • Fanning, E.1    Klimovich, V.2    Nager, A.R.3
  • 6
    • 0030908093 scopus 로고    scopus 로고
    • Replication protein A: A heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism
    • Wold MS. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 1997; 66:61-92.
    • (1997) Annu Rev Biochem , vol.66 , pp. 61-92
    • Wold, M.S.1
  • 7
    • 77956628136 scopus 로고    scopus 로고
    • Replication protein A: Directing traffic at the intersection of replication and repair
    • Oakley GG, Patrick SM. Replication protein A: directing traffic at the intersection of replication and repair. Front Biosci (Landmark Ed) 2010; 15:883-900.
    • (2010) Front Biosci (Landmark Ed) , vol.15 , pp. 883-900
    • Oakley, G.G.1    Patrick, S.M.2
  • 8
    • 0035954737 scopus 로고    scopus 로고
    • RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes
    • Bae SH, Bae KH, Kim JA, Seo YS. RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes. Nature 2001; 412:456-461.
    • (2001) Nature , vol.412 , pp. 456-461
    • Bae, S.H.1    Bae, K.H.2    Kim, J.A.3    Seo, Y.S.4
  • 9
    • 0026583949 scopus 로고
    • Interaction of DNA polymerase alpha-primase with cellular replication protein A and SV40 T antigen
    • Dornreiter I, Erdile LF, Gilbert IU, von Winkler D, Kelly TJ, Fanning E. Interaction of DNA polymerase alpha-primase with cellular replication protein A and SV40 T antigen. EMBO J 1992; 11:769-776.
    • (1992) EMBO J , vol.11 , pp. 769-776
    • Dornreiter, I.1    Erdile, L.F.2    Gilbert, I.U.3    Von Winkler, D.4    Kelly, T.J.5    Fanning, E.6
  • 10
    • 0028337685 scopus 로고
    • Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro
    • Waga S, Stillman B. Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro. Nature 1994; 369:207-212.
    • (1994) Nature , vol.369 , pp. 207-212
    • Waga, S.1    Stillman, B.2
  • 11
    • 0033230401 scopus 로고    scopus 로고
    • Multiple competition reactions for RPA order the assembly of the DNA polymerase delta holoenzyme
    • Yuzhakov A, Kelman Z, Hurwitz J, O'Donnell M. Multiple competition reactions for RPA order the assembly of the DNA polymerase delta holoenzyme. EMBO J 1999; 18:6189-6199.
    • (1999) EMBO J , vol.18 , pp. 6189-6199
    • Yuzhakov, A.1    Kelman, Z.2    Hurwitz, J.3    O'Donnell, M.4
  • 12
    • 0037567268 scopus 로고    scopus 로고
    • Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes
    • Zou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 2003; 300:1542-1548.
    • (2003) Science , vol.300 , pp. 1542-1548
    • Zou, L.1    Elledge, S.J.2
  • 13
    • 84870757506 scopus 로고    scopus 로고
    • DNA damage sensing by the ATM and ATR kinases
    • pii: a012716
    • Maréchal A, Zou L. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol 2013; 5. pii: a012716.
    • (2013) Cold Spring Harb Perspect Biol , vol.5
    • Maréchal, A.1    Zou, L.2
  • 14
    • 47749141560 scopus 로고    scopus 로고
    • ATR: An essential regulator of genome integrity
    • Cimprich KA, Cortez D. ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 2008; 9:616-627.
    • (2008) Nat Rev Mol Cell Biol , vol.9 , pp. 616-627
    • Cimprich, K.A.1    Cortez, D.2
  • 15
    • 38049125557 scopus 로고    scopus 로고
    • Mechanisms and functions of DNA mismatch repair
    • Li GM. Mechanisms and functions of DNA mismatch repair. Cell Res 2008; 18:85-98.
    • (2008) Cell Res , vol.18 , pp. 85-98
    • Li, G.M.1
  • 17
    • 84880586724 scopus 로고    scopus 로고
    • DNA repair mechanisms in dividing and non-dividing cells
    • Iyama T, Wilson DM 3rd. DNA repair mechanisms in dividing and non-dividing cells. DNA Repair (Amst) 2013; 12:620-636.
    • (2013) DNA Repair (Amst) , vol.12 , pp. 620-636
    • Iyama, T.1    Wilson, D.M.2
  • 18
    • 0347988057 scopus 로고    scopus 로고
    • RPA regulates telomerase action by providing Est1p access to chromosome ends
    • Schramke V, Luciano P, Brevet V, et al. RPA regulates telomerase action by providing Est1p access to chromosome ends. Nat Genet 2004; 36:46-54.
    • (2004) Nat Genet , vol.36 , pp. 46-54
    • Schramke, V.1    Luciano, P.2    Brevet, V.3
  • 19
    • 37549060645 scopus 로고    scopus 로고
    • Replication protein A prevents accumulation of single-stranded telomeric DNA in cells that use alternative lengthening of telomeres
    • Grudic A, Jul-Larsen A, Haring SJ, et al. Replication protein A prevents accumulation of single-stranded telomeric DNA in cells that use alternative lengthening of telomeres. Nucleic Acids Res 2007; 35:7267-7278.
    • (2007) Nucleic Acids Res , vol.35 , pp. 7267-7278
    • Grudic, A.1    Jul-Larsen, A.2    Haring, S.J.3
  • 20
    • 0027939024 scopus 로고
    • Interactions of human replication protein A with oligonucleotides
    • Kim C, Paulus BF, Wold MS. Interactions of human replication protein A with oligonucleotides. Biochemistry 1994; 33:14197-14206.
    • (1994) Biochemistry , vol.33 , pp. 14197-14206
    • Kim, C.1    Paulus, B.F.2    Wold, M.S.3
  • 21
    • 0142135087 scopus 로고    scopus 로고
    • Independent and coordinated functions of replication protein A tandem high affinity single-stranded DNA binding domains
    • Arunkumar AI, Stauffer ME, Bochkareva E, Bochkarev A, Chazin WJ. Independent and coordinated functions of replication protein A tandem high affinity single-stranded DNA binding domains. J Biol Chem 2003; 278:41077-41082.
    • (2003) J Biol Chem , vol.278 , pp. 41077-41082
    • Arunkumar, A.I.1    Stauffer, M.E.2    Bochkareva, E.3    Bochkarev, A.4    Chazin, W.J.5
  • 22
    • 0031030449 scopus 로고    scopus 로고
    • Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA
    • Bochkarev A, Pfuetzner RA, Edwards AM, Frappier L. Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature 1997; 385:176-181.
    • (1997) Nature , vol.385 , pp. 176-181
    • Bochkarev, A.1    Pfuetzner, R.A.2    Edwards, A.M.3    Frappier, L.4
  • 23
    • 0037007223 scopus 로고    scopus 로고
    • Structure of the RPA trimerization core and its role in the multistep DNA-binding mechanism of RPA
    • Bochkareva E, Korolev S, Lees-Miller SP, Bochkarev A. Structure of the RPA trimerization core and its role in the multistep DNA-binding mechanism of RPA. EMBO J 2002; 21:1855-1863.
    • (2002) EMBO J , vol.21 , pp. 1855-1863
    • Bochkareva, E.1    Korolev, S.2    Lees-Miller, S.P.3    Bochkarev, A.4
  • 24
    • 0035253862 scopus 로고    scopus 로고
    • Structure of the major single-stranded DNA-binding domain of replication protein A suggests a dynamic mechanism for DNA binding
    • Bochkareva E, Belegu V, Korolev S, Bochkarev A. Structure of the major single-stranded DNA-binding domain of replication protein A suggests a dynamic mechanism for DNA binding. EMBO J 2001; 20:612-618.
    • (2001) EMBO J , vol.20 , pp. 612-618
    • Bochkareva, E.1    Belegu, V.2    Korolev, S.3    Bochkarev, A.4
  • 25
    • 84867693856 scopus 로고    scopus 로고
    • Structure and conformational change of a replication protein A heterotrimer bound to ssDNA
    • Fan J, Pavletich NP. Structure and conformational change of a replication protein A heterotrimer bound to ssDNA. Genes Dev 2012; 26:2337-2347.
    • (2012) Genes Dev , vol.26 , pp. 2337-2347
    • Fan, J.1    Pavletich, N.P.2
  • 26
    • 0242507460 scopus 로고    scopus 로고
    • Replication protein A interactions with DNA: Differential binding of the core domains and analysis of the DNA interaction surface
    • Wyka IM, Dhar K, Binz SK, Wold MS. Replication protein A interactions with DNA: differential binding of the core domains and analysis of the DNA interaction surface. Biochemistry 2003; 42:12909-12918.
    • (2003) Biochemistry , vol.42 , pp. 12909-12918
    • Wyka, I.M.1    Dhar, K.2    Binz, S.K.3    Wold, M.S.4
  • 27
    • 0028333942 scopus 로고
    • Human replication protein A binds single-stranded DNA in two distinct complexes
    • Blackwell LJ, Borowiec JA. Human replication protein A binds single-stranded DNA in two distinct complexes. Mol Cell Biol 1994; 14:3993-4001.
    • (1994) Mol Cell Biol , vol.14 , pp. 3993-4001
    • Blackwell, L.J.1    Borowiec, J.A.2
  • 28
    • 0039252769 scopus 로고    scopus 로고
    • Replication protein A interactions with DNA. 2. Characterization of double-stranded DNA-binding/helix-destabilization activities and the role of the zinc-finger domain in DNA interactions
    • Lao Y, Lee CG, Wold MS. Replication protein A interactions with DNA. 2. Characterization of double-stranded DNA-binding/helix-destabilization activities and the role of the zinc-finger domain in DNA interactions. Biochemistry 1999; 38:3974-3984.
    • (1999) Biochemistry , vol.38 , pp. 3974-3984
    • Lao, Y.1    Lee, C.G.2    Wold, M.S.3
  • 29
    • 0031753251 scopus 로고    scopus 로고
    • Identification and characterization of the fourth single-stranded-DNA binding domain of replication protein A
    • Brill SJ, Bastin-Shanower S. Identification and characterization of the fourth single-stranded-DNA binding domain of replication protein A. Mol Cell Biol 1998; 18:7225-7234.
    • (1998) Mol Cell Biol , vol.18 , pp. 7225-7234
    • Brill, S.J.1    Bastin-Shanower, S.2
  • 30
    • 0035965188 scopus 로고    scopus 로고
    • Functional analysis of the four DNA binding domains of replication protein A. The role of RPA2 in ssDNA binding
    • Bastin-Shanower SA, Brill SJ. Functional analysis of the four DNA binding domains of replication protein A. The role of RPA2 in ssDNA binding. J Biol Chem 2001; 276:36446-36453.
    • (2001) J Biol Chem , vol.276 , pp. 36446-36453
    • Bastin-Shanower, S.A.1    Brill, S.J.2
  • 31
    • 84889563685 scopus 로고    scopus 로고
    • ATR prohibits replication catastrophe by preventing global exhaustion of RPA
    • Toledo LI, Altmeyer M, Rask MB, et al. ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 2013; 155:1088-1103.
