메뉴 건너뛰기




Volumn 15, Issue 4, 2014, Pages 257-271

Prime movers: The mechanochemistry of mitotic kinesins

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE TRIPHOSPHATASE; ADENOSINE TRIPHOSPHATE; ANTINEOPLASTIC AGENT; GSK 923295; GUANINE NUCLEOTIDE BINDING PROTEIN; KINESIN; KINESIN 10; KINESIN 12; KINESIN 13; KINESIN 14; KINESIN 4; KINESIN 5; KINESIN 6; KINESIN 7; KINESIN 8; MOLECULAR MOTOR; MONASTROL; MYOSIN; TAXANE DERIVATIVE; UNCLASSIFIED DRUG;

EID: 84896990026     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm3768     Document Type: Review
Times cited : (157)

References (183)
  • 1
    • 0028787230 scopus 로고
    • Force generation by microtubule assembly/disassembly in mitosis and related movements
    • Inoué, S. & Salmon, E. D. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol. Biol. Cell 6, 1619-1640 (1995).
    • (1995) Mol. Biol. Cell , vol.6 , pp. 1619-1640
    • Inoué, S.1    Salmon, E.D.2
  • 2
    • 0342903325 scopus 로고    scopus 로고
    • Physical properties determining self-organization of motors and microtubules
    • Surrey, T., Nedelec, F., Leibler, S. & Karsenti, E. Physical properties determining self-organization of motors and microtubules. Science 292, 1167-1171 (2001).
    • (2001) Science , vol.292 , pp. 1167-1171
    • Surrey, T.1    Nedelec, F.2    Leibler, S.3    Karsenti, E.4
  • 3
    • 39749192575 scopus 로고    scopus 로고
    • Self-organization in cell biology: A brief history
    • Karsenti, E. Self-organization in cell biology: a brief history. Nature Rev. Mol. Cell Biol. 9, 255-262 (2008).
    • (2008) Nature Rev. Mol. Cell Biol. , vol.9 , pp. 255-262
    • Karsenti, E.1
  • 4
    • 60349102244 scopus 로고    scopus 로고
    • Spindle fusion requires dynein-mediated sliding of oppositely oriented microtubules
    • Gatlin, J. C. et al. Spindle fusion requires dynein-mediated sliding of oppositely oriented microtubules. Curr. Biol. 19, 10-10 (2009).
    • (2009) Curr. Biol. , vol.19 , pp. 10-10
    • Gatlin, J.C.1
  • 5
    • 0027181271 scopus 로고
    • Loss of function of Saccharomyces cerevisiae kinesin-related CIN8 and KIP1 is suppressed by KAR3 motor domain mutations
    • Hoyt, M. A., He, L., Totis, L. & Saunders, W. S. Loss of function of Saccharomyces cerevisiae kinesin-related CIN8 and KIP1 is suppressed by KAR3 motor domain mutations. Genetics 135, 35-44 (1993).
    • (1993) Genetics , vol.135 , pp. 35-44
    • Hoyt, M.A.1    He, L.2    Totis, L.3    Saunders, W.S.4
  • 6
    • 0030974461 scopus 로고    scopus 로고
    • Mitotic spindle function in Saccharomyces cerevisiae requires a balance between different types of kinesin-related motors
    • Saunders, W., Lengyel, V. & Hoyt, M. A. Mitotic spindle function in Saccharomyces cerevisiae requires a balance between different types of kinesin-related motors. Mol. Biol. Cell 8, 1025-1033 (1997).
    • (1997) Mol. Biol. Cell , vol.8 , pp. 1025-1033
    • Saunders, W.1    Lengyel, V.2    Hoyt, M.A.3
  • 7
    • 69949145598 scopus 로고    scopus 로고
    • Force and length in the mitotic spindle
    • Dumont, S. & Mitchison, T. J. Force and length in the mitotic spindle. Curr. Biol. 19, R749-R761 (2009)
    • (2009) Curr. Biol. , vol.19
    • Dumont, S.1    Mitchison, T.J.2
  • 8
    • 80053373937 scopus 로고    scopus 로고
    • Mitotic motors and chromosome segregation: The mechanism of anaphase B
    • Brust-Mascher, I. & Scholey, J. M. Mitotic motors and chromosome segregation: the mechanism of anaphase B. Biochem. Soc. Trans. 39, 1149-1153 (2011).
    • (2011) Biochem. Soc. Trans. , vol.39 , pp. 1149-1153
    • Brust-Mascher, I.1    Scholey, J.M.2
  • 9
    • 34547858506 scopus 로고    scopus 로고
    • Slide-and-cluster models for spindle assembly
    • Burbank, K. S., Mitchison, T. J. & Fisher, D. S. Slide-and-cluster models for spindle assembly. Curr. Biol. 17, 1373-1383 (2007).
    • (2007) Curr. Biol. , vol.17 , pp. 1373-1383
    • Burbank, K.S.1    Mitchison, T.J.2    Fisher, D.S.3
  • 10
    • 77951244793 scopus 로고    scopus 로고
    • Patterns of kinesin evolution reveal a complex ancestral eukaryote with a multifunctional cytoskeleton
    • Wickstead, B., Gull, K. & Richards, T. A. Patterns of kinesin evolution reveal a complex ancestral eukaryote with a multifunctional cytoskeleton. BMC Evol. Biol. 10, 110 (2010).
    • (2010) BMC Evol. Biol. , vol.10 , pp. 110
    • Wickstead, B.1    Gull, K.2    Richards, T.A.3
  • 11
    • 84877752558 scopus 로고    scopus 로고
    • Exotic mitotic mechanisms
    • Drechsler, H. & McAinsh, A. D. Exotic mitotic mechanisms. Open Biol. 2, 120140 (2012).
    • (2012) Open Biol. , vol.2 , pp. 120140
    • Drechsler, H.1    McAinsh, A.D.2
  • 14
    • 4644349081 scopus 로고    scopus 로고
    • A standardized kinesin nomenclature
    • Lawrence, C. J. et al. A standardized kinesin nomenclature. J. Cell Biol. 167, 19-22 (2004).
    • (2004) J. Cell Biol. , vol.167 , pp. 19-22
    • Lawrence, C.J.1
  • 15
    • 70349437416 scopus 로고    scopus 로고
    • Kinesin superfamily motor proteins and intracellular transport
    • Hirokawa, N., Noda, Y., Tanaka, Y. & Niwa, S. Kinesin superfamily motor proteins and intracellular transport. Nature Rev. Mol. Cell Biol. 10, 682-696 (2009).
    • (2009) Nature Rev. Mol. Cell Biol. , vol.10 , pp. 682-696
    • Hirokawa, N.1    Noda, Y.2    Tanaka, Y.3    Niwa, S.4
  • 16
    • 0032410805 scopus 로고    scopus 로고
    • The case for a common ancestor: Kinesin and myosin motor proteins and G proteins
    • Kull, F. J., Vale, R. D. & Fletterick, R. J. The case for a common ancestor: kinesin and myosin motor proteins and G proteins. J. Mus. Res. Cell. Mot. 19, 877-886 (1998).
