-
1
-
-
0035997367
-
Metabolism and the control of circadian rhythms
-
Rutter, J., Reick, M. & McKnight, S. L. Metabolism and the control of circadian rhythms. Annu. Rev. Biochem. 71, 307-331 (2002).
-
(2002)
Annu. Rev. Biochem
, vol.71
, pp. 307-331
-
-
Rutter, J.1
Reick, M.2
McKnight, S.L.3
-
2
-
-
15044341917
-
Cellular oscillators: Rhythmic gene expression and metabolism
-
Schibler, U. & Naef, F. Cellular oscillators: rhythmic gene expression and metabolism. Curr. Opin. Cell Biol. 17, 223-229 (2005).
-
(2005)
Curr. Opin. Cell Biol
, vol.17
, pp. 223-229
-
-
Schibler, U.1
Naef, F.2
-
3
-
-
1542373685
-
Transcriptional regulatory circuits controlling mitochondrial biogenesis and function
-
Kelly, D. P. & Scarpulla, R. C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 18, 357-368 (2004).
-
(2004)
Genes Dev
, vol.18
, pp. 357-368
-
-
Kelly, D.P.1
Scarpulla, R.C.2
-
4
-
-
21144446106
-
PGC-1α deficiency causes multi-system energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis
-
Leone, T. C. et al. PGC-1α deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 3, e101 (2005).
-
(2005)
PLoS Biol
, vol.3
-
-
Leone, T.C.1
-
5
-
-
24144463983
-
Metabolic control through the PGC-1 family of transcription coactivators
-
Lin, J., Handschin, C. & Spiegelman, B. M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1, 361-370 (2005).
-
(2005)
Cell Metab
, vol.1
, pp. 361-370
-
-
Lin, J.1
Handschin, C.2
Spiegelman, B.M.3
-
6
-
-
5344252327
-
Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice
-
Lin, J. et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice. Cell 119, 121-135 (2004).
-
(2004)
Cell
, vol.119
, pp. 121-135
-
-
Lin, J.1
-
7
-
-
0032549811
-
A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
-
Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829-839 (1998).
-
(1998)
Cell
, vol.92
, pp. 829-839
-
-
Puigserver, P.1
-
8
-
-
0033538473
-
Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
-
Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115-124 (1999).
-
(1999)
Cell
, vol.98
, pp. 115-124
-
-
Wu, Z.1
-
9
-
-
0035855858
-
Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1
-
Yoon, J. C. et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413, 131-138 (2001).
-
(2001)
Nature
, vol.413
, pp. 131-138
-
-
Yoon, J.C.1
-
10
-
-
4544362674
-
Mammalian circadian biology: Elucidating genome-wide levels of temporal organization
-
Lowrey, P. L. & Takahashi, J. S. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu. Rev. Genomics Hum. Genet. 5, 407-441 (2004).
-
(2004)
Annu. Rev. Genomics Hum. Genet
, vol.5
, pp. 407-441
-
-
Lowrey, P.L.1
Takahashi, J.S.2
-
11
-
-
18444414586
-
Coordinated transcription of key pathways in the mouse by the circadian clock
-
Panda, S. et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109, 307-320 (2002).
-
(2002)
Cell
, vol.109
, pp. 307-320
-
-
Panda, S.1
-
12
-
-
0037007625
-
Extensive and divergent circadian gene expression in liver and heart
-
Storch, K. F. et al. Extensive and divergent circadian gene expression in liver and heart. Nature 417, 78-83 (2002).
-
(2002)
Nature
, vol.417
, pp. 78-83
-
-
Storch, K.F.1
-
13
-
-
0036682099
-
A transcription factor response element for gene expression during circadian night
-
Ueda, H. R. et al. A transcription factor response element for gene expression during circadian night. Nature 418, 534-539 (2002).
-
(2002)
Nature
, vol.418
, pp. 534-539
-
-
Ueda, H.R.1
-
14
-
-
33845611615
-
Interplay of circadian clocks and metabolic rhythms
-
Wijnen, H. & Young, M. W. Interplay of circadian clocks and metabolic rhythms. Annu. Rev. Genet. 40, 409-448 (2006).
-
(2006)
Annu. Rev. Genet
, vol.40
, pp. 409-448
-
-
Wijnen, H.1
Young, M.W.2
-
15
-
-
0034771257
-
Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people
-
Karlsson, B., Knutsson, A. & Lindahl, B. Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people. Occup. Environ. Med. 58, 747-752 (2001).
-
(2001)
Occup. Environ. Med
, vol.58
, pp. 747-752
-
-
Karlsson, B.1
Knutsson, A.2
Lindahl, B.3
-
16
-
-
14044264801
-
BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis
-
Rudic, R. D. et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2, e377 (2004).