    • (2013) Cell , vol.155 , pp. 1088-1103
    • Toledo, L.I.1    Altmeyer, M.2    Rask, M.B.3
  • 32
    • 33751576173 scopus 로고    scopus 로고
    • Structural mechanism of RPA loading on DNA during activation of a simple pre-replication complex
    • Jiang X, Klimovich V, Arunkumar AI, et al. Structural mechanism of RPA loading on DNA during activation of a simple pre-replication complex. EMBO J 2006; 25:5516-5526.
    • (2006) EMBO J , vol.25 , pp. 5516-5526
    • Jiang, X.1    Klimovich, V.2    Arunkumar, A.I.3
  • 33
    • 0842304459 scopus 로고    scopus 로고
    • Recruitment of replication protein A by the papillomavirus E1 protein and modulation by single-stranded DNA
    • Loo YM, Melendy T. Recruitment of replication protein A by the papillomavirus E1 protein and modulation by single-stranded DNA. J Virol 2004; 78:1605-1615.
    • (2004) J Virol , vol.78 , pp. 1605-1615
    • Loo, Y.M.1    Melendy, T.2
  • 34
    • 84878548877 scopus 로고    scopus 로고
    • Two distinct modes of ATR activation orchestrated by Rad17 and Nbs1
    • Shiotani B, Nguyen HD, Hakansson P, et al. Two distinct modes of ATR activation orchestrated by Rad17 and Nbs1. Cell Rep 2013; 3:1651-1662.
    • (2013) Cell Rep , vol.3 , pp. 1651-1662
    • Shiotani, B.1    Nguyen, H.D.2    Hakansson, P.3
  • 35
    • 84863742395 scopus 로고    scopus 로고
    • CtIP-dependent DNA resection is required for DNA damage checkpoint maintenance but not initiation
    • Kousholt AN, Fugger K, Hoffmann S, et al. CtIP-dependent DNA resection is required for DNA damage checkpoint maintenance but not initiation. J Cell Biol 2012; 197:869-876.
    • (2012) J Cell Biol , vol.197 , pp. 869-876
    • Kousholt, A.N.1    Fugger, K.2    Hoffmann, S.3
  • 36
    • 36549060102 scopus 로고    scopus 로고
    • Human CtIP promotes DNA end resection
    • Sartori AA, Lukas C, Coates J, et al. Human CtIP promotes DNA end resection. Nature 2007; 450:509-514.
    • (2007) Nature , vol.450 , pp. 509-514
    • Sartori, A.A.1    Lukas, C.2    Coates, J.3
  • 37
    • 27344449049 scopus 로고    scopus 로고
    • Single-stranded DNA mimicry in the p53 transactivation domain interaction with replication protein A
    • Bochkareva E, Kaustov L, Ayed A, et al. Single-stranded DNA mimicry in the p53 transactivation domain interaction with replication protein A. Proc Natl Acad Sci USA 2005; 102:15412-15417.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 15412-15417
    • Bochkareva, E.1    Kaustov, L.2    Ayed, A.3
  • 38
    • 0032836911 scopus 로고    scopus 로고
    • Human replication protein A: Global fold of the N-terminal RPA-70 domain reveals a basic cleft and flexible C-terminal linker
    • Jacobs DM, Lipton AS, Isern NG, et al. Human replication protein A: global fold of the N-terminal RPA-70 domain reveals a basic cleft and flexible C-terminal linker. J Biomol NMR 1999; 14:321-331.
    • (1999) J Biomol NMR , vol.14 , pp. 321-331
    • Jacobs, D.M.1    Lipton, A.S.2    Isern, N.G.3
  • 39
    • 52049091055 scopus 로고    scopus 로고
    • Regulatory functions of the N-terminal domain of the 70-kDa subunit of replication protein A (RPA)
    • Binz SK, Wold MS. Regulatory functions of the N-terminal domain of the 70-kDa subunit of replication protein A (RPA). J Biol Chem 2008; 283:21559-21570.
    • (2008) J Biol Chem , vol.283 , pp. 21559-21570
    • Binz, S.K.1    Wold, M.S.2
  • 40
    • 0029868656 scopus 로고    scopus 로고
    • Proteolytic mapping of human replication protein A: Evidence for multiple structural domains and a conformational change upon interaction with single-stranded DNA
    • Gomes XV, Henricksen LA, Wold MS. Proteolytic mapping of human replication protein A: evidence for multiple structural domains and a conformational change upon interaction with single-stranded DNA. Biochemistry 1996; 35:5586-5595.
    • (1996) Biochemistry , vol.35 , pp. 5586-5595
    • Gomes, X.V.1    Henricksen, L.A.2    Wold, M.S.3
  • 41
    • 68249120791 scopus 로고    scopus 로고
    • Physical interaction between replication protein A (RPA) and MRN: Involvement of RPA2 phosphorylation and the N-terminus of RPA1
    • Oakley GG, Tillison K, Opiyo SA, Glanzer JG, Horn JM, Patrick SM. Physical interaction between replication protein A (RPA) and MRN: involvement of RPA2 phosphorylation and the N-terminus of RPA1. Biochemistry 2009; 48:7473-7481.
    • (2009) Biochemistry , vol.48 , pp. 7473-7481
    • Oakley, G.G.1    Tillison, K.2    Opiyo, S.A.3    Glanzer, J.G.4    Horn, J.M.5    Patrick, S.M.6
  • 42
    • 0031960691 scopus 로고    scopus 로고
    • Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism
    • Umezu K, Sugawara N, Chen C, Haber JE, Kolodner RD. Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism. Genetics 1998; 148:989-1005.
    • (1998) Genetics , vol.148 , pp. 989-1005
    • Umezu, K.1    Sugawara, N.2    Chen, C.3    Haber, J.E.4    Kolodner, R.D.5
  • 43
    • 0035008609 scopus 로고    scopus 로고
    • Rfc4 interacts with Rpa1 and is required for both DNA replication and DNA damage checkpoints in Saccharomyces cerevisiae
    • Kim HS, Brill SJ. Rfc4 interacts with Rpa1 and is required for both DNA replication and DNA damage checkpoints in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:3725-3737.
    • (2001) Mol Cell Biol , vol.21 , pp. 3725-3737
    • Kim, H.S.1    Brill, S.J.2
  • 44
    • 0035105240 scopus 로고    scopus 로고
    • Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest
    • Pellicioli A, Lee SE, Lucca C, Foiani M, Haber JE. Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest. Mol Cell 2001; 7:293-300.
    • (2001) Mol Cell , vol.7 , pp. 293-300
    • Pellicioli, A.1    Lee, S.E.2    Lucca, C.3    Foiani, M.4    Haber, J.E.5
  • 45
    • 0032493889 scopus 로고    scopus 로고
    • Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage
    • Lee SE, Moore JK, Holmes A, Umezu K, Kolodner RD, Haber JE. Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 1998; 94:399-409.
    • (1998) Cell , vol.94 , pp. 399-409
    • Lee, S.E.1    Moore, J.K.2    Holmes, A.3    Umezu, K.4    Kolodner, R.D.5    Haber, J.E.6
  • 46
    • 0345564858 scopus 로고    scopus 로고
    • Replication protein A-mediated recruitment and activation of Rad17 complexes
    • Zou L, Liu D, Elledge SJ. Replication protein A-mediated recruitment and activation of Rad17 complexes. Proc Natl Acad Sci USA 2003; 100:13827-13832.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 13827-13832
    • Zou, L.1    Liu, D.2    Elledge, S.J.3
  • 47
    • 1442351990 scopus 로고    scopus 로고
    • Checkpoint-mediated control of replisome-fork association and signalling in response to replication pausing
    • Lucca C, Vanoli F, Cotta-Ramusino C, et al. Checkpoint-mediated control of replisome-fork association and signalling in response to replication pausing. Oncogene 2004; 23:1206-1213.
    • (2004) Oncogene , vol.23 , pp. 1206-1213
    • Lucca, C.1    Vanoli, F.2    Cotta-Ramusino, C.3
  • 48
    • 33748780358 scopus 로고    scopus 로고
    • Replication protein A directs loading of the DNA damage checkpoint clamp to 5′-DNA junctions
    • Majka J, Binz SK, Wold MS, Burgers PM. Replication protein A directs loading of the DNA damage checkpoint clamp to 5′-DNA junctions. J Biol Chem 2006; 281:27855-27861.
    • (2006) J Biol Chem , vol.281 , pp. 27855-27861
    • Majka, J.1    Binz, S.K.2    Wold, M.S.3    Burgers, P.M.4
  • 49
    • 84892895021 scopus 로고    scopus 로고
    • PRP19 transforms into a sensor of RPA-ssDNA after DNA damage and drives ATR activation via a ubiquitin-mediated circuitry
    • Maréchal A, Li JM, Ji XY, et al. PRP19 transforms into a sensor of RPA-ssDNA after DNA damage and drives ATR activation via a ubiquitin-mediated circuitry. Mol Cell 2014; 53:235-246.
    • (2014) Mol Cell , vol.53 , pp. 235-246
    • Maréchal, A.1    Li, J.M.2    Ji, X.Y.3
  • 50
    • 57349143725 scopus 로고    scopus 로고
    • The basic cleft of RPA70N binds multiple checkpoint proteins, including RAD9, to regulate ATR signaling
    • Xu X, Vaithiyalingam S, Glick GG, Mordes DA, Chazin WJ, Cortez D. The basic cleft of RPA70N binds multiple checkpoint proteins, including RAD9, to regulate ATR signaling. Mol Cell Biol 2008; 28:7345-7353.
    • (2008) Mol Cell Biol , vol.28 , pp. 7345-7353
    • Xu, X.1    Vaithiyalingam, S.2    Glick, G.G.3    Mordes, D.A.4    Chazin, W.J.5    Cortez, D.6
  • 51
    • 49649113678 scopus 로고    scopus 로고
    • Cellular functions of human RPA1. Multiple roles of domains in replication, repair, and checkpoints
    • Haring SJ, Mason AC, Binz SK, Wold MS. Cellular functions of human RPA1. Multiple roles of domains in replication, repair, and checkpoints. J Biol Chem 2008; 283:19095-19111.
    • (2008) J Biol Chem , vol.283 , pp. 19095-19111
    • Haring, S.J.1    Mason, A.C.2    Binz, S.K.3    Wold, M.S.4
  • 52
    • 83255192206 scopus 로고    scopus 로고
    • BID binds to replication protein A and stimulates ATR function following replicative stress
    • Liu Y, Vaithiyalingam S, Shi Q, Chazin WJ, Zinkel SS. BID binds to replication protein A and stimulates ATR function following replicative stress. Mol Cell Biol 2011; 31:4298-4309.
    • (2011) Mol Cell Biol , vol.31 , pp. 4298-4309
    • Liu, Y.1    Vaithiyalingam, S.2    Shi, Q.3    Chazin, W.J.4    Zinkel, S.S.5
  • 53
    • 33644757806 scopus 로고    scopus 로고
    • TopBP1 activates the ATR-ATRIP complex
    • Kumagai A, Lee J, Yoo HY, Dunphy WG. TopBP1 activates the ATR-ATRIP complex. Cell 2006; 124:943-955.
    • (2006) Cell , vol.124 , pp. 943-955
    • Kumagai, A.1    Lee, J.2    Yoo, H.Y.3    Dunphy, W.G.4
  • 54
    • 44849093460 scopus 로고    scopus 로고
    • TopBP1 activates ATR through ATRIP and a PIKK regulatory domain
    • Mordes DA, Glick GG, Zhao R, Cortez D. TopBP1 activates ATR through ATRIP and a PIKK regulatory domain. Genes Dev 2008; 22:1478-1489.