    • (1998) J. Mus. Res. Cell. Mot. , vol.19 , pp. 877-886
    • Kull, F.J.1    Vale, R.D.2    Fletterick, R.J.3
  • 17
    • 77949318844 scopus 로고    scopus 로고
    • ATP hydrolysis in Eg5 kinesin involves a catalytic two-water mechanism
    • Parke, C. L., Wojcik, E. J., Kim, S. & Worthylake, D. K. ATP hydrolysis in Eg5 kinesin involves a catalytic two-water mechanism. J. Biol. Chem. 285, 5859-5867 (2010)
    • (2010) J. Biol. Chem. , vol.285 , pp. 5859-5867
    • Parke, C.L.1    Wojcik, E.J.2    Kim, S.3    Worthylake, D.K.4
  • 18
    • 43149106486 scopus 로고    scopus 로고
    • CENP-E combines a slow, processive motor and a flexible coiled coil to produce an essential motile kinetochore tether
    • Kim, Y., Heuser, J. E., Waterman, C. M. & Cleveland, D. W. CENP-E combines a slow, processive motor and a flexible coiled coil to produce an essential motile kinetochore tether. J. Cell Biol. 181, 411-419 (2008).
    • (2008) J. Cell Biol. , vol.181 , pp. 411-419
    • Kim, Y.1    Heuser, J.E.2    Waterman, C.M.3    Cleveland, D.W.4
  • 19
    • 70350446761 scopus 로고    scopus 로고
    • Traffic control: Regulation of kinesin motors
    • Verhey, K. J. & Hammond, J. W. Traffic control: regulation of kinesin motors. Nature Rev. Mol. Cell Biol. 10, 765-777 (2009).
    • (2009) Nature Rev. Mol. Cell Biol. , vol.10 , pp. 765-777
    • Verhey, K.J.1    Hammond, J.W.2
  • 20
    • 40749148904 scopus 로고    scopus 로고
    • Phosphorylation relieves autoinhibition of the kinetochore motor Cenp-E
    • Espeut, J. et al. Phosphorylation relieves autoinhibition of the kinetochore motor Cenp-E. Mol. Cell 29, 637-643 (2008).
    • (2008) Mol. Cell , vol.29 , pp. 637-643
    • Espeut, J.1
  • 21
    • 0036007115 scopus 로고    scopus 로고
    • Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity
    • Mishima, M., Kaitna, S. & Glotzer, M. Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity. Dev. Cell 2, 41-54 (2002).
    • (2002) Dev. Cell , vol.2 , pp. 41-54
    • Mishima, M.1    Kaitna, S.2    Glotzer, M.3
  • 22
    • 80051633233 scopus 로고    scopus 로고
    • The structure of the kinesin-1 motor-tail complex reveals the mechanism of autoinhibition
    • Kaan, H. Y. K., Hackney, D. D. & Kozielski, F. The structure of the kinesin-1 motor-tail complex reveals the mechanism of autoinhibition. Science 333, 883-885 (2011).
    • (2011) Science , vol.333 , pp. 883-885
    • Kaan, H.Y.K.1    Hackney, D.D.2    Kozielski, F.3
  • 23
    • 53549086926 scopus 로고    scopus 로고
    • Structural model for strain-dependent microtubule activation of Mg-ADP release from kinesin
    • Nitta, R., Okada, Y. & Hirokawa, N. Structural model for strain-dependent microtubule activation of Mg-ADP release from kinesin. Nature Struc. Mol. Biol. 15, 1067-1075 (2008).
    • (2008) Nature Struc. Mol. Biol. , vol.15 , pp. 1067-1075
    • Nitta, R.1    Okada, Y.2    Hirokawa, N.3
  • 24
    • 70450270783 scopus 로고    scopus 로고
    • The mechanisms of kinesin motor motility: Lessons from the monomeric motor KIF1A
    • Hirokawa, N., Nitta, R. & Okada, Y. The mechanisms of kinesin motor motility: lessons from the monomeric motor KIF1A. Nature Rev. Mol. Cell Biol. 10, 877-884 (2009).
    • (2009) Nature Rev. Mol. Cell Biol. , vol.10 , pp. 877-884
    • Hirokawa, N.1    Nitta, R.2    Okada, Y.3
  • 25
    • 80053594846 scopus 로고    scopus 로고
    • The kinesin-13 MCAK has an unconventional ATPase cycle adapted for microtubule depolymerization
    • Friel, C. T. C. & Howard, J. J. The kinesin-13 MCAK has an unconventional ATPase cycle adapted for microtubule depolymerization. EMBO J. 30, 3928-3939 (2011).
    • (2011) EMBO J. , vol.30 , pp. 3928-3939
    • Friel, C.T.C.1    Howard, J.J.2
  • 26
    • 58049202168 scopus 로고    scopus 로고
    • Kinesin's cover-neck bundle folds forward to generate force
    • Khalil, A. S. et al. Kinesin's cover-neck bundle folds forward to generate force. Proc. Natl. Acad. Sci. USA 105, 19247-19252 (2008).
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 19247-19252
    • Khalil, A.S.1
  • 27
    • 58149098730 scopus 로고    scopus 로고
    • ATPase cycle of the nonmotile kinesin NOD allows microtubule end tracking and drives chromosome movement
    • Cochran, J. C. et al. ATPase cycle of the nonmotile kinesin NOD allows microtubule end tracking and drives chromosome movement. Cell 136, 110-122 (2009).
    • (2009) Cell , vol.136 , pp. 110-122
    • Cochran, J.C.1
  • 28
    • 84875590005 scopus 로고    scopus 로고
    • Force generation by kinesin and myosin cytoskeletal motor proteins
    • Kull, F. J. & Endow, S. A. Force generation by kinesin and myosin cytoskeletal motor proteins. J. Cell Sci. 126, 9-19 (2013).
    • (2013) J. Cell Sci. , vol.126 , pp. 9-19
    • Kull, F.J.1    Endow, S.A.2
  • 29
    • 84877698868 scopus 로고    scopus 로고
    • Structural basis for the ATP-induced isomerization of kinesin
    • Chang, Q., Nitta, R., Inoue, S. & Hirokawa, N. Structural basis for the ATP-induced isomerization of kinesin. J. Mol. Biol. 425, 1869-1880 (2013).
    • (2013) J. Mol. Biol. , vol.425 , pp. 1869-1880
    • Chang, Q.1    Nitta, R.2    Inoue, S.3    Hirokawa, N.4
  • 30
    • 77749239756 scopus 로고    scopus 로고
    • An atomic-level mechanism for activation of the kinesin molecular motors
    • Sindelar, C. V. & Downing, K. H. An atomic-level mechanism for activation of the kinesin molecular motors. Proc. Natl. Acad. Sci. USA 107, 4111-4116 (2010).
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 4111-4116
    • Sindelar, C.V.1    Downing, K.H.2
  • 31
    • 0033576727 scopus 로고    scopus 로고
    • A structural change in the kinesin motor protein that drives motility
    • Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778-784 (1999).
    • (1999) Nature , vol.402 , pp. 778-784
    • Rice, S.1
  • 32
    • 33748931452 scopus 로고    scopus 로고
    • High-resolution cryo-EM maps show the nucleotide binding pocket of KIF1A in open and closed conformations
    • Kikkawa, M. & Hirokawa, N. High-resolution cryo-EM maps show the nucleotide binding pocket of KIF1A in open and closed conformations. EMBO J. 25, 4187-4194 (2006).
    • (2006) EMBO J. , vol.25 , pp. 4187-4194
    • Kikkawa, M.1    Hirokawa, N.2
  • 33
    • 82455211990 scopus 로고    scopus 로고
    • A seesaw model for intermolecular gating in the kinesin motor protein
    • Sindelar, C. V. A seesaw model for intermolecular gating in the kinesin motor protein. Biophys. Rev. 3, 85-100 (2011).
