-
1
-
-
0028787230
-
Force generation by microtubule assembly/disassembly in mitosis and related movements
-
Inoué, S. & Salmon, E. D. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol. Biol. Cell 6, 1619-1640 (1995).
-
(1995)
Mol. Biol. Cell
, vol.6
, pp. 1619-1640
-
-
Inoué, S.1
Salmon, E.D.2
-
2
-
-
0342903325
-
Physical properties determining self-organization of motors and microtubules
-
Surrey, T., Nedelec, F., Leibler, S. & Karsenti, E. Physical properties determining self-organization of motors and microtubules. Science 292, 1167-1171 (2001).
-
(2001)
Science
, vol.292
, pp. 1167-1171
-
-
Surrey, T.1
Nedelec, F.2
Leibler, S.3
Karsenti, E.4
-
3
-
-
39749192575
-
Self-organization in cell biology: A brief history
-
Karsenti, E. Self-organization in cell biology: a brief history. Nature Rev. Mol. Cell Biol. 9, 255-262 (2008).
-
(2008)
Nature Rev. Mol. Cell Biol.
, vol.9
, pp. 255-262
-
-
Karsenti, E.1
-
4
-
-
60349102244
-
Spindle fusion requires dynein-mediated sliding of oppositely oriented microtubules
-
Gatlin, J. C. et al. Spindle fusion requires dynein-mediated sliding of oppositely oriented microtubules. Curr. Biol. 19, 10-10 (2009).
-
(2009)
Curr. Biol.
, vol.19
, pp. 10-10
-
-
Gatlin, J.C.1
-
5
-
-
0027181271
-
Loss of function of Saccharomyces cerevisiae kinesin-related CIN8 and KIP1 is suppressed by KAR3 motor domain mutations
-
Hoyt, M. A., He, L., Totis, L. & Saunders, W. S. Loss of function of Saccharomyces cerevisiae kinesin-related CIN8 and KIP1 is suppressed by KAR3 motor domain mutations. Genetics 135, 35-44 (1993).
-
(1993)
Genetics
, vol.135
, pp. 35-44
-
-
Hoyt, M.A.1
He, L.2
Totis, L.3
Saunders, W.S.4
-
6
-
-
0030974461
-
Mitotic spindle function in Saccharomyces cerevisiae requires a balance between different types of kinesin-related motors
-
Saunders, W., Lengyel, V. & Hoyt, M. A. Mitotic spindle function in Saccharomyces cerevisiae requires a balance between different types of kinesin-related motors. Mol. Biol. Cell 8, 1025-1033 (1997).
-
(1997)
Mol. Biol. Cell
, vol.8
, pp. 1025-1033
-
-
Saunders, W.1
Lengyel, V.2
Hoyt, M.A.3
-
7
-
-
69949145598
-
Force and length in the mitotic spindle
-
Dumont, S. & Mitchison, T. J. Force and length in the mitotic spindle. Curr. Biol. 19, R749-R761 (2009)
-
(2009)
Curr. Biol.
, vol.19
-
-
Dumont, S.1
Mitchison, T.J.2
-
8
-
-
80053373937
-
Mitotic motors and chromosome segregation: The mechanism of anaphase B
-
Brust-Mascher, I. & Scholey, J. M. Mitotic motors and chromosome segregation: the mechanism of anaphase B. Biochem. Soc. Trans. 39, 1149-1153 (2011).
-
(2011)
Biochem. Soc. Trans.
, vol.39
, pp. 1149-1153
-
-
Brust-Mascher, I.1
Scholey, J.M.2
-
9
-
-
34547858506
-
Slide-and-cluster models for spindle assembly
-
Burbank, K. S., Mitchison, T. J. & Fisher, D. S. Slide-and-cluster models for spindle assembly. Curr. Biol. 17, 1373-1383 (2007).
-
(2007)
Curr. Biol.
, vol.17
, pp. 1373-1383
-
-
Burbank, K.S.1
Mitchison, T.J.2
Fisher, D.S.3
-
10
-
-
77951244793
-
Patterns of kinesin evolution reveal a complex ancestral eukaryote with a multifunctional cytoskeleton
-
Wickstead, B., Gull, K. & Richards, T. A. Patterns of kinesin evolution reveal a complex ancestral eukaryote with a multifunctional cytoskeleton. BMC Evol. Biol. 10, 110 (2010).
-
(2010)
BMC Evol. Biol.
, vol.10
, pp. 110
-
-
Wickstead, B.1
Gull, K.2
Richards, T.A.3
-
11
-
-
84877752558
-
Exotic mitotic mechanisms
-
Drechsler, H. & McAinsh, A. D. Exotic mitotic mechanisms. Open Biol. 2, 120140 (2012).
-
(2012)
Open Biol.
, vol.2
, pp. 120140
-
-
Drechsler, H.1
McAinsh, A.D.2
-
12
-
-
84886304872
-
Functions and mechanics of dynein motor proteins
-
Roberts, A. J., Kon, T., Knight, P. J., Sutoh, K. & Burgess, S. A. Functions and mechanics of dynein motor proteins. Nature Rev. Mol. Cell Biol. 14, 713-726 (2013).
-
(2013)
Nature Rev. Mol. Cell Biol.
, vol.14
, pp. 713-726
-
-
Roberts, A.J.1
Kon, T.2
Knight, P.J.3
Sutoh, K.4
Burgess, S.A.5
-
13
-
-
84865964540
-
Kinesin tail domains are intrinsically disordered
-
Seeger, M. A., Zhang, Y. & Rice, S. E. Kinesin tail domains are intrinsically disordered. Proteins Struct. Funct. Bioinf. 80, 2437-2446 (2012).
-
(2012)
Proteins Struct. Funct. Bioinf.
, vol.80
, pp. 2437-2446
-
-
Seeger, M.A.1
Zhang, Y.2
Rice, S.E.3
-
14
-
-
4644349081
-
A standardized kinesin nomenclature
-
Lawrence, C. J. et al. A standardized kinesin nomenclature. J. Cell Biol. 167, 19-22 (2004).
-
(2004)
J. Cell Biol.
, vol.167
, pp. 19-22
-
-
Lawrence, C.J.1
-
15
-
-
70349437416
-
Kinesin superfamily motor proteins and intracellular transport
-
Hirokawa, N., Noda, Y., Tanaka, Y. & Niwa, S. Kinesin superfamily motor proteins and intracellular transport. Nature Rev. Mol. Cell Biol. 10, 682-696 (2009).
-
(2009)
Nature Rev. Mol. Cell Biol.
, vol.10
, pp. 682-696
-
-
Hirokawa, N.1
Noda, Y.2
Tanaka, Y.3
Niwa, S.4
-
16
-
-
0032410805
-
The case for a common ancestor: Kinesin and myosin motor proteins and G proteins
-
Kull, F. J., Vale, R. D. & Fletterick, R. J. The case for a common ancestor: kinesin and myosin motor proteins and G proteins. J. Mus. Res. Cell. Mot. 19, 877-886 (1998).
-
(1998)
J. Mus. Res. Cell. Mot.
, vol.19
, pp. 877-886
-
-
Kull, F.J.1
Vale, R.D.2
Fletterick, R.J.3
-
17
-
-
77949318844
-
ATP hydrolysis in Eg5 kinesin involves a catalytic two-water mechanism
-
Parke, C. L., Wojcik, E. J., Kim, S. & Worthylake, D. K. ATP hydrolysis in Eg5 kinesin involves a catalytic two-water mechanism. J. Biol. Chem. 285, 5859-5867 (2010)
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 5859-5867
-
-
Parke, C.L.1
Wojcik, E.J.2
Kim, S.3
Worthylake, D.K.4
-
18
-
-
43149106486
-
CENP-E combines a slow, processive motor and a flexible coiled coil to produce an essential motile kinetochore tether
-
Kim, Y., Heuser, J. E., Waterman, C. M. & Cleveland, D. W. CENP-E combines a slow, processive motor and a flexible coiled coil to produce an essential motile kinetochore tether. J. Cell Biol. 181, 411-419 (2008).
-
(2008)
J. Cell Biol.
, vol.181
, pp. 411-419
-
-
Kim, Y.1
Heuser, J.E.2
Waterman, C.M.3
Cleveland, D.W.4
-
19
-
-
70350446761
-
Traffic control: Regulation of kinesin motors
-
Verhey, K. J. & Hammond, J. W. Traffic control: regulation of kinesin motors. Nature Rev. Mol. Cell Biol. 10, 765-777 (2009).
-
(2009)
Nature Rev. Mol. Cell Biol.
, vol.10
, pp. 765-777
-
-
Verhey, K.J.1
Hammond, J.W.2
-
20
-
-
40749148904
-
Phosphorylation relieves autoinhibition of the kinetochore motor Cenp-E
-
Espeut, J. et al. Phosphorylation relieves autoinhibition of the kinetochore motor Cenp-E. Mol. Cell 29, 637-643 (2008).
-
(2008)
Mol. Cell
, vol.29
, pp. 637-643
-
-
Espeut, J.1
-
21
-
-
0036007115
-
Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity
-
Mishima, M., Kaitna, S. & Glotzer, M. Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity. Dev. Cell 2, 41-54 (2002).
-
(2002)
Dev. Cell
, vol.2
, pp. 41-54
-
-
Mishima, M.1
Kaitna, S.2
Glotzer, M.3
-
22
-
-
80051633233
-
The structure of the kinesin-1 motor-tail complex reveals the mechanism of autoinhibition
-
Kaan, H. Y. K., Hackney, D. D. & Kozielski, F. The structure of the kinesin-1 motor-tail complex reveals the mechanism of autoinhibition. Science 333, 883-885 (2011).