    • (2008) Genes Dev , vol.22 , pp. 1478-1489
    • Mordes, D.A.1    Glick, G.G.2    Zhao, R.3    Cortez, D.4
  • 55
    • 77949467495 scopus 로고    scopus 로고
    • Rad17 plays a central role in establishment of the interaction between TopBP1 and the Rad9-Hus1-Rad1 complex at stalled replication forks
    • Lee J, Dunphy WG. Rad17 plays a central role in establishment of the interaction between TopBP1 and the Rad9-Hus1-Rad1 complex at stalled replication forks. Mol Biol Cell 2010; 21:926-935.
    • (2010) Mol Biol Cell , vol.21 , pp. 926-935
    • Lee, J.1    Dunphy, W.G.2
  • 56
    • 34948889415 scopus 로고    scopus 로고
    • The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR
    • Lee J, Kumagai A, Dunphy WG. The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR. J Biol Chem 2007; 282:28036-28044.
    • (2007) J Biol Chem , vol.282 , pp. 28036-28044
    • Lee, J.1    Kumagai, A.2    Dunphy, W.G.3
  • 57
    • 34250705797 scopus 로고    scopus 로고
    • The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1
    • Delacroix S, Wagner JM, Kobayashi M, Yamamoto K, Karnitz LM. The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1. Genes Dev 2007; 21:1472-1477.
    • (2007) Genes Dev , vol.21 , pp. 1472-1477
    • Delacroix, S.1    Wagner, J.M.2    Kobayashi, M.3    Yamamoto, K.4    Karnitz, L.M.5
  • 58
    • 47949109008 scopus 로고    scopus 로고
    • Phosphorylation of the budding yeast 9-1-1 complex is required for Dpb11 function in the full activation of the UV-induced DNA damage checkpoint
    • Puddu F, Granata M, Di Nola L, et al. Phosphorylation of the budding yeast 9-1-1 complex is required for Dpb11 function in the full activation of the UV-induced DNA damage checkpoint. Mol Cell Biol 2008; 28:4782-4793.
    • (2008) Mol Cell Biol , vol.28 , pp. 4782-4793
    • Puddu, F.1    Granata, M.2    Di Nola, L.3
  • 60
    • 58149102035 scopus 로고    scopus 로고
    • Yeast DNA replication protein Dpb11 activates the Mec1/ATR checkpoint kinase
    • Navadgi-Patil VM, Burgers PM. Yeast DNA replication protein Dpb11 activates the Mec1/ATR checkpoint kinase. J Biol Chem 2008; 283:35853-35859.
    • (2008) J Biol Chem , vol.283 , pp. 35853-35859
    • Navadgi-Patil, V.M.1    Burgers, P.M.2
  • 61
    • 79960467426 scopus 로고    scopus 로고
    • ATR autophosphorylation as a molecular switch for checkpoint activation
    • Liu S, Shiotani B, Lahiri M, et al. ATR autophosphorylation as a molecular switch for checkpoint activation. Mol Cell 2011; 43:192-202.
    • (2011) Mol Cell , vol.43 , pp. 192-202
    • Liu, S.1    Shiotani, B.2    Lahiri, M.3
  • 62
    • 34548213632 scopus 로고    scopus 로고
    • The Mre11 complex mediates the S-phase checkpoint through an interaction with replication protein A
    • Olson E, Nievera CJ, Liu E, Lee AY, Chen L, Wu X. The Mre11 complex mediates the S-phase checkpoint through an interaction with replication protein A. Mol Cell Biol 2007; 27:6053-6067.
    • (2007) Mol Cell Biol , vol.27 , pp. 6053-6067
    • Olson, E.1    Nievera, C.J.2    Liu, E.3    Lee, A.Y.4    Chen, L.5    Wu, X.6
  • 63
    • 65649085176 scopus 로고    scopus 로고
    • The Mre11-Rad50-Nbs1 complex mediates activation of TopBP1 by ATM
    • Yoo HY, Kumagai A, Shevchenko A, Dunphy WG. The Mre11-Rad50-Nbs1 complex mediates activation of TopBP1 by ATM. Mol Biol Cell 2009; 20:2351-2360.
    • (2009) Mol Biol Cell , vol.20 , pp. 2351-2360
    • Yoo, H.Y.1    Kumagai, A.2    Shevchenko, A.3    Dunphy, W.G.4
  • 64
    • 0034721654 scopus 로고    scopus 로고
    • Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA
    • Mer G, Bochkarev A, Gupta R, et al. Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA. Cell 2000; 103:449-456.
    • (2000) Cell , vol.103 , pp. 449-456
    • Mer, G.1    Bochkarev, A.2    Gupta, R.3
  • 65
    • 0029597799 scopus 로고
    • Mutations in the gene encoding the 34 kDa subunit of yeast replication protein A cause defective S phase progression
    • Santocanale C, Neecke H, Longhese MP, Lucchini G, Plevani P. Mutations in the gene encoding the 34 kDa subunit of yeast replication protein A cause defective S phase progression. J Mol Biol 1995; 254:595-607.
    • (1995) J Mol Biol , vol.254 , pp. 595-607
    • Santocanale, C.1    Neecke, H.2    Longhese, M.P.3    Lucchini, G.4    Plevani, P.5
  • 66
    • 0030930990 scopus 로고    scopus 로고
    • Roles of replication protein-A subunits 2 and 3 in DNA replication fork movement in Saccharomyces cerevisiae
    • Maniar HS, Wilson R, Brill SJ. Roles of replication protein-A subunits 2 and 3 in DNA replication fork movement in Saccharomyces cerevisiae. Genetics 1997; 145:891-902.
    • (1997) Genetics , vol.145 , pp. 891-902
    • Maniar, H.S.1    Wilson, R.2    Brill, S.J.3
  • 67
    • 0029076734 scopus 로고
    • The role of the 34-kDa subunit of human replication protein A in simian virus 40 DNA replication in vitro
    • Lee SH, Kim DK. The role of the 34-kDa subunit of human replication protein A in simian virus 40 DNA replication in vitro. J Biol Chem 1995; 270:12801-12807.
    • (1995) J Biol Chem , vol.270 , pp. 12801-12807
    • Lee, S.H.1    Kim, D.K.2
  • 68
    • 18744403684 scopus 로고    scopus 로고
    • Insights into hRPA32 C-terminal domain-mediated assembly of the simian virus 40 replisome
    • Arunkumar AI, Klimovich V, Jiang X, et al. Insights into hRPA32 C-terminal domain-mediated assembly of the simian virus 40 replisome. Nat Struct Mol Biol 2005; 12:332-339.
    • (2005) Nat Struct Mol Biol , vol.12 , pp. 332-339
    • Arunkumar, A.I.1    Klimovich, V.2    Jiang, X.3
  • 69
    • 70350088521 scopus 로고    scopus 로고
    • The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart
    • Ciccia A, Bredemeyer AL, Sowa ME, et al. The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart. Genes Dev 2009; 23:2415-2425.
    • (2009) Genes Dev , vol.23 , pp. 2415-2425
    • Ciccia, A.1    Bredemeyer, A.L.2    Sowa, M.E.3
  • 70
    • 70350111290 scopus 로고    scopus 로고
    • The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks
    • Bansbach CE, Betous R, Lovejoy CA, Glick GG, Cortez D. The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks. Genes Dev 2009; 23:2405-2414.
    • (2009) Genes Dev , vol.23 , pp. 2405-2414
    • Bansbach, C.E.1    Betous, R.2    Lovejoy, C.A.3    Glick, G.G.4    Cortez, D.5
  • 71
    • 70350118815 scopus 로고    scopus 로고
    • The annealing helicase HARP protects stalled replication forks
    • Yuan J, Ghosal G, Chen J. The annealing helicase HARP protects stalled replication forks. Genes Dev 2009; 23:2394-2399.
    • (2009) Genes Dev , vol.23 , pp. 2394-2399
    • Yuan, J.1    Ghosal, G.2    Chen, J.3
  • 72
    • 72149132821 scopus 로고    scopus 로고
    • Identification of SMARCAL1 as a component of the DNA damage response
    • Postow L, Woo EM, Chait BT, Funabiki H. Identification of SMARCAL1 as a component of the DNA damage response. J Biol Chem 2009; 284:35951-35961.
    • (2009) J Biol Chem , vol.284 , pp. 35951-35961
    • Postow, L.1    Woo, E.M.2    Chait, B.T.3    Funabiki, H.4
  • 73
    • 84880440332 scopus 로고    scopus 로고
    • ATR phosphorylates SMARCAL1 to prevent replication fork collapse
    • Couch FB, Bansbach CE, Driscoll R, et al. ATR phosphorylates SMARCAL1 to prevent replication fork collapse. Genes Dev 2013; 27:1610-1623.
    • (2013) Genes Dev , vol.27 , pp. 1610-1623
    • Couch, F.B.1    Bansbach, C.E.2    Driscoll, R.3
  • 74
    • 70350103969 scopus 로고    scopus 로고
    • The annealing helicase HARP is recruited to DNA repair sites via an interaction with RPA
    • Yusufzai T, Kong X, Yokomori K, Kadonaga JT. The annealing helicase HARP is recruited to DNA repair sites via an interaction with RPA. Genes Dev 2009; 23:2400-2404.
    • (2009) Genes Dev , vol.23 , pp. 2400-2404
    • Yusufzai, T.1    Kong, X.2    Yokomori, K.3    Kadonaga, J.T.4
  • 75
    • 84869392858 scopus 로고    scopus 로고
    • Local and global functions of Timeless and Tipin in replication fork protection
    • Leman AR, Noguchi E. Local and global functions of Timeless and Tipin in replication fork protection. Cell Cycle 2012; 11:3945-3955.
    • (2012) Cell Cycle , vol.11 , pp. 3945-3955
    • Leman, A.R.1    Noguchi, E.2
  • 76
    • 84870379165 scopus 로고    scopus 로고
    • Molecular pathways: Understanding the role of Rad52 in homologous recombination for therapeutic advancement
    • Lok BH, Powell SN. Molecular pathways: understanding the role of Rad52 in homologous recombination for therapeutic advancement. Clin Cancer Res 2012; 18:6400-6406.
    • (2012) Clin Cancer Res , vol.18 , pp. 6400-6406
    • Lok, B.H.1    Powell, S.N.2
  • 77
    • 79960341941 scopus 로고    scopus 로고
    • Premature aging and cancer in nucleotide excision repair-disorders
    • Diderich K, Alanazi M, Hoeijmakers JH. Premature aging and cancer in nucleotide excision repair-disorders. DNA Repair (Amst) 2011; 10:772-780.
    • (2011) DNA Repair (Amst) , vol.10 , pp. 772-780
    • Diderich, K.1    Alanazi, M.2    Hoeijmakers, J.H.3
  • 79
    • 35448949105 scopus 로고    scopus 로고
    • Tipin is required for stalled replication forks to resume DNA replication after removal of aphidicolin in Xenopus egg extracts
    • Errico A, Costanzo V, Hunt T. Tipin is required for stalled replication forks to resume DNA replication after removal of aphidicolin in Xenopus egg extracts. Proc Natl Acad Sci USA 2007; 104:14929-14934.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 14929-14934
    • Errico, A.1    Costanzo, V.2    Hunt, T.3
  • 80
    • 0029768921 scopus 로고    scopus 로고
    • Physical interaction between human RAD52 and RPA is required for homologous recombination in mammalian cells
    • Park MS, Ludwig DL, Stigger E, Lee SH. Physical interaction between human RAD52 and RPA is required for homologous recombination in mammalian cells. J Biol Chem 1996; 271:18996-19000.