    • (2011) Biophys. Rev. , vol.3 , pp. 85-100
    • Sindelar, C.V.1
  • 34
    • 0037342516 scopus 로고    scopus 로고
    • Thermodynamic properties of the kinesin neck-region docking to the catalytic core
    • Rice, S. et al. Thermodynamic properties of the kinesin neck-region docking to the catalytic core. Biophys. J. 84, 1844-1854 (2003).
    • (2003) Biophys. J. , vol.84 , pp. 1844-1854
    • Rice, S.1
  • 35
    • 33745839637 scopus 로고    scopus 로고
    • Feedback of the kinesin-1 neck-linker position on the catalytic site
    • Hahlen, K. et al. Feedback of the kinesin-1 neck-linker position on the catalytic site. J. Biol. Chem. 281, 18868-18877 (2006).
    • (2006) J. Biol. Chem. , vol.281 , pp. 18868-18877
    • Hahlen, K.1
  • 36
    • 0034628619 scopus 로고    scopus 로고
    • Role of the kinesin neck linker and catalytic core in microtubule-based motility
    • Case, R. B., Rice, S., Hart, C. L., Ly, B. & Vale, R. D. Role of the kinesin neck linker and catalytic core in microtubule-based motility. Curr. Biol. 10, 157-160 (2000).
    • (2000) Curr. Biol. , vol.10 , pp. 157-160
    • Case, R.B.1    Rice, S.2    Hart, C.L.3    Ly, B.4    Vale, R.D.5
  • 37
    • 0025222740 scopus 로고
    • Protein motors and Maxwell's demons: Does mechanochemical transduction involve a thermal ratchet? Adv
    • Vale, R. D. & Oosawa, F. Protein motors and Maxwell's demons: does mechanochemical transduction involve a thermal ratchet? Adv. Biophys. 26, 97-134 (1990).
    • (1990) Biophys. , vol.26 , pp. 97-134
    • Vale, R.D.1    Oosawa, F.2
  • 38
    • 33847013578 scopus 로고
    • Muscle structure and theories of contraction
    • Huxley, A. F. Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 7, 255-318 (1957).
    • (1957) Prog. Biophys. Biophys. Chem. , vol.7 , pp. 255-318
    • Huxley, A.F.1
  • 39
    • 77951558010 scopus 로고    scopus 로고
    • One-dimensional Brownian motion of charged nanoparticles along microtubules: A model system for weak binding interactions
    • Minoura, I., Katayama, E., Sekimoto, K. & Muto, E. One-dimensional Brownian motion of charged nanoparticles along microtubules: a model system for weak binding interactions. Biophys. J. 98, 1589-1597 (2010).
    • (2010) Biophys. J. , vol.98 , pp. 1589-1597
    • Minoura, I.1    Katayama, E.2    Sekimoto, K.3    Muto, E.4
  • 40
    • 0041522803 scopus 로고    scopus 로고
    • Processivity of the single-headed kinesin KIF1A through biased binding to tubulin
    • Okada, Y. Y., Higuchi, H. H. & Hirokawa, N. N. Processivity of the single-headed kinesin KIF1A through biased binding to tubulin. Nature 424, 574-577 (2003).
    • (2003) Nature , vol.424 , pp. 574-577
    • Okada, Y.Y.1    Higuchi, H.H.2    Hirokawa, N.N.3
  • 41
    • 82455219434 scopus 로고    scopus 로고
    • Electrostatically biased binding of kinesin to microtubules
    • Grant, B. J. et al. Electrostatically biased binding of kinesin to microtubules. PLoS Biol. 9, e1001207 (2011).
    • (2011) PLoS Biol. , vol.9
    • Grant, B.J.1
  • 42
    • 51549097934 scopus 로고    scopus 로고
    • Intramolecular strain coordinates kinesin stepping behavior along microtubules
    • Yildiz, A., Tomishige, M., Gennerich, A. & Vale, R. D. Intramolecular strain coordinates kinesin stepping behavior along microtubules. Cell 134, 1030-1041 (2008).
    • (2008) Cell , vol.134 , pp. 1030-1041
    • Yildiz, A.1    Tomishige, M.2    Gennerich, A.3    Vale, R.D.4
  • 43
    • 0036798857 scopus 로고    scopus 로고
    • Chemomechanical coupling of the forward and backward steps of single kinesin molecules
    • Nishiyama, M., Higuchi, H. & Yanagida, T. Chemomechanical coupling of the forward and backward steps of single kinesin molecules. Nature Cell Biol. 4, 790-797 (2002).
    • (2002) Nature Cell Biol. , vol.4 , pp. 790-797
    • Nishiyama, M.1    Higuchi, H.2    Yanagida, T.3
  • 44
    • 19644377414 scopus 로고    scopus 로고
    • Mechanics of the kinesin step
    • Carter, N. J. & Cross, R. A. Mechanics of the kinesin step. Nature 435, 308-312 (2005).
    • (2005) Nature , vol.435 , pp. 308-312
    • Carter, N.J.1    Cross, R.A.2
  • 45
    • 0038381479 scopus 로고    scopus 로고
    • Stepping and stretching. How kinesin uses internal strain to walk processively
    • Rosenfeld, S. S., Fordyce, P. M., Jefferson, G. M., King, P. H. & Block, S. M. Stepping and stretching. How kinesin uses internal strain to walk processively. J. Biol. Chem. 278, 18550-18556 (2003).
    • (2003) J. Biol. Chem. , vol.278 , pp. 18550-18556
    • Rosenfeld, S.S.1    Fordyce, P.M.2    Jefferson, G.M.3    King, P.H.4    Block, S.M.5
  • 46
    • 0842263751 scopus 로고    scopus 로고
    • What kinesin does at roadblocks: The coordination mechanism for molecular walking
    • Crevel, I. M. et al. What kinesin does at roadblocks: the coordination mechanism for molecular walking. EMBO J. 23, 23-32 (2003).
    • (2003) EMBO J. , vol.23 , pp. 23-32
    • Crevel, I.M.1
  • 47
    • 80053654615 scopus 로고    scopus 로고
    • Interhead tension determines processivity across diverse N-terminal kinesins
    • Shastry, S. & Hancock, W. O. Interhead tension determines processivity across diverse N-terminal kinesins. Proc. Natl. Acad. Sci. USA 108, 16253-16258 (2011).
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 16253-16258
    • Shastry, S.1    Hancock, W.O.2
  • 48
    • 33646950699 scopus 로고    scopus 로고
    • The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends
    • Helenius, J., Brouhard, G., Kalaidzidis, Y., Diez, S. & Howard, J. The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature 441, 115-119 (2006).
    • (2006) Nature , vol.441 , pp. 115-119
    • Helenius, J.1    Brouhard, G.2    Kalaidzidis, Y.3    Diez, S.4    Howard, J.5
  • 49
    • 33748136479 scopus 로고    scopus 로고
    • Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner
    • Varga, V. et al. Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nature Cell Biol. 8, 957-962 (2006).