-
(2011)
Science
, vol.333
, pp. 883-885
-
-
Kaan, H.Y.K.1
Hackney, D.D.2
Kozielski, F.3
-
23
-
-
53549086926
-
Structural model for strain-dependent microtubule activation of Mg-ADP release from kinesin
-
Nitta, R., Okada, Y. & Hirokawa, N. Structural model for strain-dependent microtubule activation of Mg-ADP release from kinesin. Nature Struc. Mol. Biol. 15, 1067-1075 (2008).
-
(2008)
Nature Struc. Mol. Biol.
, vol.15
, pp. 1067-1075
-
-
Nitta, R.1
Okada, Y.2
Hirokawa, N.3
-
24
-
-
70450270783
-
The mechanisms of kinesin motor motility: Lessons from the monomeric motor KIF1A
-
Hirokawa, N., Nitta, R. & Okada, Y. The mechanisms of kinesin motor motility: lessons from the monomeric motor KIF1A. Nature Rev. Mol. Cell Biol. 10, 877-884 (2009).
-
(2009)
Nature Rev. Mol. Cell Biol.
, vol.10
, pp. 877-884
-
-
Hirokawa, N.1
Nitta, R.2
Okada, Y.3
-
25
-
-
80053594846
-
The kinesin-13 MCAK has an unconventional ATPase cycle adapted for microtubule depolymerization
-
Friel, C. T. C. & Howard, J. J. The kinesin-13 MCAK has an unconventional ATPase cycle adapted for microtubule depolymerization. EMBO J. 30, 3928-3939 (2011).
-
(2011)
EMBO J.
, vol.30
, pp. 3928-3939
-
-
Friel, C.T.C.1
Howard, J.J.2
-
26
-
-
58049202168
-
Kinesin's cover-neck bundle folds forward to generate force
-
Khalil, A. S. et al. Kinesin's cover-neck bundle folds forward to generate force. Proc. Natl. Acad. Sci. USA 105, 19247-19252 (2008).
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 19247-19252
-
-
Khalil, A.S.1
-
27
-
-
58149098730
-
ATPase cycle of the nonmotile kinesin NOD allows microtubule end tracking and drives chromosome movement
-
Cochran, J. C. et al. ATPase cycle of the nonmotile kinesin NOD allows microtubule end tracking and drives chromosome movement. Cell 136, 110-122 (2009).
-
(2009)
Cell
, vol.136
, pp. 110-122
-
-
Cochran, J.C.1
-
28
-
-
84875590005
-
Force generation by kinesin and myosin cytoskeletal motor proteins
-
Kull, F. J. & Endow, S. A. Force generation by kinesin and myosin cytoskeletal motor proteins. J. Cell Sci. 126, 9-19 (2013).
-
(2013)
J. Cell Sci.
, vol.126
, pp. 9-19
-
-
Kull, F.J.1
Endow, S.A.2
-
29
-
-
84877698868
-
Structural basis for the ATP-induced isomerization of kinesin
-
Chang, Q., Nitta, R., Inoue, S. & Hirokawa, N. Structural basis for the ATP-induced isomerization of kinesin. J. Mol. Biol. 425, 1869-1880 (2013).
-
(2013)
J. Mol. Biol.
, vol.425
, pp. 1869-1880
-
-
Chang, Q.1
Nitta, R.2
Inoue, S.3
Hirokawa, N.4
-
30
-
-
77749239756
-
An atomic-level mechanism for activation of the kinesin molecular motors
-
Sindelar, C. V. & Downing, K. H. An atomic-level mechanism for activation of the kinesin molecular motors. Proc. Natl. Acad. Sci. USA 107, 4111-4116 (2010).
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 4111-4116
-
-
Sindelar, C.V.1
Downing, K.H.2
-
31
-
-
0033576727
-
A structural change in the kinesin motor protein that drives motility
-
Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778-784 (1999).
-
(1999)
Nature
, vol.402
, pp. 778-784
-
-
Rice, S.1
-
32
-
-
33748931452
-
High-resolution cryo-EM maps show the nucleotide binding pocket of KIF1A in open and closed conformations
-
Kikkawa, M. & Hirokawa, N. High-resolution cryo-EM maps show the nucleotide binding pocket of KIF1A in open and closed conformations. EMBO J. 25, 4187-4194 (2006).
-
(2006)
EMBO J.
, vol.25
, pp. 4187-4194
-
-
Kikkawa, M.1
Hirokawa, N.2
-
33
-
-
82455211990
-
A seesaw model for intermolecular gating in the kinesin motor protein
-
Sindelar, C. V. A seesaw model for intermolecular gating in the kinesin motor protein. Biophys. Rev. 3, 85-100 (2011).
-
(2011)
Biophys. Rev.
, vol.3
, pp. 85-100
-
-
Sindelar, C.V.1
-
34
-
-
0037342516
-
Thermodynamic properties of the kinesin neck-region docking to the catalytic core
-
Rice, S. et al. Thermodynamic properties of the kinesin neck-region docking to the catalytic core. Biophys. J. 84, 1844-1854 (2003).
-
(2003)
Biophys. J.
, vol.84
, pp. 1844-1854
-
-
Rice, S.1
-
35
-
-
33745839637
-
Feedback of the kinesin-1 neck-linker position on the catalytic site
-
Hahlen, K. et al. Feedback of the kinesin-1 neck-linker position on the catalytic site. J. Biol. Chem. 281, 18868-18877 (2006).
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 18868-18877
-
-
Hahlen, K.1
-
36
-
-
0034628619
-
Role of the kinesin neck linker and catalytic core in microtubule-based motility
-
Case, R. B., Rice, S., Hart, C. L., Ly, B. & Vale, R. D. Role of the kinesin neck linker and catalytic core in microtubule-based motility. Curr. Biol. 10, 157-160 (2000).
-
(2000)
Curr. Biol.
, vol.10
, pp. 157-160
-
-
Case, R.B.1
Rice, S.2
Hart, C.L.3
Ly, B.4
Vale, R.D.5
-
37
-
-
0025222740
-
Protein motors and Maxwell's demons: Does mechanochemical transduction involve a thermal ratchet? Adv
-
Vale, R. D. & Oosawa, F. Protein motors and Maxwell's demons: does mechanochemical transduction involve a thermal ratchet? Adv. Biophys. 26, 97-134 (1990).
-
(1990)
Biophys.
, vol.26
, pp. 97-134
-
-
Vale, R.D.1
Oosawa, F.2
-
38
-
-
33847013578
-
Muscle structure and theories of contraction
-
Huxley, A. F. Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 7, 255-318 (1957).
-
(1957)
Prog. Biophys. Biophys. Chem.
, vol.7
, pp. 255-318
-
-
Huxley, A.F.1
-
39
-
-
77951558010
-
One-dimensional Brownian motion of charged nanoparticles along microtubules: A model system for weak binding interactions
-
Minoura, I., Katayama, E., Sekimoto, K. & Muto, E. One-dimensional Brownian motion of charged nanoparticles along microtubules: a model system for weak binding interactions. Biophys. J. 98, 1589-1597 (2010).
-
(2010)
Biophys. J.
, vol.98
, pp. 1589-1597
-
-
Minoura, I.1
Katayama, E.2
Sekimoto, K.3
Muto, E.4
-
40
-
-
0041522803
-
Processivity of the single-headed kinesin KIF1A through biased binding to tubulin
-
Okada, Y. Y., Higuchi, H. H. & Hirokawa, N. N. Processivity of the single-headed kinesin KIF1A through biased binding to tubulin. Nature 424, 574-577 (2003).
-
(2003)
Nature
, vol.424
, pp. 574-577
-
-
Okada, Y.Y.1
Higuchi, H.H.2
Hirokawa, N.N.3
-
41
-
-
82455219434
-
Electrostatically biased binding of kinesin to microtubules
-
Grant, B. J. et al. Electrostatically biased binding of kinesin to microtubules. PLoS Biol. 9, e1001207 (2011).
-
(2011)
PLoS Biol.
, vol.9
-
-
Grant, B.J.1
-
42
-
-
51549097934
-
Intramolecular strain coordinates kinesin stepping behavior along microtubules
-
Yildiz, A., Tomishige, M., Gennerich, A. & Vale, R. D. Intramolecular strain coordinates kinesin stepping behavior along microtubules. Cell 134, 1030-1041 (2008).
-
(2008)
Cell
, vol.134
, pp. 1030-1041
-
-
Yildiz, A.1
Tomishige, M.2
Gennerich, A.3
Vale, R.D.4
-
43
-
-
0036798857
-
Chemomechanical coupling of the forward and backward steps of single kinesin molecules
-
Nishiyama, M., Higuchi, H. & Yanagida, T. Chemomechanical coupling of the forward and backward steps of single kinesin molecules. Nature Cell Biol. 4, 790-797 (2002).
-
(2002)
Nature Cell Biol.
, vol.4
, pp. 790-797
-
-
Nishiyama, M.1
Higuchi, H.2
Yanagida, T.3
-
44
-
-
19644377414
-
Mechanics of the kinesin step
-
Carter, N. J. & Cross, R. A. Mechanics of the kinesin step. Nature 435, 308-312 (2005).
-
(2005)
Nature
, vol.435
, pp. 308-312
-
-
Carter, N.J.1
Cross, R.A.2
-
45
-
-
0038381479
-
Stepping and stretching. How kinesin uses internal strain to walk processively
-
Rosenfeld, S. S., Fordyce, P. M., Jefferson, G. M., King, P. H. & Block, S. M. Stepping and stretching. How kinesin uses internal strain to walk processively. J. Biol. Chem. 278, 18550-18556 (2003).
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 18550-18556
-
-
Rosenfeld, S.S.1
Fordyce, P.M.2
Jefferson, G.M.3
King, P.H.4
Block, S.M.5
-
46
-
-
0842263751
-
What kinesin does at roadblocks: The coordination mechanism for molecular walking
-
Crevel, I. M. et al. What kinesin does at roadblocks: the coordination mechanism for molecular walking. EMBO J. 23, 23-32 (2003).