    • (1996) J Biol Chem , vol.271 , pp. 18996-19000
    • Park, M.S.1    Ludwig, D.L.2    Stigger, E.3    Lee, S.H.4
  • 81
    • 0032502760 scopus 로고    scopus 로고
    • Functional analysis of human replication protein A in nucleotide excision repair
    • Stigger E, Drissi R, Lee SH. Functional analysis of human replication protein A in nucleotide excision repair. J Biol Chem 1998; 273:9337-9343.
    • (1998) J Biol Chem , vol.273 , pp. 9337-9343
    • Stigger, E.1    Drissi, R.2    Lee, S.H.3
  • 82
    • 0029129283 scopus 로고
    • An interaction between the DNA repair factor XPA and replication protein A appears essential for nucleotide excision repair
    • Li L, Lu X, Peterson CA, Legerski RJ. An interaction between the DNA repair factor XPA and replication protein A appears essential for nucleotide excision repair. Mol Cell Biol 1995; 15:5396-5402.
    • (1995) Mol Cell Biol , vol.15 , pp. 5396-5402
    • Li, L.1    Lu, X.2    Peterson, C.A.3    Legerski, R.J.4
  • 83
    • 77952764443 scopus 로고    scopus 로고
    • Tipin-replication protein A interaction mediates Chk1 phosphorylation by ATR in response to genotoxic stress
    • Kemp MG, Akan Z, Yilmaz S, et al. Tipin-replication protein A interaction mediates Chk1 phosphorylation by ATR in response to genotoxic stress. J Biol Chem 2010; 285:16562-16571.
    • (2010) J Biol Chem , vol.285 , pp. 16562-16571
    • Kemp, M.G.1    Akan, Z.2    Yilmaz, S.3
  • 84
    • 0025365192 scopus 로고
    • Cell-cycle-regulated phosphorylation of DNA replication factor A from human and yeast cells
    • Din S, Brill SJ, Fairman MP, Stillman B. Cell-cycle-regulated phosphorylation of DNA replication factor A from human and yeast cells. Genes Dev 1990; 4:968-977.
    • (1990) Genes Dev , vol.4 , pp. 968-977
    • Din, S.1    Brill, S.J.2    Fairman, M.P.3    Stillman, B.4
  • 85
    • 0024438440 scopus 로고
    • Yeast replication factor-A functions in the unwinding of the SV40 origin of DNA replication
    • Brill SJ, Stillman B. Yeast replication factor-A functions in the unwinding of the SV40 origin of DNA replication. Nature 1989; 342:92-95.
    • (1989) Nature , vol.342 , pp. 92-95
    • Brill, S.J.1    Stillman, B.2
  • 86
    • 70349301958 scopus 로고    scopus 로고
    • Ionizing radiation-dependent and independent phosphorylation of the 32-kDa subunit of replication protein A during mitosis
    • Stephan H, Concannon C, Kremmer E, Carty MP, Nasheuer HP. Ionizing radiation-dependent and independent phosphorylation of the 32-kDa subunit of replication protein A during mitosis. Nucleic Acids Res 2009; 37:6028-6041.
    • (2009) Nucleic Acids Res , vol.37 , pp. 6028-6041
    • Stephan, H.1    Concannon, C.2    Kremmer, E.3    Carty, M.P.4    Nasheuer, H.P.5
  • 87
    • 0026539144 scopus 로고
    • cdc2 family kinases phosphorylate a human cell DNA replication factor, RPA, and activate DNA replication
    • Dutta A, Stillman B. cdc2 family kinases phosphorylate a human cell DNA replication factor, RPA, and activate DNA replication. EMBO J 1992; 11:2189-2199.
    • (1992) EMBO J , vol.11 , pp. 2189-2199
    • Dutta, A.1    Stillman, B.2
  • 88
    • 0027517871 scopus 로고
    • Distinct roles of cdk2 and cdc2 in RP-A phosphorylation during the cell cycle
    • Fang F, Newport JW. Distinct roles of cdk2 and cdc2 in RP-A phosphorylation during the cell cycle. J Cell Sci 1993; 106:983-994.
    • (1993) J Cell Sci , vol.106 , pp. 983-994
    • Fang, F.1    Newport, J.W.2
  • 89
    • 0028016304 scopus 로고
    • Phosphorylation of the p34 subunit of human single-stranded-DNA-binding protein in cyclin A-activated G1 extracts is catalyzed by cdk-cyclin A complex and DNA-dependent protein kinase
    • Pan ZQ, Amin AA, Gibbs E, Niu H, Hurwitz J. Phosphorylation of the p34 subunit of human single-stranded-DNA-binding protein in cyclin A-activated G1 extracts is catalyzed by cdk-cyclin A complex and DNA-dependent protein kinase. Proc Natl Acad Sci USA 1994; 91:8343-8347.
    • (1994) Proc Natl Acad Sci USA , vol.91 , pp. 8343-8347
    • Pan, Z.Q.1    Amin, A.A.2    Gibbs, E.3    Niu, H.4    Hurwitz, J.5
  • 90
    • 0027428513 scopus 로고
    • The ionizing radiation-induced replication protein A phosphorylation response differs between ataxia telangiectasia and normal human cells
    • Liu VF, Weaver DT. The ionizing radiation-induced replication protein A phosphorylation response differs between ataxia telangiectasia and normal human cells. Mol Cell Biol 1993; 13:7222-7231.
    • (1993) Mol Cell Biol , vol.13 , pp. 7222-7231
    • Liu, V.F.1    Weaver, D.T.2
  • 91
    • 0030810633 scopus 로고    scopus 로고
    • Sites of UV-induced phosphorylation of the p34 subunit of replication protein A from HeLa cells
    • Zernik-Kobak M, Vasunia K, Connelly M, Anderson CW, Dixon K. Sites of UV-induced phosphorylation of the p34 subunit of replication protein A from HeLa cells. J Biol Chem 1997; 272:23896-23904.
    • (1997) J Biol Chem , vol.272 , pp. 23896-23904
    • Zernik-Kobak, M.1    Vasunia, K.2    Connelly, M.3    Anderson, C.W.4    Dixon, K.5
  • 92
    • 0028355488 scopus 로고
    • UV light-induced DNA synthesis arrest in HeLa cells is associated with changes in phosphorylation of human single-stranded DNA-binding protein
    • Carty MP, Zernik-Kobak M, McGrath S, Dixon K. UV light-induced DNA synthesis arrest in HeLa cells is associated with changes in phosphorylation of human single-stranded DNA-binding protein. EMBO J 1994; 13:2114-2123.
    • (1994) EMBO J , vol.13 , pp. 2114-2123
    • Carty, M.P.1    Zernik-Kobak, M.2    McGrath, S.3    Dixon, K.4
  • 93
    • 0026563099 scopus 로고
    • Cell cycle regulated phosphorylation of RPA-32 occurs within the replication initiation complex
    • Fotedar R, Roberts JM. Cell cycle regulated phosphorylation of RPA-32 occurs within the replication initiation complex. EMBO J 1992; 11:2177-2187.
    • (1992) EMBO J , vol.11 , pp. 2177-2187
    • Fotedar, R.1    Roberts, J.M.2
  • 94
    • 79959488298 scopus 로고    scopus 로고
    • DNA-PK-dependent RPA2 hyperphosphorylation facilitates DNA repair and suppresses sister chromatid exchange
    • Liaw H, Lee D, Myung K. DNA-PK-dependent RPA2 hyperphosphorylation facilitates DNA repair and suppresses sister chromatid exchange. PLoS One 2011; 6:e21424.
    • (2011) PLoS One , vol.6 , pp. e21424
    • Liaw, H.1    Lee, D.2    Myung, K.3
  • 95
    • 3442896884 scopus 로고    scopus 로고
    • Replication protein A phosphorylation and the cellular response to DNA damage
    • Binz SK, Sheehan AM, Wold MS. Replication protein A phosphorylation and the cellular response to DNA damage. DNA Repair (Amst) 2004; 3:1015-1024.
    • (2004) DNA Repair (Amst) , vol.3 , pp. 1015-1024
    • Binz, S.K.1    Sheehan, A.M.2    Wold, M.S.3
  • 96
    • 33845991538 scopus 로고    scopus 로고
    • RPA2 is a direct downstream target for ATR to regulate the S-phase checkpoint
    • Olson E, Nievera CJ, Klimovich V, Fanning E, Wu X. RPA2 is a direct downstream target for ATR to regulate the S-phase checkpoint. J Biol Chem 2006; 281:39517-39533.
    • (2006) J Biol Chem , vol.281 , pp. 39517-39533
    • Olson, E.1    Nievera, C.J.2    Klimovich, V.3    Fanning, E.4    Wu, X.5
  • 97
    • 70849110242 scopus 로고    scopus 로고
    • Human RPA phosphorylation by ATR stimulates DNA synthesis and prevents ssDNA accumulation during DNA-replication stress
    • Vassin VM, Anantha RW, Sokolova E, Kanner S, Borowiec JA. Human RPA phosphorylation by ATR stimulates DNA synthesis and prevents ssDNA accumulation during DNA-replication stress. J Cell Sci 2009; 122:4070-4080.
    • (2009) J Cell Sci , vol.122 , pp. 4070-4080
    • Vassin, V.M.1    Anantha, R.W.2    Sokolova, E.3    Kanner, S.4    Borowiec, J.A.5
  • 98
    • 84868213765 scopus 로고    scopus 로고
    • Distinct roles for DNA-PK, ATM and ATR in RPA phosphorylation and checkpoint activation in response to replication stress
    • Liu S, Opiyo SO, Manthey K, et al. Distinct roles for DNA-PK, ATM and ATR in RPA phosphorylation and checkpoint activation in response to replication stress. Nucleic Acids Res 2012; 40:10780-10794.
    • (2012) Nucleic Acids Res , vol.40 , pp. 10780-10794
    • Liu, S.1    Opiyo, S.O.2    Manthey, K.3
  • 99
    • 2342618116 scopus 로고    scopus 로고
    • Phosphatidyl inositol 3-kinase-like serine/threonine protein kinases (PIKKs) are required for DNA damage-induced phosphorylation of the 32 kDa subunit of replication protein A at threonine 21
    • Block WD, Yu Y, Lees-Miller SP. Phosphatidyl inositol 3-kinase-like serine/threonine protein kinases (PIKKs) are required for DNA damage-induced phosphorylation of the 32 kDa subunit of replication protein A at threonine 21. Nucleic Acids Res 2004; 32:997-1005.
    • (2004) Nucleic Acids Res , vol.32 , pp. 997-1005
    • Block, W.D.1    Yu, Y.2    Lees-Miller, S.P.3
  • 100
    • 82555205273 scopus 로고    scopus 로고
    • Cascades of multisite phosphorylation control Sic1 destruction at the onset of S phase
    • Koivomagi M, Valk E, Venta R, et al. Cascades of multisite phosphorylation control Sic1 destruction at the onset of S phase. Nature 2011; 480:128-131.