    • (2006) Nature Cell Biol. , vol.8 , pp. 957-962
    • Varga, V.1
  • 50
    • 84885866442 scopus 로고    scopus 로고
    • The molecular basis for kinesin functional specificity during mitosis
    • Welburn, J. P. I. The molecular basis for kinesin functional specificity during mitosis. Cytoskeleton 70, 476-493 (2013)
    • (2013) Cytoskeleton , vol.70 , pp. 476-493
    • Welburn, J.P.I.1
  • 51
    • 78649957196 scopus 로고    scopus 로고
    • Mechanisms of centrosome separation and bipolar spindle assembly
    • Tanenbaum, M. E. & Medema, R. H. Mechanisms of centrosome separation and bipolar spindle assembly. Dev. Cell 19, 797-806 (2010).
    • (2010) Dev. Cell , vol.19 , pp. 797-806
    • Tanenbaum, M.E.1    Medema, R.H.2
  • 52
    • 18344371892 scopus 로고    scopus 로고
    • The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks
    • Kapitein, L. C. et al. The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature Cell Biol. 435, 114-118 (2005).
    • (2005) Nature Cell Biol. , vol.435 , pp. 114-118
    • Kapitein, L.C.1
  • 53
    • 0029417238 scopus 로고
    • cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo
    • cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83, 1159-1169 (1995).
    • (1995) Cell , vol.83 , pp. 1159-1169
    • Blangy, A.1
  • 54
    • 0030025443 scopus 로고    scopus 로고
    • A bipolar kinesin
    • Kashina, A. S. et al. A bipolar kinesin. Nature 379, 270-272 (1996).
    • (1996) Nature , vol.379 , pp. 270-272
    • Kashina, A.S.1
  • 55
    • 84879168530 scopus 로고    scopus 로고
    • The bipolar assembly domain of the mitotic motor kinesin-5
    • Acar, S. et al. The bipolar assembly domain of the mitotic motor kinesin-5. Nature commun. 4, 1343 (2013).
    • (2013) Nature Commun. , vol.4 , pp. 1343
    • Acar, S.1
  • 57
    • 49749107045 scopus 로고    scopus 로고
    • Microtubule cross-linking triggers the directional motility of kinesin-5
    • Kapitein, L. C. et al. Microtubule cross-linking triggers the directional motility of kinesin-5. J. Cell Biol. 182, 421-428 (2008).
    • (2008) J. Cell Biol. , vol.182 , pp. 421-428
    • Kapitein, L.C.1
  • 58
    • 33748749372 scopus 로고    scopus 로고
    • Homotetrameric form of Cin8p, a Saccharomyces cerevisiae kinesin-5 motor, is essential for its in vivo function
    • Hildebrandt, E. R., Gheber, L., Kingsbury, T. & Hoyt, M. A. Homotetrameric form of Cin8p, a Saccharomyces cerevisiae kinesin-5 motor, is essential for its in vivo function. J. Biol. Chem. 281, 26004-26013 (2006).
    • (2006) J. Biol. Chem. , vol.281 , pp. 26004-26013
    • Hildebrandt, E.R.1    Gheber, L.2    Kingsbury, T.3    Hoyt, M.A.4
  • 59
    • 33747624954 scopus 로고    scopus 로고
    • Allosteric inhibition of kinesin-5 modulates its processive directional motility
    • Kwok, B. H. et al. Allosteric inhibition of kinesin-5 modulates its processive directional motility. Nature Chem. Biol. 2, 480-485 (2006).
    • (2006) Nature Chem. Biol. , vol.2 , pp. 480-485
    • Kwok, B.H.1
  • 60
    • 4644254479 scopus 로고    scopus 로고
    • The rate of bipolar spindle assembly depends on the microtubule-gliding velocity of the mitotic kinesin Eg5
    • Kwok, B. H., Yang, J. G. & Kapoor, T. M. The rate of bipolar spindle assembly depends on the microtubule-gliding velocity of the mitotic kinesin Eg5. Curr. Biol. 14, 1783-1788 (2004).
    • (2004) Curr. Biol. , vol.14 , pp. 1783-1788
    • Kwok, B.H.1    Yang, J.G.2    Kapoor, T.M.3
  • 61
    • 79953285218 scopus 로고    scopus 로고
    • Directional switching of the kinesin cin8 through motor coupling
    • Roostalu, J. et al. Directional switching of the kinesin cin8 through motor coupling. Science 332, 94-99 (2011).
    • (2011) Science , vol.332 , pp. 94-99
    • Roostalu, J.1
  • 63
    • 84885447610 scopus 로고    scopus 로고
    • Kinesin-5 Kip1 is a bi-directional motor that stabilizes microtubules and tracks their plus-ends in vivo
    • Fridman, V. et al. Kinesin-5 Kip1 is a bi-directional motor that stabilizes microtubules and tracks their plus-ends in vivo. J. Cell Sci. 126, 4147-4159 (2013).
    • (2013) J. Cell Sci. , vol.126 , pp. 4147-4159
    • Fridman, V.1
  • 64
    • 33744987629 scopus 로고    scopus 로고
    • Individual dimers of the mitotic kinesin motor Eg5 step processively and support substantial loads in vitro
    • Valentine, M. T., Fordyce, P. M., Krzysiak, T. C., Gilbert, S. P. & Block, S. M. Individual dimers of the mitotic kinesin motor Eg5 step processively and support substantial loads in vitro. Nature Cell Biol. 8, 470-476 (2006).
    • (2006) Nature Cell Biol. , vol.8 , pp. 470-476
    • Valentine, M.T.1    Fordyce, P.M.2    Krzysiak, T.C.3    Gilbert, S.P.4    Block, S.M.5
  • 65
    • 70350011897 scopus 로고    scopus 로고
    • Force and premature binding of ADP can regulate the processivity of individual Eg5 dimers
    • Valentine, M. T. & Block, S. M. Force and premature binding of ADP can regulate the processivity of individual Eg5 dimers. Biophys. J. 97, 1671-1677 (2009).
    • (2009) Biophys. J. , vol.97 , pp. 1671-1677
    • Valentine, M.T.1    Block, S.M.2
  • 66
    • 34347375813 scopus 로고    scopus 로고
    • Load-dependent release limits the processive stepping of the tetrameric Eg5 motor
    • Korneev, M. J., Lakämper, S. & Schmidt, C. F. Load-dependent release limits the processive stepping of the tetrameric Eg5 motor. Eur. Biophys. J. 36, 675-681 (2007).
    • (2007) Eur. Biophys. J. , vol.36 , pp. 675-681
    • Korneev, M.J.1    Lakämper, S.2    Schmidt, C.F.3
  • 67
    • 70350136402 scopus 로고    scopus 로고
    • Walking, hopping, diffusing and braking modes of kinesin-5
    • Kaseda, K., McAinsh, A. D. & Cross, R. A. Walking, hopping, diffusing and braking modes of kinesin-5. Biochem. Soc. Trans. 37, 1045-1049 (2009).
    • (2009) Biochem. Soc. Trans. , vol.37 , pp. 1045-1049
    • Kaseda, K.1    McAinsh, A.D.2    Cross, R.A.3
  • 68
    • 38349183016 scopus 로고    scopus 로고
    • Getting in sync with dimeric Eg5: Initiation and regulation of the processive run
    • Krzysiak, T., Grabe, M. & Gilbert, S. Getting in sync with dimeric Eg5: Initiation and regulation of the processive run. J. Biol. Chem. 283, 2078-2087 (2007).