-
(2003)
EMBO J.
, vol.23
, pp. 23-32
-
-
Crevel, I.M.1
-
47
-
-
80053654615
-
Interhead tension determines processivity across diverse N-terminal kinesins
-
Shastry, S. & Hancock, W. O. Interhead tension determines processivity across diverse N-terminal kinesins. Proc. Natl. Acad. Sci. USA 108, 16253-16258 (2011).
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 16253-16258
-
-
Shastry, S.1
Hancock, W.O.2
-
48
-
-
33646950699
-
The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends
-
Helenius, J., Brouhard, G., Kalaidzidis, Y., Diez, S. & Howard, J. The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature 441, 115-119 (2006).
-
(2006)
Nature
, vol.441
, pp. 115-119
-
-
Helenius, J.1
Brouhard, G.2
Kalaidzidis, Y.3
Diez, S.4
Howard, J.5
-
49
-
-
33748136479
-
Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner
-
Varga, V. et al. Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nature Cell Biol. 8, 957-962 (2006).
-
(2006)
Nature Cell Biol.
, vol.8
, pp. 957-962
-
-
Varga, V.1
-
50
-
-
84885866442
-
The molecular basis for kinesin functional specificity during mitosis
-
Welburn, J. P. I. The molecular basis for kinesin functional specificity during mitosis. Cytoskeleton 70, 476-493 (2013)
-
(2013)
Cytoskeleton
, vol.70
, pp. 476-493
-
-
Welburn, J.P.I.1
-
51
-
-
78649957196
-
Mechanisms of centrosome separation and bipolar spindle assembly
-
Tanenbaum, M. E. & Medema, R. H. Mechanisms of centrosome separation and bipolar spindle assembly. Dev. Cell 19, 797-806 (2010).
-
(2010)
Dev. Cell
, vol.19
, pp. 797-806
-
-
Tanenbaum, M.E.1
Medema, R.H.2
-
52
-
-
18344371892
-
The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks
-
Kapitein, L. C. et al. The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature Cell Biol. 435, 114-118 (2005).
-
(2005)
Nature Cell Biol.
, vol.435
, pp. 114-118
-
-
Kapitein, L.C.1
-
53
-
-
0029417238
-
cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo
-
cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83, 1159-1169 (1995).
-
(1995)
Cell
, vol.83
, pp. 1159-1169
-
-
Blangy, A.1
-
54
-
-
0030025443
-
A bipolar kinesin
-
Kashina, A. S. et al. A bipolar kinesin. Nature 379, 270-272 (1996).
-
(1996)
Nature
, vol.379
, pp. 270-272
-
-
Kashina, A.S.1
-
55
-
-
84879168530
-
The bipolar assembly domain of the mitotic motor kinesin-5
-
Acar, S. et al. The bipolar assembly domain of the mitotic motor kinesin-5. Nature commun. 4, 1343 (2013).
-
(2013)
Nature Commun.
, vol.4
, pp. 1343
-
-
Acar, S.1
-
56
-
-
79151475790
-
A nonmotor microtubule binding site in kinesin-5 is required for filament crosslinking and sliding
-
A nonmotor microtubule binding site in kinesin-5 is required for filament crosslinking and sliding. Curr. Biol. 21, 154-160 (2011).
-
(2011)
Curr. Biol.
, vol.21
, pp. 154-160
-
-
Weinger, J.S.1
Qiu, M.2
Yang, G.3
Kapoor, T.M.4
Weinger, J.S.5
Qiu, M.6
Yang, G.7
Kapoor, T.M.8
-
57
-
-
49749107045
-
Microtubule cross-linking triggers the directional motility of kinesin-5
-
Kapitein, L. C. et al. Microtubule cross-linking triggers the directional motility of kinesin-5. J. Cell Biol. 182, 421-428 (2008).
-
(2008)
J. Cell Biol.
, vol.182
, pp. 421-428
-
-
Kapitein, L.C.1
-
58
-
-
33748749372
-
Homotetrameric form of Cin8p, a Saccharomyces cerevisiae kinesin-5 motor, is essential for its in vivo function
-
Hildebrandt, E. R., Gheber, L., Kingsbury, T. & Hoyt, M. A. Homotetrameric form of Cin8p, a Saccharomyces cerevisiae kinesin-5 motor, is essential for its in vivo function. J. Biol. Chem. 281, 26004-26013 (2006).
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 26004-26013
-
-
Hildebrandt, E.R.1
Gheber, L.2
Kingsbury, T.3
Hoyt, M.A.4
-
59
-
-
33747624954
-
Allosteric inhibition of kinesin-5 modulates its processive directional motility
-
Kwok, B. H. et al. Allosteric inhibition of kinesin-5 modulates its processive directional motility. Nature Chem. Biol. 2, 480-485 (2006).
-
(2006)
Nature Chem. Biol.
, vol.2
, pp. 480-485
-
-
Kwok, B.H.1
-
60
-
-
4644254479
-
The rate of bipolar spindle assembly depends on the microtubule-gliding velocity of the mitotic kinesin Eg5
-
Kwok, B. H., Yang, J. G. & Kapoor, T. M. The rate of bipolar spindle assembly depends on the microtubule-gliding velocity of the mitotic kinesin Eg5. Curr. Biol. 14, 1783-1788 (2004).
-
(2004)
Curr. Biol.
, vol.14
, pp. 1783-1788
-
-
Kwok, B.H.1
Yang, J.G.2
Kapoor, T.M.3
-
61
-
-
79953285218
-
Directional switching of the kinesin cin8 through motor coupling
-
Roostalu, J. et al. Directional switching of the kinesin cin8 through motor coupling. Science 332, 94-99 (2011).
-
(2011)
Science
, vol.332
, pp. 94-99
-
-
Roostalu, J.1
-
62
-
-
84872778541
-
Regulation of bi-directional movement of single kinesin-5 Cin8 molecules
-
Thiede, C., Fridman, V., Gerson-Gurwitz, A., Gheber, L. & Schmidt, C. F. Regulation of bi-directional movement of single kinesin-5 Cin8 molecules. Bioarchitecture 2, 70-74 (2012).
-
(2012)
Bioarchitecture
, vol.2
, pp. 70-74
-
-
Thiede, C.1
Fridman, V.2
Gerson-Gurwitz, A.3
Gheber, L.4
Schmidt, C.F.5
-
63
-
-
84885447610
-
Kinesin-5 Kip1 is a bi-directional motor that stabilizes microtubules and tracks their plus-ends in vivo
-
Fridman, V. et al. Kinesin-5 Kip1 is a bi-directional motor that stabilizes microtubules and tracks their plus-ends in vivo. J. Cell Sci. 126, 4147-4159 (2013).
-
(2013)
J. Cell Sci.
, vol.126
, pp. 4147-4159
-
-
Fridman, V.1
-
64
-
-
33744987629
-
Individual dimers of the mitotic kinesin motor Eg5 step processively and support substantial loads in vitro
-
Valentine, M. T., Fordyce, P. M., Krzysiak, T. C., Gilbert, S. P. & Block, S. M. Individual dimers of the mitotic kinesin motor Eg5 step processively and support substantial loads in vitro. Nature Cell Biol. 8, 470-476 (2006).
-
(2006)
Nature Cell Biol.
, vol.8
, pp. 470-476
-
-
Valentine, M.T.1
Fordyce, P.M.2
Krzysiak, T.C.3
Gilbert, S.P.4
Block, S.M.5
-
65
-
-
70350011897
-
Force and premature binding of ADP can regulate the processivity of individual Eg5 dimers
-
Valentine, M. T. & Block, S. M. Force and premature binding of ADP can regulate the processivity of individual Eg5 dimers. Biophys. J. 97, 1671-1677 (2009).
-
(2009)
Biophys. J.
, vol.97
, pp. 1671-1677
-
-
Valentine, M.T.1
Block, S.M.2
-
66
-
-
34347375813
-
Load-dependent release limits the processive stepping of the tetrameric Eg5 motor
-
Korneev, M. J., Lakämper, S. & Schmidt, C. F. Load-dependent release limits the processive stepping of the tetrameric Eg5 motor. Eur. Biophys. J. 36, 675-681 (2007).
-
(2007)
Eur. Biophys. J.
, vol.36
, pp. 675-681
-
-
Korneev, M.J.1
Lakämper, S.2
Schmidt, C.F.3
-
67
-
-
70350136402
-
Walking, hopping, diffusing and braking modes of kinesin-5
-
Kaseda, K., McAinsh, A. D. & Cross, R. A. Walking, hopping, diffusing and braking modes of kinesin-5. Biochem. Soc. Trans. 37, 1045-1049 (2009).
-
(2009)
Biochem. Soc. Trans.
, vol.37
, pp. 1045-1049
-
-
Kaseda, K.1
McAinsh, A.D.2
Cross, R.A.3
-
68
-
-
38349183016
-
Getting in sync with dimeric Eg5: Initiation and regulation of the processive run
-
Krzysiak, T., Grabe, M. & Gilbert, S. Getting in sync with dimeric Eg5: Initiation and regulation of the processive run. J. Biol. Chem. 283, 2078-2087 (2007).
-
(2007)
J. Biol. Chem.
, vol.283
, pp. 2078-2087
-
-
Krzysiak, T.1
Grabe, M.2
Gilbert, S.3
-
69
-
-
48649105576
-
Single-headed mode of kinesin-5
-
Kaseda, K., Crevel, I., Hirose, K. & Cross, R. A. Single-headed mode of kinesin-5. EMBO Rep. 9, 761-765 (2008).
-
(2008)
EMBO Rep.