    • (2011) Nature , vol.480 , pp. 128-131
    • Koivomagi, M.1    Valk, E.2    Venta, R.3
  • 101
    • 37249080597 scopus 로고    scopus 로고
    • Sequential and synergistic modification of human RPA stimulates chromosomal DNA repair
    • Anantha RW, Vassin VM, Borowiec JA. Sequential and synergistic modification of human RPA stimulates chromosomal DNA repair. J Biol Chem 2007; 282:35910-35923.
    • (2007) J Biol Chem , vol.282 , pp. 35910-35923
    • Anantha, R.W.1    Vassin, V.M.2    Borowiec, J.A.3
  • 102
    • 1342325347 scopus 로고    scopus 로고
    • Replication protein A (RPA) phosphorylation prevents RPA association with replication centers
    • Vassin VM, Wold MS, Borowiec JA. Replication protein A (RPA) phosphorylation prevents RPA association with replication centers. Mol Cell Biol 2004; 24:1930-1943.
    • (2004) Mol Cell Biol , vol.24 , pp. 1930-1943
    • Vassin, V.M.1    Wold, M.S.2    Borowiec, J.A.3
  • 103
    • 51349140504 scopus 로고    scopus 로고
    • RPA phosphorylation facilitates mitotic exit in response to mitotic DNA damage
    • Anantha RW, Sokolova E, Borowiec JA. RPA phosphorylation facilitates mitotic exit in response to mitotic DNA damage. Proc Natl Acad Sci USA 2008; 105:12903-12908.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 12903-12908
    • Anantha, R.W.1    Sokolova, E.2    Borowiec, J.A.3
  • 104
    • 84906511112 scopus 로고    scopus 로고
    • Phosphorylated RPA recruits PALB2 to stalled DNA replication forks to facilitate fork recovery
    • Murphy AK, Fitzgerald M, Ro T, et al. Phosphorylated RPA recruits PALB2 to stalled DNA replication forks to facilitate fork recovery. J Cell Biol 2014; 206:493-507.
    • (2014) J Cell Biol , vol.206 , pp. 493-507
    • Murphy, A.K.1    Fitzgerald, M.2    Ro, T.3
  • 105
    • 77953932126 scopus 로고    scopus 로고
    • The role of RPA2 phosphorylation in homologous recombination in response to replication arrest
    • Shi W, Feng Z, Zhang J, et al. The role of RPA2 phosphorylation in homologous recombination in response to replication arrest. Carcinogenesis 2010; 31:994-1002.
    • (2010) Carcinogenesis , vol.31 , pp. 994-1002
    • Shi, W.1    Feng, Z.2    Zhang, J.3
  • 106
    • 77949267720 scopus 로고    scopus 로고
    • A PP4 phosphatase complex dephosphorylates RPA2 to facilitate DNA repair via homologous recombination
    • Lee DH, Pan Y, Kanner S, Sung P, Borowiec JA, Chowdhury D. A PP4 phosphatase complex dephosphorylates RPA2 to facilitate DNA repair via homologous recombination. Nat Struct Mol Biol 2010; 17:365-372.
    • (2010) Nat Struct Mol Biol , vol.17 , pp. 365-372
    • Lee, D.H.1    Pan, Y.2    Kanner, S.3    Sung, P.4    Borowiec, J.A.5    Chowdhury, D.6
  • 107
    • 84905376126 scopus 로고    scopus 로고
    • DNA-PK phosphorylation of RPA32 Ser4/Ser8 regulates replication stress checkpoint activation, fork restart, homologous recombination and mitotic catastrophe
    • Ashley AK, Shrivastav M, Nie J, et al. DNA-PK phosphorylation of RPA32 Ser4/Ser8 regulates replication stress checkpoint activation, fork restart, homologous recombination and mitotic catastrophe. DNA Repair (Amst) 2014; 21:131-139.
    • (2014) DNA Repair (Amst) , vol.21 , pp. 131-139
    • Ashley, A.K.1    Shrivastav, M.2    Nie, J.3
  • 109
    • 84883183501 scopus 로고    scopus 로고
    • Phospho-Ser/Thr-binding domains: Navigating the cell cycle and DNA damage response
    • Reinhardt HC, Yaffe MB. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response. Nat Rev Mol Cell Biol 2013; 14:563-580.
    • (2013) Nat Rev Mol Cell Biol , vol.14 , pp. 563-580
    • Reinhardt, H.C.1    Yaffe, M.B.2
  • 110
    • 78649336706 scopus 로고    scopus 로고
    • The DNA damage response: Making it safe to play with knives
    • Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell 2010; 40:179-204.
    • (2010) Mol Cell , vol.40 , pp. 179-204
    • Ciccia, A.1    Elledge, S.J.2
  • 111
    • 79952235291 scopus 로고    scopus 로고
    • Dynamics of DNA damage response proteins at DNA breaks: A focus on protein modifications
    • Polo SE, Jackson SP. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev 2011; 25:409-433.
    • (2011) Genes Dev , vol.25 , pp. 409-433
    • Polo, S.E.1    Jackson, S.P.2
  • 112
    • 20444392406 scopus 로고    scopus 로고
    • DNA damage induced hyperphosphorylation of replication protein A. 2. Characterization of DNA binding activity, protein interactions, and activity in DNA replication and repair
    • Patrick SM, Oakley GG, Dixon K, Turchi JJ. DNA damage induced hyperphosphorylation of replication protein A. 2. Characterization of DNA binding activity, protein interactions, and activity in DNA replication and repair. Biochemistry 2005; 44:8438-8448.
    • (2005) Biochemistry , vol.44 , pp. 8438-8448
    • Patrick, S.M.1    Oakley, G.G.2    Dixon, K.3    Turchi, J.J.4
  • 113
    • 0242417571 scopus 로고    scopus 로고
    • RPA phosphorylation in mitosis alters DNA binding and protein-protein interactions
    • Oakley GG, Patrick SM, Yao J, Carty MP, Turchi JJ, Dixon K. RPA phosphorylation in mitosis alters DNA binding and protein-protein interactions. Biochemistry 2003; 42:3255-3264.
    • (2003) Biochemistry , vol.42 , pp. 3255-3264
    • Oakley, G.G.1    Patrick, S.M.2    Yao, J.3    Carty, M.P.4    Turchi, J.J.5    Dixon, K.6
  • 114
    • 0041816064 scopus 로고    scopus 로고
    • The phosphorylation domain of the 32-kDa subunit of replication protein A (RPA) modulates RPA-DNA interactions. Evidence for an intersub-unit interaction
    • Binz SK, Lao Y, Lowry DF, Wold MS. The phosphorylation domain of the 32-kDa subunit of replication protein A (RPA) modulates RPA-DNA interactions. Evidence for an intersub-unit interaction. J Biol Chem 2003; 278:35584-35591.
    • (2003) J Biol Chem , vol.278 , pp. 35584-35591
    • Binz, S.K.1    Lao, Y.2    Lowry, D.F.3    Wold, M.S.4
  • 115
    • 84877619314 scopus 로고    scopus 로고
    • DNA-PK, ATM and ATR collaboratively regulate p53-RPA interaction to facilitate homologous recombination DNA repair
    • Serrano MA, Li Z, Dangeti M, et al. DNA-PK, ATM and ATR collaboratively regulate p53-RPA interaction to facilitate homologous recombination DNA repair. Oncogene 2013; 32:2452-2462.
    • (2013) Oncogene , vol.32 , pp. 2452-2462
    • Serrano, M.A.1    Li, Z.2    Dangeti, M.3
  • 116
    • 0030872645 scopus 로고    scopus 로고
    • Interaction between replication protein A and p53 is disrupted after UV damage in a DNA repair-dependent manner
    • Abramova NA, Russell J, Botchan M, Li R. Interaction between replication protein A and p53 is disrupted after UV damage in a DNA repair-dependent manner. Proc Natl Acad Sci USA 1997; 94:7186-7191.
    • (1997) Proc Natl Acad Sci USA , vol.94 , pp. 7186-7191
    • Abramova, N.A.1    Russell, J.2    Botchan, M.3    Li, R.4
  • 117
    • 0033104517 scopus 로고    scopus 로고
    • Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA:DNA-PK complexes
    • Shao RG, Cao CX, Zhang H, Kohn KW, Wold MS, Pommier Y. Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA:DNA-PK complexes. EMBO J 1999; 18:1397-1406.
    • (1999) EMBO J , vol.18 , pp. 1397-1406
    • Shao, R.G.1    Cao, C.X.2    Zhang, H.3    Kohn, K.W.4    Wold, M.S.5    Pommier, Y.6
  • 118
    • 24644507171 scopus 로고    scopus 로고
    • 53BP1 is associated with replication protein A and is required for RPA2 hyperphosphorylation following DNA damage
    • Yoo E, Kim BU, Lee SY, Cho CH, Chung JH, Lee CH. 53BP1 is associated with replication protein A and is required for RPA2 hyperphosphorylation following DNA damage. Oncogene 2005; 24:5423-5430.
    • (2005) Oncogene , vol.24 , pp. 5423-5430
    • Yoo, E.1    Kim, B.U.2    Lee, S.Y.3    Cho, C.H.4    Chung, J.H.5    Lee, C.H.6
  • 119
    • 27744588177 scopus 로고    scopus 로고
    • Preferential localization of hyperphosphorylated replication protein A to double-strand break repair and checkpoint complexes upon DNA damage
    • Wu X, Yang Z, Liu Y, Zou Y. Preferential localization of hyperphosphorylated replication protein A to double-strand break repair and checkpoint complexes upon DNA damage. Biochem J 2005; 391:473-480.
    • (2005) Biochem J , vol.391 , pp. 473-480
    • Wu, X.1    Yang, Z.2    Liu, Y.3    Zou, Y.4
  • 120
    • 4544339736 scopus 로고    scopus 로고
    • Replication protein A and the Mre11.Rad50.Nbs1 complex co-localize and interact at sites of stalled replication forks
    • Robison JG, Elliott J, Dixon K, Oakley GG. Replication protein A and the Mre11.Rad50.Nbs1 complex co-localize and interact at sites of stalled replication forks. J Biol Chem 2004; 279:34802-34810.
    • (2004) J Biol Chem , vol.279 , pp. 34802-34810
    • Robison, J.G.1    Elliott, J.2    Dixon, K.3    Oakley, G.G.4
  • 121
    • 22744449724 scopus 로고    scopus 로고
    • Interaction and colocalization of Rad9/Rad1/Hus1 checkpoint complex with replication protein A in human cells
    • Wu X, Shell SM, Zou Y. Interaction and colocalization of Rad9/Rad1/Hus1 checkpoint complex with replication protein A in human cells. Oncogene 2005; 24:4728-4735.
    • (2005) Oncogene , vol.24 , pp. 4728-4735
    • Wu, X.1    Shell, S.M.2    Zou, Y.3
  • 122
    • 70350540470 scopus 로고    scopus 로고
    • Protein phosphatase 2A-dependent dephosphorylation of replication protein A is required for the repair of DNA breaks induced by replication stress
    • Feng J, Wakeman T, Yong S, Wu X, Kornbluth S, Wang XF. Protein phosphatase 2A-dependent dephosphorylation of replication protein A is required for the repair of DNA breaks induced by replication stress. Mol Cell Biol 2009; 29:5696-5709.