    • (2007) J. Biol. Chem. , vol.283 , pp. 2078-2087
    • Krzysiak, T.1    Grabe, M.2    Gilbert, S.3
  • 70
    • 0024369644 scopus 로고
    • Polewards microtubule flux in the mitotic spindle: Evidence from photoactivation of fluorescence
    • Mitchison, T. J. Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J. Cell Biol. 109, 637-652 (1989).
    • (1989) J. Cell Biol. , vol.109 , pp. 637-652
    • Mitchison, T.J.1
  • 71
    • 38949132114 scopus 로고    scopus 로고
    • Mechanisms of mitotic spindle assembly and function
    • Walczak, C. E. & Heald, R. Mechanisms of mitotic spindle assembly and function. Int. Rev. Cytol. 265, 111-158 (2008).
    • (2008) Int. Rev. Cytol. , vol.265 , pp. 111-158
    • Walczak, C.E.1    Heald, R.2
  • 72
    • 2042544799 scopus 로고    scopus 로고
    • Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly
    • Rosenblatt, J., Cramer, L. P., Baum, B. & McGee, K. M. Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly. Cell 117, 361-372 (2004).
    • (2004) Cell , vol.117 , pp. 361-372
    • Rosenblatt, J.1    Cramer, L.P.2    Baum, B.3    McGee, K.M.4
  • 73
    • 62849098748 scopus 로고    scopus 로고
    • Kinetochore-generated pushing forces separate centrosomes during bipolar spindle assembly
    • Toso, A. et al. Kinetochore-generated pushing forces separate centrosomes during bipolar spindle assembly. J. Cell Biol. 184, 365-372 (2009).
    • (2009) J. Cell Biol. , vol.184 , pp. 365-372
    • Toso, A.1
  • 74
    • 0031696367 scopus 로고    scopus 로고
    • Expanding the role of HsEg5 within the mitotic and post-mitotic phases of the cell cycle
    • Whitehead, C. M. & Rattner, J. B. Expanding the role of HsEg5 within the mitotic and post-mitotic phases of the cell cycle. J. Cell Sci. 111, 2551-2561 (1998).
    • (1998) J. Cell Sci. , vol.111 , pp. 2551-2561
    • Whitehead, C.M.1    Rattner, J.B.2
  • 75
    • 84880703330 scopus 로고    scopus 로고
    • Kinesin-12 differentially affects spindle assembly depending on its microtubule substrate
    • Sturgill, E. G. & Ohi, R. Kinesin-12 differentially affects spindle assembly depending on its microtubule substrate. Curr. Biol. 23, 1280-1290 (2013).
    • (2013) Curr. Biol. , vol.23 , pp. 1280-1290
    • Sturgill, E.G.1    Ohi, R.2
  • 76
    • 70350575316 scopus 로고    scopus 로고
    • Kif15 cooperates with eg5 to promote bipolar spindle assembly
    • Tanenbaum, M. E. et al. Kif15 cooperates with eg5 to promote bipolar spindle assembly. Curr. Biol. 19, 1703-1711 (2009).
    • (2009) Curr. Biol. , vol.19 , pp. 1703-1711
    • Tanenbaum, M.E.1
  • 77
    • 0030070110 scopus 로고    scopus 로고
    • Xklp2 a novel Xenopus centrosomal kinesin-like protein required for centrosome separation during mitosis
    • Boleti, H., Karsenti, E. & Vernos, I. Xklp2, a novel Xenopus centrosomal kinesin-like protein required for centrosome separation during mitosis. Cell 84, 49-59 (1996).
    • (1996) Cell , vol.84 , pp. 49-59
    • Boleti, H.1    Karsenti, E.2    Vernos, I.3
  • 78
    • 84892416734 scopus 로고    scopus 로고
    • The crystal structure and biochemical characterization of Kif15: A bifunctional molecular motor involved in bipolar spindle formation and neuronal development
    • Klejnot, M. et al. The crystal structure and biochemical characterization of Kif15: a bifunctional molecular motor involved in bipolar spindle formation and neuronal development. Acta Crystallogr. D Biol. Crystallogr. 70, 123-133 (2014).
    • (2014) Acta Crystallogr. D Biol. Crystallogr. , vol.70 , pp. 123-133
    • Klejnot, M.1
  • 79
    • 84891519583 scopus 로고    scopus 로고
    • Nonautonomous movement of chromosomes in mitosis
    • Vladimirou, E. et al. Nonautonomous movement of chromosomes in mitosis. Dev. Cell 27, 60-71 (2013).
    • (2013) Dev. Cell , vol.27 , pp. 60-71
    • Vladimirou, E.1
  • 80
    • 0032702315 scopus 로고    scopus 로고
    • The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle
    • Mountain, V. et al. The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle. J. Cell Biol. 147, 351-366 (1999).
    • (1999) J. Cell Biol. , vol.147 , pp. 351-366
    • Mountain, V.1
  • 81
    • 70350575315 scopus 로고    scopus 로고
    • The role of Hklp2 in the stabilization and maintenance of spindle bipolarity
    • Vanneste, D., Takagi, M., Imamoto, N. & Vernos, I. The role of Hklp2 in the stabilization and maintenance of spindle bipolarity. Curr. Biol. 19, 1712-1717 (2009).
    • (2009) Curr. Biol. , vol.19 , pp. 1712-1717
    • Vanneste, D.1    Takagi, M.2    Imamoto, N.3    Vernos, I.4
  • 82
    • 32844474892 scopus 로고    scopus 로고
    • A lever-arm rotation drives motility of the minus-end-directed kinesin Ncd
    • Endres, N. F., Yoshioka, C., Milligan, R. A. & Vale, R. D. A lever-arm rotation drives motility of the minus-end-directed kinesin Ncd. Nature 439, 875-878 (2006).
    • (2006) Nature , vol.439 , pp. 875-878
    • Endres, N.F.1    Yoshioka, C.2    Milligan, R.A.3    Vale, R.D.4
  • 84
    • 0033614443 scopus 로고    scopus 로고
    • The Ncd tail domain promotes microtubule assembly and stability
    • Karabay, A. & Walker, R. A. The Ncd tail domain promotes microtubule assembly and stability. Biochem. Biophys. Res. Commun. 258, 39-43 (1999).
    • (1999) Biochem. Biophys. Res. Commun. , vol.258 , pp. 39-43
    • Karabay, A.1    Walker, R.A.2
  • 85
    • 67349108713 scopus 로고    scopus 로고
    • The kinesin-14 Klp2 organizes microtubules into parallel bundles by an ATP-dependent sorting mechanism
    • Braun, M., Drummond, D. R., Cross, R. A. & McAinsh, A. D. The kinesin-14 Klp2 organizes microtubules into parallel bundles by an ATP-dependent sorting mechanism. Nature Cell Biol. 11, 724-730 (2009).
    • (2009) Nature Cell Biol. , vol.11 , pp. 724-730
    • Braun, M.1    Drummond, D.R.2    Cross, R.A.3    McAinsh, A.D.4
  • 86
    • 80053567158 scopus 로고    scopus 로고
    • Adaptive braking by Ase1 prevents overlapping microtubules from sliding completely apart
    • Braun, M. et al. Adaptive braking by Ase1 prevents overlapping microtubules from sliding completely apart. Nature Cell Biol. 13, 1259-1264 (2011).