, vol.9
, pp. 761-765
-
-
Kaseda, K.1
Crevel, I.2
Hirose, K.3
Cross, R.A.4
-
70
-
-
0024369644
-
Polewards microtubule flux in the mitotic spindle: Evidence from photoactivation of fluorescence
-
Mitchison, T. J. Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J. Cell Biol. 109, 637-652 (1989).
-
(1989)
J. Cell Biol.
, vol.109
, pp. 637-652
-
-
Mitchison, T.J.1
-
71
-
-
38949132114
-
Mechanisms of mitotic spindle assembly and function
-
Walczak, C. E. & Heald, R. Mechanisms of mitotic spindle assembly and function. Int. Rev. Cytol. 265, 111-158 (2008).
-
(2008)
Int. Rev. Cytol.
, vol.265
, pp. 111-158
-
-
Walczak, C.E.1
Heald, R.2
-
72
-
-
2042544799
-
Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly
-
Rosenblatt, J., Cramer, L. P., Baum, B. & McGee, K. M. Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly. Cell 117, 361-372 (2004).
-
(2004)
Cell
, vol.117
, pp. 361-372
-
-
Rosenblatt, J.1
Cramer, L.P.2
Baum, B.3
McGee, K.M.4
-
73
-
-
62849098748
-
Kinetochore-generated pushing forces separate centrosomes during bipolar spindle assembly
-
Toso, A. et al. Kinetochore-generated pushing forces separate centrosomes during bipolar spindle assembly. J. Cell Biol. 184, 365-372 (2009).
-
(2009)
J. Cell Biol.
, vol.184
, pp. 365-372
-
-
Toso, A.1
-
74
-
-
0031696367
-
Expanding the role of HsEg5 within the mitotic and post-mitotic phases of the cell cycle
-
Whitehead, C. M. & Rattner, J. B. Expanding the role of HsEg5 within the mitotic and post-mitotic phases of the cell cycle. J. Cell Sci. 111, 2551-2561 (1998).
-
(1998)
J. Cell Sci.
, vol.111
, pp. 2551-2561
-
-
Whitehead, C.M.1
Rattner, J.B.2
-
75
-
-
84880703330
-
Kinesin-12 differentially affects spindle assembly depending on its microtubule substrate
-
Sturgill, E. G. & Ohi, R. Kinesin-12 differentially affects spindle assembly depending on its microtubule substrate. Curr. Biol. 23, 1280-1290 (2013).
-
(2013)
Curr. Biol.
, vol.23
, pp. 1280-1290
-
-
Sturgill, E.G.1
Ohi, R.2
-
76
-
-
70350575316
-
Kif15 cooperates with eg5 to promote bipolar spindle assembly
-
Tanenbaum, M. E. et al. Kif15 cooperates with eg5 to promote bipolar spindle assembly. Curr. Biol. 19, 1703-1711 (2009).
-
(2009)
Curr. Biol.
, vol.19
, pp. 1703-1711
-
-
Tanenbaum, M.E.1
-
77
-
-
0030070110
-
Xklp2 a novel Xenopus centrosomal kinesin-like protein required for centrosome separation during mitosis
-
Boleti, H., Karsenti, E. & Vernos, I. Xklp2, a novel Xenopus centrosomal kinesin-like protein required for centrosome separation during mitosis. Cell 84, 49-59 (1996).
-
(1996)
Cell
, vol.84
, pp. 49-59
-
-
Boleti, H.1
Karsenti, E.2
Vernos, I.3
-
78
-
-
84892416734
-
The crystal structure and biochemical characterization of Kif15: A bifunctional molecular motor involved in bipolar spindle formation and neuronal development
-
Klejnot, M. et al. The crystal structure and biochemical characterization of Kif15: a bifunctional molecular motor involved in bipolar spindle formation and neuronal development. Acta Crystallogr. D Biol. Crystallogr. 70, 123-133 (2014).
-
(2014)
Acta Crystallogr. D Biol. Crystallogr.
, vol.70
, pp. 123-133
-
-
Klejnot, M.1
-
79
-
-
84891519583
-
Nonautonomous movement of chromosomes in mitosis
-
Vladimirou, E. et al. Nonautonomous movement of chromosomes in mitosis. Dev. Cell 27, 60-71 (2013).
-
(2013)
Dev. Cell
, vol.27
, pp. 60-71
-
-
Vladimirou, E.1
-
80
-
-
0032702315
-
The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle
-
Mountain, V. et al. The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle. J. Cell Biol. 147, 351-366 (1999).
-
(1999)
J. Cell Biol.
, vol.147
, pp. 351-366
-
-
Mountain, V.1
-
81
-
-
70350575315
-
The role of Hklp2 in the stabilization and maintenance of spindle bipolarity
-
Vanneste, D., Takagi, M., Imamoto, N. & Vernos, I. The role of Hklp2 in the stabilization and maintenance of spindle bipolarity. Curr. Biol. 19, 1712-1717 (2009).
-
(2009)
Curr. Biol.
, vol.19
, pp. 1712-1717
-
-
Vanneste, D.1
Takagi, M.2
Imamoto, N.3
Vernos, I.4
-
82
-
-
32844474892
-
A lever-arm rotation drives motility of the minus-end-directed kinesin Ncd
-
Endres, N. F., Yoshioka, C., Milligan, R. A. & Vale, R. D. A lever-arm rotation drives motility of the minus-end-directed kinesin Ncd. Nature 439, 875-878 (2006).
-
(2006)
Nature
, vol.439
, pp. 875-878
-
-
Endres, N.F.1
Yoshioka, C.2
Milligan, R.A.3
Vale, R.D.4
-
83
-
-
78650199886
-
Bidirectional power stroke by ncd kinesin
-
Butterfield, A. E., Stewart, R. J., Schmidt, C. F. & Skliar, M. Bidirectional power stroke by ncd kinesin. Biophys. J. 99, 3905-3915 (2010).
-
(2010)
Biophys. J.
, vol.99
, pp. 3905-3915
-
-
Butterfield, A.E.1
Stewart, R.J.2
Schmidt, C.F.3
Skliar, M.4
-
84
-
-
0033614443
-
The Ncd tail domain promotes microtubule assembly and stability
-
Karabay, A. & Walker, R. A. The Ncd tail domain promotes microtubule assembly and stability. Biochem. Biophys. Res. Commun. 258, 39-43 (1999).
-
(1999)
Biochem. Biophys. Res. Commun.
, vol.258
, pp. 39-43
-
-
Karabay, A.1
Walker, R.A.2
-
85
-
-
67349108713
-
The kinesin-14 Klp2 organizes microtubules into parallel bundles by an ATP-dependent sorting mechanism
-
Braun, M., Drummond, D. R., Cross, R. A. & McAinsh, A. D. The kinesin-14 Klp2 organizes microtubules into parallel bundles by an ATP-dependent sorting mechanism. Nature Cell Biol. 11, 724-730 (2009).
-
(2009)
Nature Cell Biol.
, vol.11
, pp. 724-730
-
-
Braun, M.1
Drummond, D.R.2
Cross, R.A.3
McAinsh, A.D.4
-
86
-
-
80053567158
-
Adaptive braking by Ase1 prevents overlapping microtubules from sliding completely apart
-
Braun, M. et al. Adaptive braking by Ase1 prevents overlapping microtubules from sliding completely apart. Nature Cell Biol. 13, 1259-1264 (2011).
-
(2011)
Nature Cell Biol.
, vol.13
, pp. 1259-1264
-
-
Braun, M.1
-
87
-
-
67349203203
-
The mitotic kinesin-14 Ncd drives directional microtubule-microtubule sliding
-
Fink, G. et al. The mitotic kinesin-14 Ncd drives directional microtubule-microtubule sliding. Nature Cell Biol. 11, 717-723 (2009).
-
(2009)
Nature Cell Biol.
, vol.11
, pp. 717-723
-
-
Fink, G.1
-
88
-
-
77951836629
-
Microtubule organization by the antagonistic mitotic motors kinesin-5 and kinesin-14
-
Hentrich, C. & Surrey, T. Microtubule organization by the antagonistic mitotic motors kinesin-5 and kinesin-14. J. Cell Biol. 189, 465-480 (2010).
-
(2010)
J. Cell Biol.
, vol.189
, pp. 465-480
-
-
Hentrich, C.1
Surrey, T.2
-
89
-
-
0034618565
-
Microtubule motors in mitosis
-
Scholey, J. M., Sharp, D. J. & Rogers, G. C. Microtubule motors in mitosis. Nature 407, 41-47 (2000).
-
(2000)
Nature
, vol.407
, pp. 41-47
-
-
Scholey, J.M.1
Sharp, D.J.2
Rogers, G.C.3
-
90
-
-
0031809137
-
Focusing on spindle poles
-
Compton, D. A. Focusing on spindle poles. J. Cell Sci. 111, 1477-1481 (1998).
-
(1998)
J. Cell Sci.
, vol.111
, pp. 1477-1481
-
-
Compton, D.A.1
-
91
-
-
23244462047
-
Cik1 targets the minus-end kinesin depolymerase kar3 to microtubule plus ends
-
Sproul, L. R., Anderson, D. J., Mackey, A. T., Saunders, W. S. & Gilbert, S. P. Cik1 targets the minus-end kinesin depolymerase kar3 to microtubule plus ends. Curr. Biol. 15, 1420-1427 (2005).
-
(2005)
Curr. Biol.
, vol.15
, pp. 1420-1427
-
-
Sproul, L.R.1
Anderson, D.J.2
Mackey, A.T.3
Saunders, W.S.4
Gilbert, S.P.5
-
92
-
-
0035975698
-
NCD activation of tubulin polymerization
-
Highsmith, S., Thoene, M., Sablin, E. & Polosukhina, K. NCD activation of tubulin polymerization. Biophys. Chem. 92, 127-139 (2001).