-
(2004)
PLoS Biol
, vol.2
-
-
Rudic, R.D.1
-
17
-
-
20844461135
-
Obesity and metabolic syndrome in circadian Clock mutant mice
-
Turek, F. W. et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308, 1043-1045 (2005).
-
(2005)
Science
, vol.308
, pp. 1043-1045
-
-
Turek, F.W.1
-
18
-
-
0037184977
-
A web of circadian pacemakers
-
Schibler, U. & Sassone-Corsi, P. A web of circadian pacemakers. Cell 111, 919-922 (2002).
-
(2002)
Cell
, vol.111
, pp. 919-922
-
-
Schibler, U.1
Sassone-Corsi, P.2
-
19
-
-
0037194790
-
Coordination of circadian timing in mammals
-
Reppert, S. M. & Weaver, D. R. Coordination of circadian timing in mammals. Nature 418, 935-941 (2002).
-
(2002)
Nature
, vol.418
, pp. 935-941
-
-
Reppert, S.M.1
Weaver, D.R.2
-
20
-
-
0037178787
-
The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator
-
Preitner, N. et al. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251-260 (2002).
-
(2002)
Cell
, vol.110
, pp. 251-260
-
-
Preitner, N.1
-
21
-
-
4143142003
-
A functional genomics strategy reveals Rora as a component of the mammalian circadian clock
-
Sato, T. K. et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43, 527-537 (2004).
-
(2004)
Neuron
, vol.43
, pp. 527-537
-
-
Sato, T.K.1
-
22
-
-
33144465537
-
Nuclear receptor Rev-erbα is a critical lithium-sensitive component of the circadian clock
-
Yin, L., Wang, J., Klein, P. S. & Lazar, M. A. Nuclear receptor Rev-erbα is a critical lithium-sensitive component of the circadian clock. Science 311, 1002-1005 (2006).
-
(2006)
Science
, vol.311
, pp. 1002-1005
-
-
Yin, L.1
Wang, J.2
Klein, P.S.3
Lazar, M.A.4
-
23
-
-
4344668155
-
RORα regulates the expression of genes involved in lipid homeostasis in skeletal muscle cells: Caveolin-3 and CPT-1 are direct targets of ROR
-
Lau, P., Nixon, S. J., Parton, R. G. & Muscat, G. E. RORα regulates the expression of genes involved in lipid homeostasis in skeletal muscle cells: caveolin-3 and CPT-1 are direct targets of ROR. J. Biol. Chem. 279, 36828-36840 (2004).
-
(2004)
J. Biol. Chem
, vol.279
, pp. 36828-36840
-
-
Lau, P.1
Nixon, S.J.2
Parton, R.G.3
Muscat, G.E.4
-
24
-
-
33646145721
-
Circadian regulator CLOCK is a histone acetyltransferase
-
Doi, M., Hirayama, J. & Sassone-Corsi, P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 125, 497-508 (2006).
-
(2006)
Cell
, vol.125
, pp. 497-508
-
-
Doi, M.1
Hirayama, J.2
Sassone-Corsi, P.3
-
25
-
-
27644589675
-
The diverse functions of histone lysine methylation
-
Martin, C. & Zhang, Y. The diverse functions of histone lysine methylation. Nature Rev. Mol. Cell Biol. 6, 838-849 (2005).
-
(2005)
Nature Rev. Mol. Cell Biol
, vol.6
, pp. 838-849
-
-
Martin, C.1
Zhang, Y.2
-
26
-
-
0033637383
-
Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus
-
Damiola, F. et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14, 2950-2961 (2000).
-
(2000)
Genes Dev
, vol.14
, pp. 2950-2961
-
-
Damiola, F.1
-
27
-
-
2442701392
-
PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3
-
Koo, S. H. et al. PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3. Nature Med. 10, 530-534 (2004).
-
(2004)
Nature Med
, vol.10
, pp. 530-534
-
-
Koo, S.H.1
-
28
-
-
0032511229
-
A serum shock induces circadian gene expression in mammalian tissue culture cells
-
Balsalobre, A., Damiola, F. & Schibler, U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929-937 (1998).
-
(1998)
Cell
, vol.93
, pp. 929-937
-
-
Balsalobre, A.1
Damiola, F.2
Schibler, U.3
-
29
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1
-
Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434, 113-118 (2005).
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
-
30
-
-
0035919479
-
Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors
-
Rutter, J., Reick, M., Wu, L. C. & McKnight, S. L. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293, 510-514 (2001).
-
(2001)
Science
, vol.293
, pp. 510-514
-
-
Rutter, J.1
Reick, M.2
Wu, L.C.3
McKnight, S.L.4
|