    • (2009) Mol Cell Biol , vol.29 , pp. 5696-5709
    • Feng, J.1    Wakeman, T.2    Yong, S.3    Wu, X.4    Kornbluth, S.5    Wang, X.F.6
  • 123
    • 77955475870 scopus 로고    scopus 로고
    • Regulation of DNA repair through deSUMOylation and SUMOylation of replication protein A complex
    • Dou H, Huang C, Singh M, Carpenter PB, Yeh ET. Regulation of DNA repair through deSUMOylation and SUMOylation of replication protein A complex. Mol Cell 2010; 39:333-345.
    • (2010) Mol Cell , vol.39 , pp. 333-345
    • Dou, H.1    Huang, C.2    Singh, M.3    Carpenter, P.B.4    Yeh, E.T.5
  • 124
    • 84869091913 scopus 로고    scopus 로고
    • Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair
    • Psakhye I, Jentsch S. Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair. Cell 2012; 151:807-820.
    • (2012) Cell , vol.151 , pp. 807-820
    • Psakhye, I.1    Jentsch, S.2
  • 125
    • 84862783021 scopus 로고    scopus 로고
    • Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the mec1 checkpoint
    • Cremona CA, Sarangi P, Yang Y, Hang LE, Rahman S, Zhao X. Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the mec1 checkpoint. Mol Cell 2012; 45:422-432.
    • (2012) Mol Cell , vol.45 , pp. 422-432
    • Cremona, C.A.1    Sarangi, P.2    Yang, Y.3    Hang, L.E.4    Rahman, S.5    Zhao, X.6
  • 126
    • 34548213631 scopus 로고    scopus 로고
    • The Slx5-Slx8 complex affects sumoylation of DNA repair proteins and negatively regulates recombination
    • Burgess RC, Rahman S, Lisby M, Rothstein R, Zhao X. The Slx5-Slx8 complex affects sumoylation of DNA repair proteins and negatively regulates recombination. Mol Cell Biol 2007; 27:6153-6162.
    • (2007) Mol Cell Biol , vol.27 , pp. 6153-6162
    • Burgess, R.C.1    Rahman, S.2    Lisby, M.3    Rothstein, R.4    Zhao, X.5
  • 127
    • 84888083025 scopus 로고    scopus 로고
    • Activation of the SUMO modification system is required for the accumulation of RAD51 at sites of DNA damage
    • Shima H, Suzuki H, Sun J, et al. Activation of the SUMO modification system is required for the accumulation of RAD51 at sites of DNA damage. J Cell Sci 2013; 126:5284-5292.
    • (2013) J Cell Sci , vol.126 , pp. 5284-5292
    • Shima, H.1    Suzuki, H.2    Sun, J.3
  • 128
    • 84864950070 scopus 로고    scopus 로고
    • Sequential posttranslational modifications program FEN1 degradation during cell-cycle progression
    • Guo Z, Kanjanapangka J, Liu N, et al. Sequential posttranslational modifications program FEN1 degradation during cell-cycle progression. Mol Cell 2012; 47:444-456.
    • (2012) Mol Cell , vol.47 , pp. 444-456
    • Guo, Z.1    Kanjanapangka, J.2    Liu, N.3
  • 129
    • 34648840192 scopus 로고    scopus 로고
    • SUMO-targeted ubiquitin ligases in genome stability
    • Prudden J, Pebernard S, Raffa G, et al. SUMO-targeted ubiquitin ligases in genome stability. EMBO J 2007; 26:4089-4101.
    • (2007) EMBO J , vol.26 , pp. 4089-4101
    • Prudden, J.1    Pebernard, S.2    Raffa, G.3
  • 130
    • 84867101049 scopus 로고    scopus 로고
    • Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass
    • Povlsen LK, Beli P, Wagner SA, et al. Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass. Nat Cell Biol 2012; 14:1089-1098.
    • (2012) Nat Cell Biol , vol.14 , pp. 1089-1098
    • Povlsen, L.K.1    Beli, P.2    Wagner, S.A.3
  • 131
    • 0141924550 scopus 로고    scopus 로고
    • The Prp19p-associated complex in spliceosome activation
    • Chan SP, Kao DI, Tsai WY, Cheng SC. The Prp19p-associated complex in spliceosome activation. Science 2003; 302:279-282.
    • (2003) Science , vol.302 , pp. 279-282
    • Chan, S.P.1    Kao, D.I.2    Tsai, W.Y.3    Cheng, S.C.4
  • 132
    • 77954523079 scopus 로고    scopus 로고
    • The Prp19 complex and the Usp4Sart3 deubiquitinating enzyme control reversible ubiquitination at the spliceosome
    • Song EJ, Werner SL, Neubauer J, et al. The Prp19 complex and the Usp4Sart3 deubiquitinating enzyme control reversible ubiquitination at the spliceosome. Genes Dev 2010; 24:1434-1447.
    • (2010) Genes Dev , vol.24 , pp. 1434-1447
    • Song, E.J.1    Werner, S.L.2    Neubauer, J.3
  • 133
    • 28844509443 scopus 로고    scopus 로고
    • The Pso4 mRNA splicing and DNA repair complex interacts with WRN for processing of DNA interstrand cross-links
    • Zhang N, Kaur R, Lu X, Shen X, Li L, Legerski RJ. The Pso4 mRNA splicing and DNA repair complex interacts with WRN for processing of DNA interstrand cross-links. J Biol Chem 2005; 280:40559-40567.
    • (2005) J Biol Chem , vol.280 , pp. 40559-40567
    • Zhang, N.1    Kaur, R.2    Lu, X.3    Shen, X.4    Li, L.5    Legerski, R.J.6
  • 134
    • 69949120911 scopus 로고    scopus 로고
    • Cdc5L interacts with ATR and is required for the S-phase cell-cycle checkpoint
    • Zhang N, Kaur R, Akhter S, Legerski RJ. Cdc5L interacts with ATR and is required for the S-phase cell-cycle checkpoint. EMBO Rep 2009; 10:1029-1035.
    • (2009) EMBO Rep , vol.10 , pp. 1029-1035
    • Zhang, N.1    Kaur, R.2    Akhter, S.3    Legerski, R.J.4
  • 135
    • 44049085607 scopus 로고    scopus 로고
    • Human Pso4 is a metnase (SETMAR)-binding partner that regulates metnase function in DNA repair
    • Beck BD, Park SJ, Lee YJ, Roman Y, Hromas RA, Lee SH. Human Pso4 is a metnase (SETMAR)-binding partner that regulates metnase function in DNA repair. J Biol Chem 2008; 283:9023-9030.
    • (2008) J Biol Chem , vol.283 , pp. 9023-9030
    • Beck, B.D.1    Park, S.J.2    Lee, Y.J.3    Roman, Y.4    Hromas, R.A.5    Lee, S.H.6
  • 136
    • 0141703274 scopus 로고    scopus 로고
    • Role of human Pso4 in mammalian DNA repair and association with terminal deoxynucleotidyl transferase
    • Mahajan KN, Mitchell BS. Role of human Pso4 in mammalian DNA repair and association with terminal deoxynucleotidyl transferase. Proc Natl Acad Sci USA 2003; 100:10746-10751.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 10746-10751
    • Mahajan, K.N.1    Mitchell, B.S.2
  • 137
    • 77950643890 scopus 로고    scopus 로고
    • Molecular architecture of the human Prp19/CDC5L complex
    • Grote M, Wolf E, Will CL, et al. Molecular architecture of the human Prp19/CDC5L complex. Mol Cell Biol 2010; 30:2105-2119.
    • (2010) Mol Cell Biol , vol.30 , pp. 2105-2119
    • Grote, M.1    Wolf, E.2    Will, C.L.3
  • 138
    • 84896758119 scopus 로고    scopus 로고
    • The PSO4 complex associates with RPA and modulates the activation of ATR
    • Wan L, Huang J. The PSO4 complex associates with RPA and modulates the activation of ATR. J Biol Chem 2014; 289:6619-6626.
    • (2014) J Biol Chem , vol.289 , pp. 6619-6626
    • Wan, L.1    Huang, J.2
  • 139
    • 84901044867 scopus 로고    scopus 로고
    • The role of the human Psoralen 4 (hPso4) complex in replication stress and homologous recombination
    • Abbas M, Shanmugam I, Bsaili M, Hromas R, Shaheen M. The role of the human Psoralen 4 (hPso4) complex in replication stress and homologous recombination. J Biol Chem 2014; 289:14009-14019.
    • (2014) J Biol Chem , vol.289 , pp. 14009-14019
    • Abbas, M.1    Shanmugam, I.2    Bsaili, M.3    Hromas, R.4    Shaheen, M.5
  • 140
    • 79959346617 scopus 로고    scopus 로고
    • E3 ligase RFWD3 participates in replication checkpoint control
    • Gong Z, Chen J. E3 ligase RFWD3 participates in replication checkpoint control. J Biol Chem 2011; 286:22308-22313.
    • (2011) J Biol Chem , vol.286 , pp. 22308-22313
    • Gong, Z.1    Chen, J.2
  • 141
    • 79959361651 scopus 로고    scopus 로고
    • RING finger and WD repeat domain 3 (RFWD3) associates with replication protein A (RPA) and facilitates RPA-mediated DNA damage response
    • Liu S, Chu J, Yucer N, et al. RING finger and WD repeat domain 3 (RFWD3) associates with replication protein A (RPA) and facilitates RPA-mediated DNA damage response. J Biol Chem 2011; 286:22314-22322.
    • (2011) J Biol Chem , vol.286 , pp. 22314-22322
    • Liu, S.1    Chu, J.2    Yucer, N.3
  • 142
    • 40649097306 scopus 로고    scopus 로고
    • Activation of ubiquitin-dependent DNA damage bypass is mediated by replication protein a
    • Davies AA, Huttner D, Daigaku Y, Chen S, Ulrich HD. Activation of ubiquitin-dependent DNA damage bypass is mediated by replication protein a. Mol Cell 2008; 29:625-636.
    • (2008) Mol Cell , vol.29 , pp. 625-636
    • Davies, A.A.1    Huttner, D.2    Daigaku, Y.3    Chen, S.4    Ulrich, H.D.5
  • 143
    • 84873042958 scopus 로고    scopus 로고
    • FBH1 promotes DNA double-strand breakage and apoptosis in response to DNA replication stress
    • Jeong YT, Rossi M, Cermak L, et al. FBH1 promotes DNA double-strand breakage and apoptosis in response to DNA replication stress. J Cell Biol 2013; 200:141-149.
    • (2013) J Cell Biol , vol.200 , pp. 141-149
    • Jeong, Y.T.1    Rossi, M.2    Cermak, L.3
  • 144
    • 84861765707 scopus 로고    scopus 로고
    • RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair
    • Galanty Y, Belotserkovskaya R, Coates J, Jackson SP. RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair. Genes Dev 2012; 26:1179-1195.
    • (2012) Genes Dev , vol.26 , pp. 1179-1195
    • Galanty, Y.1    Belotserkovskaya, R.2    Coates, J.3    Jackson, S.P.4
  • 145
    • 84863846456 scopus 로고    scopus 로고
    • Sumoylation of MDC1 is important for proper DNA damage response
    • Luo K, Zhang H, Wang L, Yuan J, Lou Z. Sumoylation of MDC1 is important for proper DNA damage response. EMBO J 2012; 31:3008-3019.