-
(2001)
Biophys. Chem.
, vol.92
, pp. 127-139
-
-
Highsmith, S.1
Thoene, M.2
Sablin, E.3
Polosukhina, K.4
-
93
-
-
33947208624
-
Vik1 modulates microtubule-Kar3 interactions through a motor domain that lacks an active site
-
Allingham, J. S., Sproul, L. R., Rayment, I. & Gilbert, S. P. Vik1 modulates microtubule-Kar3 interactions through a motor domain that lacks an active site. Cell 128, 1161-1172 (2007).
-
(2007)
Cell
, vol.128
, pp. 1161-1172
-
-
Allingham, J.S.1
Sproul, L.R.2
Rayment, I.3
Gilbert, S.P.4
-
94
-
-
84891427785
-
Kar3Vik1 mechanochemistry is inhibited by mutation or deletion of the c terminus of the vik1 subunit
-
Joshi, M. et al. Kar3Vik1 mechanochemistry is inhibited by mutation or deletion of the c terminus of the vik1 subunit. J. Biol. Chem. 288, 36957-36970 (2013).
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 36957-36970
-
-
Joshi, M.1
-
95
-
-
77954068979
-
Finding the middle ground: How kinetochores power chromosome congression
-
Kops, G. J. P. L., Saurin, A. T. & Meraldi, P. Finding the middle ground: how kinetochores power chromosome congression. Cell. Mol. Life Sci. 67, 2145-2161 (2010).
-
(2010)
Cell. Mol. Life Sci.
, vol.67
, pp. 2145-2161
-
-
Kops, G.J.P.L.1
Saurin, A.T.2
Meraldi, P.3
-
96
-
-
34249699586
-
Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint
-
Yang, Z., Tulu, U. S., Wadsworth, P. & Rieder, C. L. Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint. Curr. Biol. 17, 973-980 (2007).
-
(2007)
Curr. Biol.
, vol.17
, pp. 973-980
-
-
Yang, Z.1
Tulu, U.S.2
Wadsworth, P.3
Rieder, C.L.4
-
97
-
-
31144471300
-
Chromosomes can congress to the metaphase plate before biorientation
-
Kapoor, T. M. et al. Chromosomes can congress to the metaphase plate before biorientation. Science 311, 388-391 (2006)
-
(2006)
Science
, vol.311
, pp. 388-391
-
-
Kapoor, T.M.1
-
98
-
-
0030665077
-
CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment
-
Wood, K. W., Sakowicz, R., Goldstein, L. S. & Cleveland, D. W. CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell 91, 357-366 (1997).
-
(1997)
Cell
, vol.91
, pp. 357-366
-
-
Wood, K.W.1
Sakowicz, R.2
Goldstein, L.S.3
Cleveland, D.W.4
-
99
-
-
0031468113
-
CENP-E function at kinetochores is essential for chromosome alignment
-
Schaar, B. T., Chan, G. K., Maddox, P., Salmon, E. D. & Yen, T. J. CENP-E function at kinetochores is essential for chromosome alignment. J. Cell Biol. 139, 1373-1382 (1997).
-
(1997)
J. Cell Biol.
, vol.139
, pp. 1373-1382
-
-
Schaar, B.T.1
Chan, G.K.2
Maddox, P.3
Salmon, E.D.4
Yen, T.J.5
-
100
-
-
43149115167
-
The mitotic kinesin CENP-E is a processive transport motor
-
Yardimci, H., van Duffelen, M., Mao, Y., Rosenfeld, S. S. & Selvin, P. R. The mitotic kinesin CENP-E is a processive transport motor. Proc. Natl. Acad. Sci. USA 105, 6016-6021 (2008).
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 6016-6021
-
-
Yardimci, H.1
Van Duffelen, M.2
Mao, Y.3
Rosenfeld, S.S.4
Selvin, P.R.5
-
101
-
-
84864087676
-
Microtubule capture by mitotic kinesin centromere protein e (cenp-e)
-
Sardar, H. S. & Gilbert, S. P. Microtubule capture by mitotic kinesin centromere protein e (cenp-e). J. Biol. Chem. 287, 24894-24904 (2012).
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 24894-24904
-
-
Sardar, H.S.1
Gilbert, S.P.2
-
102
-
-
70450248418
-
The ATPase cycle of the mitotic motor CENP-E
-
Rosenfeld, S. S. et al. The ATPase cycle of the mitotic motor CENP-E. J. Biol. Chem. 284, 32858-32868 (2009).
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 32858-32868
-
-
Rosenfeld, S.S.1
-
103
-
-
67650087879
-
Chromosome congression in the absence of kinetochore fibres
-
Cai, S., O'Connell, C. B., Khodjakov, A. & Walczak, C. E. Chromosome congression in the absence of kinetochore fibres. Nature Cell Biol. 11, 832-838 (2009).
-
(2009)
Nature Cell Biol.
, vol.11
, pp. 832-838
-
-
Cai, S.1
O'Connell, C.B.2
Khodjakov, A.3
Walczak, C.E.4
-
104
-
-
84881433739
-
The multiple talents of kinesin-8
-
Roostalu, J. & Surrey, T. The multiple talents of kinesin-8. Nature Cell Biol. 15, 889-891 (2013).
-
(2013)
Nature Cell Biol.
, vol.15
, pp. 889-891
-
-
Roostalu, J.1
Surrey, T.2
-
105
-
-
84881430806
-
Microtubule-sliding activity of a kinesin-8 promotes spindle assembly and spindle-length control
-
Su, X. et al. Microtubule-sliding activity of a kinesin-8 promotes spindle assembly and spindle-length control. Nature Cell Biol. 15, 948-957 (2013).
-
(2013)
Nature Cell Biol.
, vol.15
, pp. 948-957
-
-
Su, X.1
-
106
-
-
33947111858
-
The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression
-
Mayr, M. I. et al. The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Curr. Biol. 17, 488-498 (2007).
-
(2007)
Curr. Biol.
, vol.17
, pp. 488-498
-
-
Mayr, M.I.1
-
107
-
-
80052033722
-
A complex of Kif18b and MCAK promotes microtubule depolymerization and is negatively regulated by Aurora kinases
-
Tanenbaum, M. E. et al. A complex of Kif18b and MCAK promotes microtubule depolymerization and is negatively regulated by Aurora kinases. Curr. Biol. 21, 1356-1365 (2011).
-
(2011)
Curr. Biol.
, vol.21
, pp. 1356-1365
-
-
Tanenbaum, M.E.1
-
108
-
-
80052210135
-
Kif18B interacts with EB1 and controls astral microtubule length during mitosis
-
Stout, J. R. J. et al. Kif18B interacts with EB1 and controls astral microtubule length during mitosis. Mol. Biol. Cell 22, 3070-3080 (2011).
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 3070-3080
-
-
Stout, J.R.J.1
-
109
-
-
33748158378
-
Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle
-
Gupta, M. L., Carvalho, P., Roof, D. M. & Pellman, D. Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle. Nature Cell Biol. 8, 913-923 (2006).
-
(2006)
Nature Cell Biol.
, vol.8
, pp. 913-923
-
-
Gupta, M.L.1
Carvalho, P.2
Roof, D.M.3
Pellman, D.4
-
110
-
-
84867890758
-
Move in for the kill: Motile microtubule regulators
-
Su, X., Ohi, R. & Pellman, D. Move in for the kill: motile microtubule regulators. Trends Cell Biol. 22, 567-575 (2012).
-
(2012)
Trends Cell Biol.
, vol.22
, pp. 567-575
-
-
Su, X.1
Ohi, R.2
Pellman, D.3
-
111
-
-
76749091008
-
The kinesin-8 Kif18A dampens microtubule plus-end dynamics
-
Du, Y., English, C. A. & Ohi, R. The kinesin-8 Kif18A dampens microtubule plus-end dynamics. Curr. Biol. 20, 374-380 (2010).
-
(2010)
Curr. Biol.
, vol.20
, pp. 374-380
-
-
Du, Y.1
English, C.A.2
Ohi, R.3
-
112
-
-
84860893886
-
Kif18A and chromokinesins confine centromere movements via microtubule growth suppression and spatial control of kinetochore tension
-
Stumpff, J., Wagenbach, M., Franck, A., Asbury, C. L. & Wordeman, L. Kif18A and chromokinesins confine centromere movements via microtubule growth suppression and spatial control of kinetochore tension. Dev. Cell 22, 1017-1029 (2012).
-
(2012)
Dev. Cell
, vol.22
, pp. 1017-1029
-
-
Stumpff, J.1
Wagenbach, M.2
Franck, A.3
Asbury, C.L.4
Wordeman, L.5
-
113
-
-
77958487248
-
Insight into the molecular mechanism of the multitasking kinesin-8 motor
-
Peters, C. et al. Insight into the molecular mechanism of the multitasking kinesin-8 motor. EMBO J. 29, 3437-3447 (2010).
-
(2010)
EMBO J.
, vol.29
, pp. 3437-3447
-
-
Peters, C.1
-
114
-
-
38849201167
-
The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment
-
Stumpff, J., von Dassow, G., Wagenbach, M., Asbury, C. & Wordeman, L. The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Dev. Cell 14, 252-262 (2008).
-
(2008)
Dev. Cell
, vol.14
, pp. 252-262
-
-
Stumpff, J.1
Von Dassow, G.2
Wagenbach, M.3
Asbury, C.4
Wordeman, L.5
-
115
-
-
77949357585
-
Kinetochore alignment within the metaphase plate is regulated by centromere stiffness and microtubule depolymerases
-
Jaqaman, K. et al. Kinetochore alignment within the metaphase plate is regulated by centromere stiffness and microtubule depolymerases. J. Cell Biol. 188, 665-679 (2010).