    • (2011) Nature Cell Biol. , vol.13 , pp. 1259-1264
    • Braun, M.1
  • 87
    • 67349203203 scopus 로고    scopus 로고
    • The mitotic kinesin-14 Ncd drives directional microtubule-microtubule sliding
    • Fink, G. et al. The mitotic kinesin-14 Ncd drives directional microtubule-microtubule sliding. Nature Cell Biol. 11, 717-723 (2009).
    • (2009) Nature Cell Biol. , vol.11 , pp. 717-723
    • Fink, G.1
  • 88
    • 77951836629 scopus 로고    scopus 로고
    • Microtubule organization by the antagonistic mitotic motors kinesin-5 and kinesin-14
    • Hentrich, C. & Surrey, T. Microtubule organization by the antagonistic mitotic motors kinesin-5 and kinesin-14. J. Cell Biol. 189, 465-480 (2010).
    • (2010) J. Cell Biol. , vol.189 , pp. 465-480
    • Hentrich, C.1    Surrey, T.2
  • 89
    • 0034618565 scopus 로고    scopus 로고
    • Microtubule motors in mitosis
    • Scholey, J. M., Sharp, D. J. & Rogers, G. C. Microtubule motors in mitosis. Nature 407, 41-47 (2000).
    • (2000) Nature , vol.407 , pp. 41-47
    • Scholey, J.M.1    Sharp, D.J.2    Rogers, G.C.3
  • 90
    • 0031809137 scopus 로고    scopus 로고
    • Focusing on spindle poles
    • Compton, D. A. Focusing on spindle poles. J. Cell Sci. 111, 1477-1481 (1998).
    • (1998) J. Cell Sci. , vol.111 , pp. 1477-1481
    • Compton, D.A.1
  • 91
    • 23244462047 scopus 로고    scopus 로고
    • Cik1 targets the minus-end kinesin depolymerase kar3 to microtubule plus ends
    • Sproul, L. R., Anderson, D. J., Mackey, A. T., Saunders, W. S. & Gilbert, S. P. Cik1 targets the minus-end kinesin depolymerase kar3 to microtubule plus ends. Curr. Biol. 15, 1420-1427 (2005).
    • (2005) Curr. Biol. , vol.15 , pp. 1420-1427
    • Sproul, L.R.1    Anderson, D.J.2    Mackey, A.T.3    Saunders, W.S.4    Gilbert, S.P.5
  • 93
    • 33947208624 scopus 로고    scopus 로고
    • Vik1 modulates microtubule-Kar3 interactions through a motor domain that lacks an active site
    • Allingham, J. S., Sproul, L. R., Rayment, I. & Gilbert, S. P. Vik1 modulates microtubule-Kar3 interactions through a motor domain that lacks an active site. Cell 128, 1161-1172 (2007).
    • (2007) Cell , vol.128 , pp. 1161-1172
    • Allingham, J.S.1    Sproul, L.R.2    Rayment, I.3    Gilbert, S.P.4
  • 94
    • 84891427785 scopus 로고    scopus 로고
    • Kar3Vik1 mechanochemistry is inhibited by mutation or deletion of the c terminus of the vik1 subunit
    • Joshi, M. et al. Kar3Vik1 mechanochemistry is inhibited by mutation or deletion of the c terminus of the vik1 subunit. J. Biol. Chem. 288, 36957-36970 (2013).
    • (2013) J. Biol. Chem. , vol.288 , pp. 36957-36970
    • Joshi, M.1
  • 95
    • 77954068979 scopus 로고    scopus 로고
    • Finding the middle ground: How kinetochores power chromosome congression
    • Kops, G. J. P. L., Saurin, A. T. & Meraldi, P. Finding the middle ground: how kinetochores power chromosome congression. Cell. Mol. Life Sci. 67, 2145-2161 (2010).
    • (2010) Cell. Mol. Life Sci. , vol.67 , pp. 2145-2161
    • Kops, G.J.P.L.1    Saurin, A.T.2    Meraldi, P.3
  • 96
    • 34249699586 scopus 로고    scopus 로고
    • Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint
    • Yang, Z., Tulu, U. S., Wadsworth, P. & Rieder, C. L. Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint. Curr. Biol. 17, 973-980 (2007).
    • (2007) Curr. Biol. , vol.17 , pp. 973-980
    • Yang, Z.1    Tulu, U.S.2    Wadsworth, P.3    Rieder, C.L.4
  • 97
    • 31144471300 scopus 로고    scopus 로고
    • Chromosomes can congress to the metaphase plate before biorientation
    • Kapoor, T. M. et al. Chromosomes can congress to the metaphase plate before biorientation. Science 311, 388-391 (2006)
    • (2006) Science , vol.311 , pp. 388-391
    • Kapoor, T.M.1
  • 98
    • 0030665077 scopus 로고    scopus 로고
    • CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment
    • Wood, K. W., Sakowicz, R., Goldstein, L. S. & Cleveland, D. W. CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell 91, 357-366 (1997).
    • (1997) Cell , vol.91 , pp. 357-366
    • Wood, K.W.1    Sakowicz, R.2    Goldstein, L.S.3    Cleveland, D.W.4
  • 99
    • 0031468113 scopus 로고    scopus 로고
    • CENP-E function at kinetochores is essential for chromosome alignment
    • Schaar, B. T., Chan, G. K., Maddox, P., Salmon, E. D. & Yen, T. J. CENP-E function at kinetochores is essential for chromosome alignment. J. Cell Biol. 139, 1373-1382 (1997).
    • (1997) J. Cell Biol. , vol.139 , pp. 1373-1382
    • Schaar, B.T.1    Chan, G.K.2    Maddox, P.3    Salmon, E.D.4    Yen, T.J.5
  • 101
    • 84864087676 scopus 로고    scopus 로고
    • Microtubule capture by mitotic kinesin centromere protein e (cenp-e)
    • Sardar, H. S. & Gilbert, S. P. Microtubule capture by mitotic kinesin centromere protein e (cenp-e). J. Biol. Chem. 287, 24894-24904 (2012).
    • (2012) J. Biol. Chem. , vol.287 , pp. 24894-24904
    • Sardar, H.S.1    Gilbert, S.P.2
  • 102
    • 70450248418 scopus 로고    scopus 로고
    • The ATPase cycle of the mitotic motor CENP-E
    • Rosenfeld, S. S. et al. The ATPase cycle of the mitotic motor CENP-E. J. Biol. Chem. 284, 32858-32868 (2009).
    • (2009) J. Biol. Chem. , vol.284 , pp. 32858-32868
    • Rosenfeld, S.S.1
  • 103
    • 67650087879 scopus 로고    scopus 로고
    • Chromosome congression in the absence of kinetochore fibres
    • Cai, S., O'Connell, C. B., Khodjakov, A. & Walczak, C. E. Chromosome congression in the absence of kinetochore fibres. Nature Cell Biol. 11, 832-838 (2009).
    • (2009) Nature Cell Biol. , vol.11 , pp. 832-838
    • Cai, S.1    O'Connell, C.B.2    Khodjakov, A.3    Walczak, C.E.4
  • 104
    • 84881433739 scopus 로고    scopus 로고
    • The multiple talents of kinesin-8
    • Roostalu, J. & Surrey, T. The multiple talents of kinesin-8. Nature Cell Biol. 15, 889-891 (2013).