    • (2012) EMBO J , vol.31 , pp. 3008-3019
    • Luo, K.1    Zhang, H.2    Wang, L.3    Yuan, J.4    Lou, Z.5
  • 146
    • 84870760201 scopus 로고    scopus 로고
    • RNF4-dependent hybrid SUMO-ubiquitin chains are signals for RAP80 and thereby mediate the recruitment of BRCA1 to sites of DNA damage
    • Guzzo CM, Berndsen CE, Zhu J, et al. RNF4-dependent hybrid SUMO-ubiquitin chains are signals for RAP80 and thereby mediate the recruitment of BRCA1 to sites of DNA damage. Sci Signal 2012; 5:ra88.
    • (2012) Sci Signal , vol.5 , pp. ra88
    • Guzzo, C.M.1    Berndsen, C.E.2    Zhu, J.3
  • 147
    • 84873704658 scopus 로고    scopus 로고
    • RNF4 is required for DNA double-strand break repair in vivo
    • Vyas R, Kumar R, Clermont F, et al. RNF4 is required for DNA double-strand break repair in vivo. Cell Death Differ 2013; 20:490-502.
    • (2013) Cell Death Differ , vol.20 , pp. 490-502
    • Vyas, R.1    Kumar, R.2    Clermont, F.3
  • 148
    • 84861784690 scopus 로고    scopus 로고
    • SUMO-targeted ubiquitin E3 ligase RNF4 is required for the response of human cells to DNA damage
    • Yin Y, Seifert A, Chua JS, Maure JF, Golebiowski F, Hay RT. SUMO-targeted ubiquitin E3 ligase RNF4 is required for the response of human cells to DNA damage. Genes Dev 2012; 26:1196-1208.
    • (2012) Genes Dev , vol.26 , pp. 1196-1208
    • Yin, Y.1    Seifert, A.2    Chua, J.S.3    Maure, J.F.4    Golebiowski, F.5    Hay, R.T.6
  • 149
    • 84876886904 scopus 로고    scopus 로고
    • Regulation of DNA damage responses by ubiquitin and SUMO
    • Jackson SP, Durocher D. Regulation of DNA damage responses by ubiquitin and SUMO. Mol Cell 2013; 49:795-807.
    • (2013) Mol Cell , vol.49 , pp. 795-807
    • Jackson, S.P.1    Durocher, D.2
  • 150
    • 84864919890 scopus 로고    scopus 로고
    • Tandem protein interaction modules organize the ubiquitin-dependent response to DNA double-strand breaks
    • Panier S, Ichijima Y, Fradet-Turcotte A, et al. Tandem protein interaction modules organize the ubiquitin-dependent response to DNA double-strand breaks. Mol Cell 2012; 47:383-395.
    • (2012) Mol Cell , vol.47 , pp. 383-395
    • Panier, S.1    Ichijima, Y.2    Fradet-Turcotte, A.3
  • 151
    • 84879888213 scopus 로고    scopus 로고
    • 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark
    • Fradet-Turcotte A, Canny MD, Escribano-Diaz C, et al. 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Nature 2013; 499:50-54.
    • (2013) Nature , vol.499 , pp. 50-54
    • Fradet-Turcotte, A.1    Canny, M.D.2    Escribano-Diaz, C.3
  • 152
    • 4344700569 scopus 로고    scopus 로고
    • Replication protein A interacts with AID to promote deamination of somatic hypermutation targets
    • Chaudhuri J, Khuong C, Alt FW. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature 2004; 430:992-998.
    • (2004) Nature , vol.430 , pp. 992-998
    • Chaudhuri, J.1    Khuong, C.2    Alt, F.W.3
  • 153
    • 0034604545 scopus 로고    scopus 로고
    • Replication protein A physically interacts with the Bloom's syndrome protein and stimulates its helicase activity
    • Brosh RM, Li JL, Kenny MK, et al. Replication protein A physically interacts with the Bloom's syndrome protein and stimulates its helicase activity. J Biol Chem 2000; 275:23500-23508.
    • (2000) J Biol Chem , vol.275 , pp. 23500-23508
    • Brosh, R.M.1    Li, J.L.2    Kenny, M.K.3
  • 154
    • 23844450310 scopus 로고    scopus 로고
    • Physical and functional mapping of the replication protein a interaction domain of the werner and bloom syndrome helicases
    • Doherty KM, Sommers JA, Gray MD, et al. Physical and functional mapping of the replication protein a interaction domain of the werner and bloom syndrome helicases. J Biol Chem 2005; 280:29494-29505.
    • (2005) J Biol Chem , vol.280 , pp. 29494-29505
    • Doherty, K.M.1    Sommers, J.A.2    Gray, M.D.3
  • 155
    • 0037427075 scopus 로고    scopus 로고
    • Interaction between BRCA2 and replication protein A is compromised by a cancer-predisposing mutation in BRCA2
    • Wong JM, Ionescu D, Ingles CJ. Interaction between BRCA2 and replication protein A is compromised by a cancer-predisposing mutation in BRCA2. Oncogene 2003; 22:28-33.
    • (2003) Oncogene , vol.22 , pp. 28-33
    • Wong, J.M.1    Ionescu, D.2    Ingles, C.J.3
  • 156
    • 0038239288 scopus 로고    scopus 로고
    • Bimodal interaction between replication-protein A and Dna2 is critical for Dna2 function both in vivo and in vitro
    • Bae KH, Kim HS, Bae SH, Kang HY, Brill S, Seo YS. Bimodal interaction between replication-protein A and Dna2 is critical for Dna2 function both in vivo and in vitro. Nucleic Acids Res 2003; 31:3006-3015.
    • (2003) Nucleic Acids Res , vol.31 , pp. 3006-3015
    • Bae, K.H.1    Kim, H.S.2    Bae, S.H.3    Kang, H.Y.4    Brill, S.5    Seo, Y.S.6
  • 157
    • 20044371404 scopus 로고    scopus 로고
    • Enzymatic properties of the Caenorhabditis elegans Dna2 endonuclease/helicase and a species-specific interaction between RPA and Dna2
    • Kim DH, Lee KH, Kim JH, et al. Enzymatic properties of the Caenorhabditis elegans Dna2 endonuclease/helicase and a species-specific interaction between RPA and Dna2. Nucleic Acids Res 2005; 33:1372-1383.
    • (2005) Nucleic Acids Res , vol.33 , pp. 1372-1383
    • Kim, D.H.1    Lee, K.H.2    Kim, J.H.3
  • 158
    • 0033104517 scopus 로고    scopus 로고
    • Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA:DNA-PK complexes
    • Shao RG, Cao CX, Zhang H, Kohn KW, Wold MS, Pommier Y. Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA:DNA-PK complexes. EMBO J 1999; 18:1397-1406.
    • (1999) EMBO J , vol.18 , pp. 1397-1406
    • Shao, R.G.1    Cao, C.X.2    Zhang, H.3    Kohn, K.W.4    Wold, M.S.5    Pommier, Y.6
  • 159
    • 84871105537 scopus 로고    scopus 로고
    • Human exonuclease 5 is a novel sliding exonuclease required for genome stability
    • Sparks JL, Kumar R, Singh M, Wold MS, Pandita TK, Burgers PM. Human exonuclease 5 is a novel sliding exonuclease required for genome stability. J Biol Chem 2012; 287:42773-42783.
    • (2012) J Biol Chem , vol.287 , pp. 42773-42783
    • Sparks, J.L.1    Kumar, R.2    Singh, M.3    Wold, M.S.4    Pandita, T.K.5    Burgers, P.M.6
  • 160
    • 84868088016 scopus 로고    scopus 로고
    • RPA assists HSF1 access to nucleosomal DNA by recruiting histone chaperone FACT
    • Fujimoto M, Takaki E, Takii R, et al. RPA assists HSF1 access to nucleosomal DNA by recruiting histone chaperone FACT. Mol Cell 2012; 48:182-194.
    • (2012) Mol Cell , vol.48 , pp. 182-194
    • Fujimoto, M.1    Takaki, E.2    Takii, R.3
  • 161
    • 33646153980 scopus 로고    scopus 로고
    • The structure of the yFACT Pob3-M domain, its interaction with the DNA replication factor RPA, and a potential role in nucleosome deposition
    • VanDemark AP, Blanksma M, Ferris E, Heroux A, Hill CP, Formosa T. The structure of the yFACT Pob3-M domain, its interaction with the DNA replication factor RPA, and a potential role in nucleosome deposition. Mol Cell 2006; 22:363-374.
    • (2006) Mol Cell , vol.22 , pp. 363-374
    • VanDemark, A.P.1    Blanksma, M.2    Ferris, E.3    Heroux, A.4    Hill, C.P.5    Formosa, T.6
  • 162
    • 34948855936 scopus 로고    scopus 로고
    • FANCJ (BACH1) helicase forms DNA damage inducible foci with replication protein A and interacts physically and functionally with the single-stranded DNA-binding protein
    • Gupta R, Sharma S, Sommers JA, Kenny MK, Cantor SB, Brosh RM Jr. FANCJ (BACH1) helicase forms DNA damage inducible foci with replication protein A and interacts physically and functionally with the single-stranded DNA-binding protein. Blood 2007; 110:2390-2398.
    • (2007) Blood , vol.110 , pp. 2390-2398
    • Gupta, R.1    Sharma, S.2    Sommers, J.A.3    Kenny, M.K.4    Cantor, S.B.5    Brosh, R.M.6
  • 163
    • 70350131505 scopus 로고    scopus 로고
    • Biochemical characterisation of the SWI/SNF family member HLTF
    • MacKay C, Toth R, Rouse J. Biochemical characterisation of the SWI/SNF family member HLTF. Biochem Biophys Res Commun 2009; 390:187-191.
    • (2009) Biochem Biophys Res Commun , vol.390 , pp. 187-191
    • MacKay, C.1    Toth, R.2    Rouse, J.3
  • 164
    • 4544339736 scopus 로고    scopus 로고
    • Replication protein A and the Mre11.Rad50.Nbs1 complex co-localize and interact at sites of stalled replication forks
    • Robison JG, Elliott J, Dixon K, Oakley GG. Replication protein A and the Mre11.Rad50.Nbs1 complex co-localize and interact at sites of stalled replication forks. J Biol Chem 2004; 279:34802-34810.
    • (2004) J Biol Chem , vol.279 , pp. 34802-34810
    • Robison, J.G.1    Elliott, J.2    Dixon, K.3    Oakley, G.G.4
  • 165
    • 68249120791 scopus 로고    scopus 로고
    • Physical interaction between replication protein A (RPA) and MRN: Involvement of RPA2 phosphorylation and the N-terminus of RPA1
    • Oakley GG, Tillison K, Opiyo Sa, Glanzer JG, Horn JM, Patrick SM. Physical interaction between replication protein A (RPA) and MRN: involvement of RPA2 phosphorylation and the N-terminus of RPA1. Biochemistry 2009; 48:7473-7481.