-
(2010)
J. Cell Biol.
, vol.188
, pp. 665-679
-
-
Jaqaman, K.1
-
116
-
-
84878886853
-
Kinesin-8 is a low-force motor protein with a weakly bound slip state
-
Jannasch, A., Bormuth, V., Storch, M., Howard, J. & Schäffer, E. Kinesin-8 is a low-force motor protein with a weakly bound slip state. Biophys. J. 104, 2456-2464 (2013)
-
(2013)
Biophys. J.
, vol.104
, pp. 2456-2464
-
-
Jannasch, A.1
Bormuth, V.2
Storch, M.3
Howard, J.4
Schäffer, E.5
-
117
-
-
84863451332
-
The highly processive kinesin-8, Kip3, switches microtubule protofilaments with a bias toward the left
-
Bormuth, V. V. et al. The highly processive kinesin-8, Kip3, switches microtubule protofilaments with a bias toward the left. Biophys. J. 103, L4-L6 (2012).
-
(2012)
Biophys. J.
, vol.103
-
-
Bormuth, V.V.1
-
118
-
-
84859933274
-
Molecular crowding creates traffic jams of kinesin motors on microtubules
-
Leduc, C. C. et al. Molecular crowding creates traffic jams of kinesin motors on microtubules. Proc. Natl. Acad. Sci. USA 109, 6100-6105 (2012).
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 6100-6105
-
-
Leduc, C.C.1
-
119
-
-
80052209594
-
Kif18A uses a microtubule binding site in the tail for plus-end localization and spindle length regulation
-
Weaver, L. N. et al. Kif18A uses a microtubule binding site in the tail for plus-end localization and spindle length regulation. Curr. Biol. 21, 1500-1506 (2011).
-
(2011)
Curr. Biol.
, vol.21
, pp. 1500-1506
-
-
Weaver, L.N.1
-
120
-
-
80052230972
-
A tethering mechanism controls the processivity and kinetochore- microtubule plus-end enrichment of the kinesin-8 Kif18A
-
Stumpff, J. et al. A tethering mechanism controls the processivity and kinetochore-microtubule plus-end enrichment of the kinesin-8 Kif18A. Mol. Cell 43, 764-775 (2011).
-
(2011)
Mol. Cell
, vol.43
, pp. 764-775
-
-
Stumpff, J.1
-
121
-
-
0029836707
-
The kinetochore microtubule minus-end disassembly associated with poleward flux produces a force that can do work
-
Waters, J. C., Mitchison, T. J., Rieder, C. L. & Salmon, E. D. The kinetochore microtubule minus-end disassembly associated with poleward flux produces a force that can do work. Mol. Biol. Cell 7, 1547-1558 (1996).
-
(1996)
Mol. Biol. Cell
, vol.7
, pp. 1547-1558
-
-
Waters, J.C.1
Mitchison, T.J.2
Rieder, C.L.3
Salmon, E.D.4
-
122
-
-
27144451193
-
Efficient mitosis in human cells lacking poleward microtubule flux
-
Ganem, N. J., Upton, K. & Compton, D. A. Efficient mitosis in human cells lacking poleward microtubule flux. Curr. Biol. 15, 1827-1832 (2005).
-
(2005)
Curr. Biol.
, vol.15
, pp. 1827-1832
-
-
Ganem, N.J.1
Upton, K.2
Compton, D.A.3
-
123
-
-
0031873388
-
Mitotic centromere-associated kinesin is important for anaphase chromosome segregation
-
Maney, T., Hunter, A. W., Wagenbach, M. & Wordeman, L. Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J. Cell Biol. 142, 787-801 (1998).
-
(1998)
J. Cell Biol.
, vol.142
, pp. 787-801
-
-
Maney, T.1
Hunter, A.W.2
Wagenbach, M.3
Wordeman, L.4
-
124
-
-
36849029848
-
MCAK facilitates chromosome movement by promoting kinetochore microtubule turnover
-
Wordeman, L., Wagenbach, M. & von Dassow, G. MCAK facilitates chromosome movement by promoting kinetochore microtubule turnover. J. Cell Biol. 179, 869-879 (2007).
-
(2007)
J. Cell Biol.
, vol.179
, pp. 869-879
-
-
Wordeman, L.1
Wagenbach, M.2
Von Dassow, G.3
-
125
-
-
58149334818
-
Genome stability is ensured by temporal control of kinetochore- microtubule dynamics
-
Bakhoum, S. F., Thompson, S. L., Manning, A. L. & Compton, D. A. Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nature Cell Biol. 11, 27-35 (2009).
-
(2009)
Nature Cell Biol.
, vol.11
, pp. 27-35
-
-
Bakhoum, S.F.1
Thompson, S.L.2
Manning, A.L.3
Compton, D.A.4
-
126
-
-
79960004101
-
The bidirectional depolymerizer MCAK generates force by disassembling both microtubule ends
-
Oguchi, Y., Uchimura, S., Ohki, T., Mikhailenko, S. V. & Ishiwata, S. The bidirectional depolymerizer MCAK generates force by disassembling both microtubule ends. Nature Cell Biol. 13, 846-852 (2011).
-
(2011)
Nature Cell Biol.
, vol.13
, pp. 846-852
-
-
Oguchi, Y.1
Uchimura, S.2
Ohki, T.3
Mikhailenko, S.V.4
Ishiwata, S.5
-
127
-
-
79959933358
-
Multi-talented MCAK: Microtubule depolymerizer with a strong grip
-
Diez, S. Multi-talented MCAK: microtubule depolymerizer with a strong grip. Nature Cell Biol. 13, 738-740 (2011).
-
(2011)
Nature Cell Biol.
, vol.13
, pp. 738-740
-
-
Diez, S.1
-
128
-
-
84883660746
-
Kinetochore kinesin CENP-E is a processive bi-directional tracker of dynamic microtubule tips
-
Gudimchuk, N. et al. Kinetochore kinesin CENP-E is a processive bi-directional tracker of dynamic microtubule tips. Nature Cell Biol. 15, 1079-1088 (2013).
-
(2013)
Nature Cell Biol.
, vol.15
, pp. 1079-1088
-
-
Gudimchuk, N.1
-
129
-
-
77957231776
-
Mitotic kinesin CENP-E promotes microtubule plus-end elongation
-
Sardar, H. S., Luczak, V. G., Lopez, M. M., Lister, B. C. & Gilbert, S. P. Mitotic kinesin CENP-E promotes microtubule plus-end elongation. Curr. Biol. 20, 1648-1653 (2010).
-
(2010)
Curr. Biol.
, vol.20
, pp. 1648-1653
-
-
Sardar, H.S.1
Luczak, V.G.2
Lopez, M.M.3
Lister, B.C.4
Gilbert, S.P.5
-
130
-
-
0022452232
-
Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle
-
Rieder, C. L., Davison, E. A., Jensen, L. C., Cassimeris, L. & Salmon, E. D. Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle. J. Cell Biol. 103, 581-591 (1986).
-
(1986)
J. Cell Biol.
, vol.103
, pp. 581-591
-
-
Rieder, C.L.1
Davison, E.A.2
Jensen, L.C.3
Cassimeris, L.4
Salmon, E.D.5
-
131
-
-
80053358568
-
Localization-dependent functions and regulation during cell division
-
Vanneste, D., Ferreira, V. & Vernos, I. Chromokinesins: localization-dependent functions and regulation during cell division. Biochem. Soc. Trans. 39, 1154-1160 (2011).
-
(2011)
Biochem. Soc. Trans.
, vol.39
, pp. 1154-1160
-
-
Vanneste, D.1
Ferreira, V.2
Chromokinesins, V.I.3
-
132
-
-
25444505078
-
Microtubule movements on the arms of mitotic chromosomes: Polar ejection forces quantified in vitro
-
Brouhard, G. J. & Hunt, A. J. Microtubule movements on the arms of mitotic chromosomes: polar ejection forces quantified in vitro. Proc. Natl. Acad. Sci. USA 102, 13903-13908 (2005)
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 13903-13908
-
-
Brouhard, G.J.1
Hunt, A.J.2
-
133
-
-
84866362654
-
Human chromokinesins promote chromosome congression and spindle microtubule dynamics during mitosis
-
Wandke, C. et al. Human chromokinesins promote chromosome congression and spindle microtubule dynamics during mitosis. J. Cell Biol. 198, 847-863 (2012).
-
(2012)
J. Cell Biol.
, vol.198
, pp. 847-863
-
-
Wandke, C.1
-
134
-
-
80051985198
-
The spatial arrangement of chromosomes during prometaphase facilitates spindle assembly
-
Magidson, V. et al. The spatial arrangement of chromosomes during prometaphase facilitates spindle assembly. Cell 146, 555-567 (2011).
-
(2011)
Cell
, vol.146
, pp. 555-567
-
-
Magidson, V.1
-
135
-
-
0035904229
-
The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles
-
Levesque, A. A. & Compton, D. A. The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles. J. Cell Biol. 154, 1135-1146 (2001).
-
(2001)
J. Cell Biol.
, vol.154
, pp. 1135-1146
-
-
Levesque, A.A.1
Compton, D.A.2
-
136
-
-
0034682707
-
The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement
-
Funabiki, H. & Murray, A. W. The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement. Cell 102, 411-424 (2000).
-
(2000)
Cell
, vol.102
, pp. 411-424
-
-
Funabiki, H.1
Murray, A.W.2
-
137
-
-
0034682704
-
Xkid, a chromokinesin required for chromosome alignment on the metaphase plate
-
Antonio, C. et al. Xkid, a chromokinesin required for chromosome alignment on the metaphase plate. Cell 102, 425-435 (2000).