    • (2013) Nature Cell Biol. , vol.15 , pp. 889-891
    • Roostalu, J.1    Surrey, T.2
  • 105
    • 84881430806 scopus 로고    scopus 로고
    • Microtubule-sliding activity of a kinesin-8 promotes spindle assembly and spindle-length control
    • Su, X. et al. Microtubule-sliding activity of a kinesin-8 promotes spindle assembly and spindle-length control. Nature Cell Biol. 15, 948-957 (2013).
    • (2013) Nature Cell Biol. , vol.15 , pp. 948-957
    • Su, X.1
  • 106
    • 33947111858 scopus 로고    scopus 로고
    • The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression
    • Mayr, M. I. et al. The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Curr. Biol. 17, 488-498 (2007).
    • (2007) Curr. Biol. , vol.17 , pp. 488-498
    • Mayr, M.I.1
  • 107
    • 80052033722 scopus 로고    scopus 로고
    • A complex of Kif18b and MCAK promotes microtubule depolymerization and is negatively regulated by Aurora kinases
    • Tanenbaum, M. E. et al. A complex of Kif18b and MCAK promotes microtubule depolymerization and is negatively regulated by Aurora kinases. Curr. Biol. 21, 1356-1365 (2011).
    • (2011) Curr. Biol. , vol.21 , pp. 1356-1365
    • Tanenbaum, M.E.1
  • 108
    • 80052210135 scopus 로고    scopus 로고
    • Kif18B interacts with EB1 and controls astral microtubule length during mitosis
    • Stout, J. R. J. et al. Kif18B interacts with EB1 and controls astral microtubule length during mitosis. Mol. Biol. Cell 22, 3070-3080 (2011).
    • (2011) Mol. Biol. Cell , vol.22 , pp. 3070-3080
    • Stout, J.R.J.1
  • 109
    • 33748158378 scopus 로고    scopus 로고
    • Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle
    • Gupta, M. L., Carvalho, P., Roof, D. M. & Pellman, D. Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle. Nature Cell Biol. 8, 913-923 (2006).
    • (2006) Nature Cell Biol. , vol.8 , pp. 913-923
    • Gupta, M.L.1    Carvalho, P.2    Roof, D.M.3    Pellman, D.4
  • 110
    • 84867890758 scopus 로고    scopus 로고
    • Move in for the kill: Motile microtubule regulators
    • Su, X., Ohi, R. & Pellman, D. Move in for the kill: motile microtubule regulators. Trends Cell Biol. 22, 567-575 (2012).
    • (2012) Trends Cell Biol. , vol.22 , pp. 567-575
    • Su, X.1    Ohi, R.2    Pellman, D.3
  • 111
    • 76749091008 scopus 로고    scopus 로고
    • The kinesin-8 Kif18A dampens microtubule plus-end dynamics
    • Du, Y., English, C. A. & Ohi, R. The kinesin-8 Kif18A dampens microtubule plus-end dynamics. Curr. Biol. 20, 374-380 (2010).
    • (2010) Curr. Biol. , vol.20 , pp. 374-380
    • Du, Y.1    English, C.A.2    Ohi, R.3
  • 112
    • 84860893886 scopus 로고    scopus 로고
    • Kif18A and chromokinesins confine centromere movements via microtubule growth suppression and spatial control of kinetochore tension
    • Stumpff, J., Wagenbach, M., Franck, A., Asbury, C. L. & Wordeman, L. Kif18A and chromokinesins confine centromere movements via microtubule growth suppression and spatial control of kinetochore tension. Dev. Cell 22, 1017-1029 (2012).
    • (2012) Dev. Cell , vol.22 , pp. 1017-1029
    • Stumpff, J.1    Wagenbach, M.2    Franck, A.3    Asbury, C.L.4    Wordeman, L.5
  • 113
    • 77958487248 scopus 로고    scopus 로고
    • Insight into the molecular mechanism of the multitasking kinesin-8 motor
    • Peters, C. et al. Insight into the molecular mechanism of the multitasking kinesin-8 motor. EMBO J. 29, 3437-3447 (2010).
    • (2010) EMBO J. , vol.29 , pp. 3437-3447
    • Peters, C.1
  • 114
    • 38849201167 scopus 로고    scopus 로고
    • The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment
    • Stumpff, J., von Dassow, G., Wagenbach, M., Asbury, C. & Wordeman, L. The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Dev. Cell 14, 252-262 (2008).
    • (2008) Dev. Cell , vol.14 , pp. 252-262
    • Stumpff, J.1    Von Dassow, G.2    Wagenbach, M.3    Asbury, C.4    Wordeman, L.5
  • 115
    • 77949357585 scopus 로고    scopus 로고
    • Kinetochore alignment within the metaphase plate is regulated by centromere stiffness and microtubule depolymerases
    • Jaqaman, K. et al. Kinetochore alignment within the metaphase plate is regulated by centromere stiffness and microtubule depolymerases. J. Cell Biol. 188, 665-679 (2010).
    • (2010) J. Cell Biol. , vol.188 , pp. 665-679
    • Jaqaman, K.1
  • 116
    • 84878886853 scopus 로고    scopus 로고
    • Kinesin-8 is a low-force motor protein with a weakly bound slip state
    • Jannasch, A., Bormuth, V., Storch, M., Howard, J. & Schäffer, E. Kinesin-8 is a low-force motor protein with a weakly bound slip state. Biophys. J. 104, 2456-2464 (2013)
    • (2013) Biophys. J. , vol.104 , pp. 2456-2464
    • Jannasch, A.1    Bormuth, V.2    Storch, M.3    Howard, J.4    Schäffer, E.5
  • 117
    • 84863451332 scopus 로고    scopus 로고
    • The highly processive kinesin-8, Kip3, switches microtubule protofilaments with a bias toward the left
    • Bormuth, V. V. et al. The highly processive kinesin-8, Kip3, switches microtubule protofilaments with a bias toward the left. Biophys. J. 103, L4-L6 (2012).
    • (2012) Biophys. J. , vol.103
    • Bormuth, V.V.1
  • 118
    • 84859933274 scopus 로고    scopus 로고
    • Molecular crowding creates traffic jams of kinesin motors on microtubules
    • Leduc, C. C. et al. Molecular crowding creates traffic jams of kinesin motors on microtubules. Proc. Natl. Acad. Sci. USA 109, 6100-6105 (2012).
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 6100-6105
    • Leduc, C.C.1
  • 119
    • 80052209594 scopus 로고    scopus 로고
    • Kif18A uses a microtubule binding site in the tail for plus-end localization and spindle length regulation
    • Weaver, L. N. et al. Kif18A uses a microtubule binding site in the tail for plus-end localization and spindle length regulation. Curr. Biol. 21, 1500-1506 (2011).
    • (2011) Curr. Biol. , vol.21 , pp. 1500-1506
    • Weaver, L.N.1
  • 120
    • 80052230972 scopus 로고    scopus 로고
    • A tethering mechanism controls the processivity and kinetochore- microtubule plus-end enrichment of the kinesin-8 Kif18A
    • Stumpff, J. et al. A tethering mechanism controls the processivity and kinetochore-microtubule plus-end enrichment of the kinesin-8 Kif18A. Mol. Cell 43, 764-775 (2011).
    • (2011) Mol. Cell , vol.43 , pp. 764-775
    • Stumpff, J.1
  • 121
    • 0029836707 scopus 로고    scopus 로고
    • The kinetochore microtubule minus-end disassembly associated with poleward flux produces a force that can do work
    • Waters, J. C., Mitchison, T. J., Rieder, C. L. & Salmon, E. D. The kinetochore microtubule minus-end disassembly associated with poleward flux produces a force that can do work. Mol. Biol. Cell 7, 1547-1558 (1996).