    • (2009) Biochemistry , vol.48 , pp. 7473-7481
    • Oakley, G.G.1    Tillison, K.2    Opiyo, Sa.3    Glanzer, J.G.4    Horn, J.M.5    Patrick, S.M.6
  • 166
    • 57349143725 scopus 로고    scopus 로고
    • The basic cleft of RPA70N binds multiple checkpoint proteins, including RAD9, to regulate ATR signaling
    • Xu X, Vaithiyalingam S, Glick GG, Mordes Da, Chazin WJ, Cortez D. The basic cleft of RPA70N binds multiple checkpoint proteins, including RAD9, to regulate ATR signaling. Mol Cell Biol 2008; 28:7345-7353.
    • (2008) Mol Cell Biol , vol.28 , pp. 7345-7353
    • Xu, X.1    Vaithiyalingam, S.2    Glick, G.G.3    Mordes, Da.4    Chazin, W.J.5    Cortez, D.6
  • 167
    • 0034657356 scopus 로고    scopus 로고
    • Formation of a complex between nucleolin and replication protein A after cell stress prevents initiation of DNA replication
    • Daniely Y, Borowiec JA. Formation of a complex between nucleolin and replication protein A after cell stress prevents initiation of DNA replication. J Cell Biol 2000; 149:799-810.
    • (2000) J Cell Biol , vol.149 , pp. 799-810
    • Daniely, Y.1    Borowiec, J.A.2
  • 168
    • 0026583949 scopus 로고
    • Interaction of DNA polymerase alpha-primase with cellular replication protein A and SV40 T antigen
    • Dornreiter I, Erdile LF, Gilbert IU, von Winkler D, Kelly TJ, Fanning E. Interaction of DNA polymerase alpha-primase with cellular replication protein A and SV40 T antigen. EMBO J 1992; 11:769-776.
    • (1992) EMBO J , vol.11 , pp. 769-776
    • Dornreiter, I.1    Erdile, L.F.2    Gilbert, I.U.3    Von Winkler, D.4    Kelly, T.J.5    Fanning, E.6
  • 169
    • 0027195936 scopus 로고
    • The acidic transcriptional activation domains of VP16 and p53 bind the cellular replication protein A and stimulate in vitro BPV-1 DNA replication
    • Li R, Botchan MR. The acidic transcriptional activation domains of VP16 and p53 bind the cellular replication protein A and stimulate in vitro BPV-1 DNA replication. Cell 1993; 73:1207-1221.
    • (1993) Cell , vol.73 , pp. 1207-1221
    • Li, R.1    Botchan, M.R.2
  • 171
    • 84889093850 scopus 로고    scopus 로고
    • hPrimpol1/CCDC111 is a human DNA primase-polymerase required for the maintenance of genome integrity
    • Wan L, Lou J, Xia Y, et al. hPrimpol1/CCDC111 is a human DNA primase-polymerase required for the maintenance of genome integrity. EMBO Rep 2013; 14:1104-1112.
    • (2013) EMBO Rep , vol.14 , pp. 1104-1112
    • Wan, L.1    Lou, J.2    Xia, Y.3
  • 172
    • 4243156107 scopus 로고    scopus 로고
    • Biochemical characterization of DNA damage checkpoint complexes: Clamp loader and clamp complexes with specificity for 5′ recessed DNA
    • Ellison V, Stillman B. Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5′ recessed DNA. PLoS Biol 2003; 1:E33.
    • (2003) PLoS Biol , vol.1 , pp. E33
    • Ellison, V.1    Stillman, B.2
  • 173
    • 2942532181 scopus 로고    scopus 로고
    • Physical interaction between replication protein A and Rad51 promotes exchange on single-stranded DNA
    • Stauffer ME, Chazin WJ. Physical interaction between replication protein A and Rad51 promotes exchange on single-stranded DNA. J Biol Chem 2004; 279:25638-25645.
    • (2004) J Biol Chem , vol.279 , pp. 25638-25645
    • Stauffer, M.E.1    Chazin, W.J.2
  • 174
    • 0031835781 scopus 로고    scopus 로고
    • Studies of the interaction between Rad52 protein and the yeast single-stranded DNA binding protein RPA
    • Hays SL, Firmenich AA, Massey P, Banerjee R, Berg P. Studies of the interaction between Rad52 protein and the yeast single-stranded DNA binding protein RPA. Mol Cell Biol 1998; 18:4400-4406.
    • (1998) Mol Cell Biol , vol.18 , pp. 4400-4406
    • Hays, S.L.1    Firmenich, A.A.2    Massey, P.3    Banerjee, R.4    Berg, P.5
  • 175
    • 0034551795 scopus 로고    scopus 로고
    • Species specificity of human RPA in simian virus 40 DNA replication lies in T-antigen-dependent RNA primer synthesis
    • Wang M, Park JS, Ishiai M, Hurwitz J, Lee SH. Species specificity of human RPA in simian virus 40 DNA replication lies in T-antigen-dependent RNA primer synthesis. Nucleic Acids Res 2000; 28:4742-4749.
    • (2000) Nucleic Acids Res , vol.28 , pp. 4742-4749
    • Wang, M.1    Park, J.S.2    Ishiai, M.3    Hurwitz, J.4    Lee, S.H.5
  • 176
    • 23444444515 scopus 로고    scopus 로고
    • Solution structure of the DNA-binding domain of RPA from Saccharomyces cerevisiae and its interaction with single-stranded DNA and SV40 T antigen
    • Park CJ, Lee JH, Choi BS. Solution structure of the DNA-binding domain of RPA from Saccharomyces cerevisiae and its interaction with single-stranded DNA and SV40 T antigen. Nucleic Acids Res 2005; 33:4172-4181.
    • (2005) Nucleic Acids Res , vol.33 , pp. 4172-4181
    • Park, C.J.1    Lee, J.H.2    Choi, B.S.3
  • 177
    • 34147201111 scopus 로고    scopus 로고
    • The human Tim/Tipin complex coordinates an Intra-S checkpoint response to UV that slows replication fork displacement
    • Unsal-Kacmaz K, Chastain PD, Qu PP, et al. The human Tim/Tipin complex coordinates an Intra-S checkpoint response to UV that slows replication fork displacement. Mol Cell Biol 2007; 27:3131-3142.
    • (2007) Mol Cell Biol , vol.27 , pp. 3131-3142
    • Unsal-Kacmaz, K.1    Chastain, P.D.2    Qu, P.P.3
  • 178
    • 0030996226 scopus 로고    scopus 로고
    • A sequence in the N-terminal region of human uracil-DNA glycosylase with homology to XPA interacts with the C-terminal part of the 34-kDa subunit of replication protein A
    • Nagelhus TA, Haug T, Singh KK, et al. A sequence in the N-terminal region of human uracil-DNA glycosylase with homology to XPA interacts with the C-terminal part of the 34-kDa subunit of replication protein A. J Biol Chem 1997; 272:6561-6566.
    • (1997) J Biol Chem , vol.272 , pp. 6561-6566
    • Nagelhus, T.A.1    Haug, T.2    Singh, K.K.3
  • 179
    • 0040436076 scopus 로고    scopus 로고
    • Functional and physical interaction between WRN helicase and human replication protein A
    • Brosh RM, Orren DK, Nehlin JO, et al. Functional and physical interaction between WRN helicase and human replication protein A. J Biol Chem 1999; 274:18341-18350.
    • (1999) J Biol Chem , vol.274 , pp. 18341-18350
    • Brosh, R.M.1    Orren, D.K.2    Nehlin, J.O.3
  • 180
    • 79952779558 scopus 로고    scopus 로고
    • Molecular cooperation between the Werner syndrome protein and replication protein A in relation to replication fork blockage
    • Machwe A, Lozada E, Wold MS, Li G-M, Orren DK. Molecular cooperation between the Werner syndrome protein and replication protein A in relation to replication fork blockage. J Biol Chem 2010; 286:3497-3508.
    • (2010) J Biol Chem , vol.286 , pp. 3497-3508
    • Machwe, A.1    Lozada, E.2    Wold, M.S.3    Li, G.-M.4    Orren, D.K.5
  • 181
    • 0141853230 scopus 로고    scopus 로고
    • The N-terminal domain of the large subunit of human replication protein A binds to Werner syndrome protein and stimulates helicase activity
    • Shen JC, Lao Y, Kamath-Loeb A, Wold MS, Loeb LA. The N-terminal domain of the large subunit of human replication protein A binds to Werner syndrome protein and stimulates helicase activity. Mech Ageing Dev 2003; 124:921-930.
    • (2003) Mech Ageing Dev , vol.124 , pp. 921-930
    • Shen, J.C.1    Lao, Y.2    Kamath-Loeb, A.3    Wold, M.S.4    Loeb, L.A.5
  • 182
    • 0242380632 scopus 로고    scopus 로고
    • Chemical shift changes provide evidence for overlapping single-stranded DNA- and XPA-binding sites on the 70 kDa subunit of human replication protein A
    • Daughdrill GW, Buchko GW, Botuyan MV, et al. Chemical shift changes provide evidence for overlapping single-stranded DNA- and XPA-binding sites on the 70 kDa subunit of human replication protein A. Nucleic Acids Res 2003; 31:4176-4183.
    • (2003) Nucleic Acids Res , vol.31 , pp. 4176-4183
    • Daughdrill, G.W.1    Buchko, G.W.2    Botuyan, M.V.3
  • 183
    • 0028929611 scopus 로고
    • RPA involvement in the damage-recognition and incision steps of nucleotide excision repair
    • He Z, Henricksen LA, Wold MS, Ingles CJ. RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. Nature 1995; 374:566-569.
    • (1995) Nature , vol.374 , pp. 566-569
    • He, Z.1    Henricksen, L.A.2    Wold, M.S.3    Ingles, C.J.4
  • 184
    • 79953153739 scopus 로고    scopus 로고
    • Nucleotide excision repair by mutant xeroderma pigmentosum group A (XPA) proteins with deficiency in interaction with RPA
    • Saijo M, Takedachi A, Tanaka K. Nucleotide excision repair by mutant xeroderma pigmentosum group A (XPA) proteins with deficiency in interaction with RPA. J Biol Chem 2011; 286:5476-5483.
    • (2011) J Biol Chem , vol.286 , pp. 5476-5483
    • Saijo, M.1    Takedachi, A.2    Tanaka, K.3
  • 185
  • 186
    • 17544367892 scopus 로고    scopus 로고
    • Replication protein A confers structure-specific endonuclease activities to the XPF-ERCC1 and XPG subunits of human DNA repair excision nuclease
    • Matsunaga T, Park CH, Bessho T, Mu D, Sancar A. Replication protein A confers structure-specific endonuclease activities to the XPF-ERCC1 and XPG subunits of human DNA repair excision nuclease. J Biol Chem 1996; 271:11047-11050.
    • (1996) J Biol Chem , vol.271 , pp. 11047-11050
    • Matsunaga, T.1    Park, C.H.2    Bessho, T.3    Mu, D.4    Sancar, A.5
  • 187
    • 0031023182 scopus 로고    scopus 로고
    • Reconstitution of human excision nuclease with recombinant XPF-ERCC1 complex
    • Bessho T, Sancar A, Thompson LH, Thelen MP. Reconstitution of human excision nuclease with recombinant XPF-ERCC1 complex. J Biol Chem 1997; 272:3833-3837.
    • (1997) J Biol Chem , vol.272 , pp. 3833-3837
    • Bessho, T.1    Sancar, A.2    Thompson, L.H.3    Thelen, M.P.4
  • 188


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.