-
(2000)
Cell
, vol.102
, pp. 425-435
-
-
Antonio, C.1
-
138
-
-
0037416185
-
The human chromokinesin Kid is a plus end-directed microtubule-based motor
-
Yajima, J. et al. The human chromokinesin Kid is a plus end-directed microtubule-based motor. EMBO J. 22, 1067-1074 (2003).
-
(2003)
EMBO J.
, vol.22
, pp. 1067-1074
-
-
Yajima, J.1
-
139
-
-
84873046642
-
Elevated polar ejection forces stabilize kinetochore-microtubule attachments
-
Cane, S., Ye, A. A., Luks-Morgan, S. J. & Maresca, T. J. Elevated polar ejection forces stabilize kinetochore-microtubule attachments. J. Cell Biol. 200, 203-218 (2013).
-
(2013)
J. Cell Biol.
, vol.200
, pp. 203-218
-
-
Cane, S.1
Ye, A.A.2
Luks-Morgan, S.J.3
Maresca, T.J.4
-
140
-
-
0026484416
-
Kinesin family in murine central nervous system
-
Aizawa, H. et al. Kinesin family in murine central nervous system. J. Cell Biol. 119, 1287-1296 (1992).
-
(1992)
J. Cell Biol.
, vol.119
, pp. 1287-1296
-
-
Aizawa, H.1
-
141
-
-
0034618611
-
Identification of the human homologue of mouse KIF4, a kinesin superfamily motor protein
-
Oh, S. et al. Identification of the human homologue of mouse KIF4, a kinesin superfamily motor protein. Biochim. Biophys. Acta 1493, 219-224 (2000).
-
(2000)
Biochim. Biophys. Acta
, vol.1493
, pp. 219-224
-
-
Oh, S.1
-
142
-
-
0035893561
-
Human kinesin superfamily member 4 is dominantly localized in the nuclear matrix and is associated with chromosomes during mitosis
-
Lee, Y. M. et al. Human kinesin superfamily member 4 is dominantly localized in the nuclear matrix and is associated with chromosomes during mitosis. Biochem. J. 360, 549-556 (2001).
-
(2001)
Biochem. J.
, vol.360
, pp. 549-556
-
-
Lee, Y.M.1
-
143
-
-
84879154670
-
Mitotic chromosomes are compacted laterally by KIF4 and condensin and axially by topoisomerase IIα
-
Samejima, K. et al. Mitotic chromosomes are compacted laterally by KIF4 and condensin and axially by topoisomerase IIα. J. Cell Biol. 199, 755-770 (2012).
-
(2012)
J. Cell Biol.
, vol.199
, pp. 755-770
-
-
Samejima, K.1
-
144
-
-
0023132671
-
Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends
-
Gorbsky, G. J., Sammak, P. J. & Borisy, G. G. Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends. J. Cell Biol. 104, 9-18 (1987).
-
(1987)
J. Cell Biol.
, vol.104
, pp. 9-18
-
-
Gorbsky, G.J.1
Sammak, P.J.2
Borisy, G.G.3
-
145
-
-
0026722242
-
Poleward kinetochore fiber movement occurs during both metaphase and anaphase-A in newt lung cell mitosis
-
Mitchison, T. J. & Salmon, E. D. Poleward kinetochore fiber movement occurs during both metaphase and anaphase-A in newt lung cell mitosis. J. Cell Biol. 119, 569-582 (1992).
-
(1992)
J. Cell Biol.
, vol.119
, pp. 569-582
-
-
Mitchison, T.J.1
Salmon, E.D.2
-
146
-
-
1642540211
-
Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase
-
Rogers, G. C. et al. Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase. Nature 427, 364-370 (2004)
-
(2004)
Nature
, vol.427
, pp. 364-370
-
-
Rogers, G.C.1
-
147
-
-
84860724358
-
Biophysics of mitosis
-
McIntosh, J. R., Molodtsov, M. I. & Ataullakhanov, F. I. Biophysics of mitosis. Q. Rev. Biophys. 45, 147-207 (2012).
-
(2012)
Q. Rev. Biophys.
, vol.45
, pp. 147-207
-
-
McIntosh, J.R.1
Molodtsov, M.I.2
Ataullakhanov, F.I.3
-
148
-
-
65249190848
-
Kinesin-5-dependent poleward flux and spindle length control in Drosophila embryo mitosis
-
Brust-Mascher, I., Sommi, P., Cheerambathur, D. K. & Scholey, J. M. Kinesin-5-dependent poleward flux and spindle length control in Drosophila embryo mitosis. Mol. Biol. Cell 20, 1749-1762 (2009).
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1749-1762
-
-
Brust-Mascher, I.1
Sommi, P.2
Cheerambathur, D.K.3
Scholey, J.M.4
-
149
-
-
0032476715
-
Time-lapse microscopy reveals unique roles for kinesins during anaphase in budding yeast
-
Straight, A. F., Sedat, J. W. & Murray, A. W. Time-lapse microscopy reveals unique roles for kinesins during anaphase in budding yeast. J. Cell Biol. 143, 687-694 (1998).
-
(1998)
J. Cell Biol.
, vol.143
, pp. 687-694
-
-
Straight, A.F.1
Sedat, J.W.2
Murray, A.W.3
-
150
-
-
34250183789
-
Kinesin-5 acts as a brake in anaphase spindle elongation
-
Saunders, A. M., Powers, J., Strome, S. & Saxton, W. M. Kinesin-5 acts as a brake in anaphase spindle elongation. Curr. Biol. 17, R453-R454 (2007).
-
(2007)
Curr. Biol.
, vol.17
-
-
Saunders, A.M.1
Powers, J.2
Strome, S.3
Saxton, W.M.4
-
151
-
-
58049204447
-
The 3Ms of central spindle assembly: Microtubules, motors and MAPs
-
Glotzer, M. The 3Ms of central spindle assembly: microtubules, motors and MAPs. Nature Rev. Mol. Cell Biol. 10, 9-20 (2009).
-
(2009)
Nature Rev. Mol. Cell Biol.
, vol.10
, pp. 9-20
-
-
Glotzer, M.1
-
152
-
-
0027230133
-
Astral and spindle forces in PtK2 cells during anaphase B: A laser microbeam study
-
Aist, J. R., Liang, H. & Berns, M. W. Astral and spindle forces in PtK2 cells during anaphase B: a laser microbeam study. J. Cell Sci. 104, 1207-1216 (1993).
-
(1993)
J. Cell Sci.
, vol.104
, pp. 1207-1216
-
-
Aist, J.R.1
Liang, H.2
Berns, M.W.3
-
153
-
-
0035252546
-
Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo
-
Grill, S. W., Gonczy, P., Stelzer, E. H. & Hyman, A. A. Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature 409, 630-633 (2001).
-
(2001)
Nature
, vol.409
, pp. 630-633
-
-
Grill, S.W.1
Gonczy, P.2
Stelzer, E.H.3
Hyman, A.A.4
-
154
-
-
84869116731
-
Cytokinesis microtubule organisers at a glance
-
Lee, K. Y., Davies, T. & Mishima, M. Cytokinesis microtubule organisers at a glance. J. Cell Sci. 125, 3495-3500 (2012).
-
(2012)
J. Cell Sci.
, vol.125
, pp. 3495-3500
-
-
Lee, K.Y.1
Davies, T.2
Mishima, M.3
-
155
-
-
71649096399
-
Clustering of centralspindlin is essential for its accumulation to the central spindle and the midbody
-
Hutterer, A., Glotzer, M. & Mishima, M. Clustering of centralspindlin is essential for its accumulation to the central spindle and the midbody. Curr. Biol. 19, 2043-2049 (2009).
-
(2009)
Curr. Biol.
, vol.19
, pp. 2043-2049
-
-
Hutterer, A.1
Glotzer, M.2
Mishima, M.3
-
156
-
-
77953137954
-
Aurora B and 14-3-3 coordinately regulate clustering of centralspindlin during cytokinesis
-
Douglas, M. E., Davies, T., Joseph, N. & Mishima, M. Aurora B and 14-3-3 coordinately regulate clustering of centralspindlin during cytokinesis. Curr. Biol. 20, 927-933 (2010).
-
(2010)
Curr. Biol.
, vol.20
, pp. 927-933
-
-
Douglas, M.E.1
Davies, T.2
Joseph, N.3
Mishima, M.4
-
157
-
-
84861847191
-
ARF6 GTPase protects the post-mitotic midbody from 14-3-3-mediated disintegration
-
Joseph, N., Hutterer, A., Poser, I. & Mishima, M. ARF6 GTPase protects the post-mitotic midbody from 14-3-3-mediated disintegration. EMBO J. 31, 2604-2614 (2012).
-
(2012)
EMBO J.
, vol.31
, pp. 2604-2614
-
-
Joseph, N.1
Hutterer, A.2
Poser, I.3
Mishima, M.4
-
158
-
-
4444346337
-
Essential roles of KIF4 and its binding partner PRC1 in organized central spindle midzone formation
-
Kurasawa, Y., Earnshaw, W. C., Mochizuki, Y., Dohmae, N. & Todokoro, K. Essential roles of KIF4 and its binding partner PRC1 in organized central spindle midzone formation. EMBO J. 23, 3237-3248 (2004).
-
(2004)
EMBO J.
, vol.23
, pp. 3237-3248
-
-
Kurasawa, Y.1
Earnshaw, W.C.2
Mochizuki, Y.3
Dohmae, N.4
Todokoro, K.5
-
159
-
-
77955339199
-
A minimal midzone protein module controls formation and length of antiparallel microtubule overlaps
-
Bieling, P., Telley, I. A. & Surrey, T. A minimal midzone protein module controls formation and length of antiparallel microtubule overlaps. Cell 142, 420-432 (2010).
-
(2010)
Cell
, vol.142
, pp. 420-432
-
-
Bieling, P.1
Telley, I.A.2
Surrey, T.3
-
160
-
-
79957503202
-
KIF4 regulates midzone length during cytokinesis
-
Hu, C. K., Coughlin, M., Field, C. M. & Mitchison, T. J. KIF4 regulates midzone length during cytokinesis. Curr. Biol. 21, 815-824 (2011).
-
(2011)
Curr. Biol.
, vol.21
, pp. 815-824
-
-
Hu, C.K.1
Coughlin, M.2
Field, C.M.3
Mitchison, T.J.4
-
161
-
-
84884249418
-
Aurora B suppresses microtubule dynamics and limits central spindle size by locally activating KIF4A
-
Nunes Bastos, R. et al. Aurora B suppresses microtubule dynamics and limits central spindle size by locally activating KIF4A. J. Cell Biol. 202, 605-621 (2013).
-
(2013)
J. Cell Biol.
, vol.202
, pp. 605-621
-
-
Nunes Bastos, R.1
-
162
-
-
84884221536
-
Aurora B and Kif2A control microtubule length for assembly of a functional central spindle during anaphase
-
Uehara, R. et al. Aurora B and Kif2A control microtubule length for assembly of a functional central spindle during anaphase. J. Cell Biol. 202, 623-636 (2013).
-
(2013)
J. Cell Biol.
, vol.202
, pp. 623-636
-
-
Uehara, R.1
-
163
-
-
79551525710
-
Five challenges to bringing single-molecule force spectroscopy into living cells
-
Dufrene, Y. F. et al. Five challenges to bringing single-molecule force spectroscopy into living cells. Nature Methods 8, 123-127 (2011)
-
(2011)
Nature Methods
, vol.8
, pp. 123-127
-
-
Dufrene, Y.F.1
-
164
-
-
69549120405
-
How do anti-mitotic drugs kill cancer cells?
-
Gascoigne, K. E. & Taylor, S. S. How do anti-mitotic drugs kill cancer cells? J. Cell Sci. 122, 2579-2585 (2009).
-
(2009)
J. Cell Sci.
, vol.122
, pp. 2579-2585
-
-
Gascoigne, K.E.1
Taylor, S.S.2
-
165
-
-
84885954101
-
Mitosis-targeting therapies: A troubleshooting guide
-
Doménech, E. & Malumbres, M. Mitosis-targeting therapies: a troubleshooting guide. Curr. Opin. Pharmacol. 13, 1-10 (2013).
-
(2013)
Curr. Opin. Pharmacol.
, vol.13
, pp. 1-10
-
-
Doménech, E.1
Malumbres, M.2
-
166
-
-
84888297107
-
Design, synthesis, and biological evaluation of an allosteric inhibitor of HSET that targets cancer cells with supernumerary centrosomes
-
Watts, C. A. et al. Design, synthesis, and biological evaluation of an allosteric inhibitor of HSET that targets cancer cells with supernumerary centrosomes. Chem. Biol. 20, 1399-1410 (2013).
-
(2013)
Chem. Biol.
, vol.20
, pp. 1399-1410
-
-
Watts, C.A.1
-
168
-
-
0037457808
-
Interaction of the mitotic inhibitor monastrol with human kinesin Eg5
-
Debonis, S. et al. Interaction of the mitotic inhibitor monastrol with human kinesin Eg5. Biochemistry 42, 338-349 (2003).
-
(2003)
Biochemistry
, vol.42
, pp. 338-349
-
-
Debonis, S.1
-
169
-
-
2642572753
-
Monastrol stabilises an attached low-friction mode of Eg5
-
Crevel, I. M.-T. C., Alonso, M. C. & Cross, R. A. Monastrol stabilises an attached low-friction mode of Eg5. Curr. Biol. 14, R411-R412 (2004).
-
(2004)
Curr. Biol.
, vol.14
-
-
Crevel, I.M.-T.C.1
Alonso, M.C.2
Cross, R.A.3
-
170
-
-
49649127224
-
A novel small-molecule inhibitor reveals a possible role of kinesin-5 in anastral spindle-pole assembly
-
Groen, A. C. et al. A novel small-molecule inhibitor reveals a possible role of kinesin-5 in anastral spindle-pole assembly. J. Cell Sci. 121, 2293-2300 (2008).
-
(2008)
J. Cell Sci.
, vol.121
, pp. 2293-2300
-
-
Groen, A.C.1
-
171
-
-
77950525308
-
Antitumor activity of an allosteric inhibitor of centromere-associated protein-E
-
Wood, K. W. et al. Antitumor activity of an allosteric inhibitor of centromere-associated protein-E. Proc. Natl. Acad. Sci. USA 107, 5839-5844 (2010).
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 5839-5844
-
-
Wood, K.W.1
-
172
-
-
84894633297
-
Kinesin inhibitor marches toward first-in-class pivotal trial
-
Owens, B. Kinesin inhibitor marches toward first-in-class pivotal trial. Nature Med. 19, 1550 (2013).
-
(2013)
Nature Med.
, vol.19
, pp. 1550
-
-
Owens, B.1
-
173
-
-
84880684448
-
Microtubule motors: A new hope for Kinesin-5 inhibitors?
-
Groen, A. Microtubule motors: a new hope for Kinesin-5 inhibitors? Curr. Biol. 23, R617-R618 (2013).
-
(2013)
Curr. Biol.
, vol.23
-
-
Groen, A.1
-
174
-
-
1342296567
-
A common mechanism for microtubule destabilizers-M type kinesins stabilize curling of the protofilament using the class-specific neck and loops
-
Ogawa, T. T., Nitta, R. R., Okada, Y. Y. & Hirokawa, N. A common mechanism for microtubule destabilizers-M type kinesins stabilize curling of the protofilament using the class-specific neck and loops. Cell 116, 591-602 (2004).
-
(2004)
Cell
, vol.116
, pp. 591-602
-
-
Ogawa, T.T.1
Nitta, R.R.2
Okada, Y.Y.3
Hirokawa, N.4
-
175
-
-
77449158973
-
Catalysis of the microtubule on-rate is the major parameter regulating the depolymerase activity of MCAK
-
Cooper, J. R., Wagenbach, M., Asbury, C. L. & Wordeman, L. Catalysis of the microtubule on-rate is the major parameter regulating the depolymerase activity of MCAK. Nature Struc. Mol. Biol. 17, 77-82 (2010).
-
(2010)
Nature Struc. Mol. Biol.
, vol.17
, pp. 77-82
-
-
Cooper, J.R.1
Wagenbach, M.2
Asbury, C.L.3
Wordeman, L.4
-
176
-
-
84860357530
-
Kif2C minimal functional domain has unusual nucleotide binding properties that are adapted to microtubule depolymerization
-
Wang, W. W. et al. Kif2C minimal functional domain has unusual nucleotide binding properties that are adapted to microtubule depolymerization. J. Biol. Chem. 287, 15143-15153 (2012).
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 15143-15153
-
-
Wang, W.W.1
-
177
-
-
65249163575
-
A new model for binding of kinesin 13 to curved microtubule protofilaments
-
Mulder, A. M. et al. A new model for binding of kinesin 13 to curved microtubule protofilaments. J. Cell Biol. 185, 51-57 (2009).
-
(2009)
J. Cell Biol.
, vol.185
, pp. 51-57
-
-
Mulder, A.M.1
-
178
-
-
84875806836
-
Structural model for tubulin recognition and deformation by kinesin-13 microtubule depolymerases
-
Asenjo, A. B. et al. Structural model for tubulin recognition and deformation by kinesin-13 microtubule depolymerases. Cell Rep. 3, 759-768 (2013).
-
(2013)
Cell Rep.
, vol.3
, pp. 759-768
-
-
Asenjo, A.B.1
-
179
-
-
58149203506
-
A kinesin-13 mutant catalytically depolymerizes microtubules in ADP
-
Wagenbach, M., Domnitz, S., Wordeman, L. & Cooper, J. A kinesin-13 mutant catalytically depolymerizes microtubules in ADP. J. Cell Biol. 183, 617-623 (2008).
-
(2008)
J. Cell Biol.
, vol.183
, pp. 617-623
-
-
Wagenbach, M.1
Domnitz, S.2
Wordeman, L.3
Cooper, J.4
-
180
-
-
84881396280
-
Structure of a kinesin-tubulin complex and implications for kinesin motility
-
Gigant, B. et al. Structure of a kinesin-tubulin complex and implications for kinesin motility. Nature Struc. Mol. Biol. 20, 1001-1008 (2013).
-
(2013)
Nature Struc. Mol. Biol.
, vol.20
, pp. 1001-1008
-
-
Gigant, B.1
-
181
-
-
34147188510
-
An ATP gate controls tubulin binding by the tethered head of kinesin-1
-
Alonso, M. C. et al. An ATP gate controls tubulin binding by the tethered head of kinesin-1. Science 316, 120-123 (2007).
-
(2007)
Science
, vol.316
, pp. 120-123
-
-
Alonso, M.C.1
-
182
-
-
27944435774
-
Kinetochore fiber formation in animal somatic cells: Dueling mechanisms come to a draw
-
Rieder, C.L. Kinetochore fiber formation in animal somatic cells: dueling mechanisms come to a draw. Chromosoma 114, 310-318 (2005).
-
(2005)
Chromosoma
, vol.114
, pp. 310-318
-
-
Rieder, C.L.1
-
183
-
-
0028786819
-
Kinetochore microtubule dynamics and the metaphase-anaphase transition
-
Zhai, Y., Kronebusch, P. J. & Borisy, G. G. Kinetochore microtubule dynamics and the metaphase-anaphase transition. J. Cell Biol. 131, 721-734 (1995).
-
(1995)
J. Cell Biol.
, vol.131
, pp. 721-734
-
-
Zhai, Y.1
Kronebusch, P.J.2
Borisy, G.G.3
|