    • (1996) Mol. Biol. Cell , vol.7 , pp. 1547-1558
    • Waters, J.C.1    Mitchison, T.J.2    Rieder, C.L.3    Salmon, E.D.4
  • 122
    • 27144451193 scopus 로고    scopus 로고
    • Efficient mitosis in human cells lacking poleward microtubule flux
    • Ganem, N. J., Upton, K. & Compton, D. A. Efficient mitosis in human cells lacking poleward microtubule flux. Curr. Biol. 15, 1827-1832 (2005).
    • (2005) Curr. Biol. , vol.15 , pp. 1827-1832
    • Ganem, N.J.1    Upton, K.2    Compton, D.A.3
  • 123
    • 0031873388 scopus 로고    scopus 로고
    • Mitotic centromere-associated kinesin is important for anaphase chromosome segregation
    • Maney, T., Hunter, A. W., Wagenbach, M. & Wordeman, L. Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J. Cell Biol. 142, 787-801 (1998).
    • (1998) J. Cell Biol. , vol.142 , pp. 787-801
    • Maney, T.1    Hunter, A.W.2    Wagenbach, M.3    Wordeman, L.4
  • 124
    • 36849029848 scopus 로고    scopus 로고
    • MCAK facilitates chromosome movement by promoting kinetochore microtubule turnover
    • Wordeman, L., Wagenbach, M. & von Dassow, G. MCAK facilitates chromosome movement by promoting kinetochore microtubule turnover. J. Cell Biol. 179, 869-879 (2007).
    • (2007) J. Cell Biol. , vol.179 , pp. 869-879
    • Wordeman, L.1    Wagenbach, M.2    Von Dassow, G.3
  • 125
    • 58149334818 scopus 로고    scopus 로고
    • Genome stability is ensured by temporal control of kinetochore- microtubule dynamics
    • Bakhoum, S. F., Thompson, S. L., Manning, A. L. & Compton, D. A. Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nature Cell Biol. 11, 27-35 (2009).
    • (2009) Nature Cell Biol. , vol.11 , pp. 27-35
    • Bakhoum, S.F.1    Thompson, S.L.2    Manning, A.L.3    Compton, D.A.4
  • 126
    • 79960004101 scopus 로고    scopus 로고
    • The bidirectional depolymerizer MCAK generates force by disassembling both microtubule ends
    • Oguchi, Y., Uchimura, S., Ohki, T., Mikhailenko, S. V. & Ishiwata, S. The bidirectional depolymerizer MCAK generates force by disassembling both microtubule ends. Nature Cell Biol. 13, 846-852 (2011).
    • (2011) Nature Cell Biol. , vol.13 , pp. 846-852
    • Oguchi, Y.1    Uchimura, S.2    Ohki, T.3    Mikhailenko, S.V.4    Ishiwata, S.5
  • 127
    • 79959933358 scopus 로고    scopus 로고
    • Multi-talented MCAK: Microtubule depolymerizer with a strong grip
    • Diez, S. Multi-talented MCAK: microtubule depolymerizer with a strong grip. Nature Cell Biol. 13, 738-740 (2011).
    • (2011) Nature Cell Biol. , vol.13 , pp. 738-740
    • Diez, S.1
  • 128
    • 84883660746 scopus 로고    scopus 로고
    • Kinetochore kinesin CENP-E is a processive bi-directional tracker of dynamic microtubule tips
    • Gudimchuk, N. et al. Kinetochore kinesin CENP-E is a processive bi-directional tracker of dynamic microtubule tips. Nature Cell Biol. 15, 1079-1088 (2013).
    • (2013) Nature Cell Biol. , vol.15 , pp. 1079-1088
    • Gudimchuk, N.1
  • 129
    • 77957231776 scopus 로고    scopus 로고
    • Mitotic kinesin CENP-E promotes microtubule plus-end elongation
    • Sardar, H. S., Luczak, V. G., Lopez, M. M., Lister, B. C. & Gilbert, S. P. Mitotic kinesin CENP-E promotes microtubule plus-end elongation. Curr. Biol. 20, 1648-1653 (2010).
    • (2010) Curr. Biol. , vol.20 , pp. 1648-1653
    • Sardar, H.S.1    Luczak, V.G.2    Lopez, M.M.3    Lister, B.C.4    Gilbert, S.P.5
  • 130
    • 0022452232 scopus 로고
    • Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle
    • Rieder, C. L., Davison, E. A., Jensen, L. C., Cassimeris, L. & Salmon, E. D. Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle. J. Cell Biol. 103, 581-591 (1986).
    • (1986) J. Cell Biol. , vol.103 , pp. 581-591
    • Rieder, C.L.1    Davison, E.A.2    Jensen, L.C.3    Cassimeris, L.4    Salmon, E.D.5
  • 131
    • 80053358568 scopus 로고    scopus 로고
    • Localization-dependent functions and regulation during cell division
    • Vanneste, D., Ferreira, V. & Vernos, I. Chromokinesins: localization-dependent functions and regulation during cell division. Biochem. Soc. Trans. 39, 1154-1160 (2011).
    • (2011) Biochem. Soc. Trans. , vol.39 , pp. 1154-1160
    • Vanneste, D.1    Ferreira, V.2    Chromokinesins, V.I.3
  • 132
    • 25444505078 scopus 로고    scopus 로고
    • Microtubule movements on the arms of mitotic chromosomes: Polar ejection forces quantified in vitro
    • Brouhard, G. J. & Hunt, A. J. Microtubule movements on the arms of mitotic chromosomes: polar ejection forces quantified in vitro. Proc. Natl. Acad. Sci. USA 102, 13903-13908 (2005)
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 13903-13908
    • Brouhard, G.J.1    Hunt, A.J.2
  • 133
    • 84866362654 scopus 로고    scopus 로고
    • Human chromokinesins promote chromosome congression and spindle microtubule dynamics during mitosis
    • Wandke, C. et al. Human chromokinesins promote chromosome congression and spindle microtubule dynamics during mitosis. J. Cell Biol. 198, 847-863 (2012).
    • (2012) J. Cell Biol. , vol.198 , pp. 847-863
    • Wandke, C.1
  • 134
    • 80051985198 scopus 로고    scopus 로고
    • The spatial arrangement of chromosomes during prometaphase facilitates spindle assembly
    • Magidson, V. et al. The spatial arrangement of chromosomes during prometaphase facilitates spindle assembly. Cell 146, 555-567 (2011).
    • (2011) Cell , vol.146 , pp. 555-567
    • Magidson, V.1
  • 135
    • 0035904229 scopus 로고    scopus 로고
    • The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles
    • Levesque, A. A. & Compton, D. A. The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles. J. Cell Biol. 154, 1135-1146 (2001).
    • (2001) J. Cell Biol. , vol.154 , pp. 1135-1146
    • Levesque, A.A.1    Compton, D.A.2
  • 136
    • 0034682707 scopus 로고    scopus 로고
    • The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement
    • Funabiki, H. & Murray, A. W. The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement. Cell 102, 411-424 (2000).
    • (2000) Cell , vol.102 , pp. 411-424
    • Funabiki, H.1    Murray, A.W.2
  • 137
    • 0034682704 scopus 로고    scopus 로고
    • Xkid, a chromokinesin required for chromosome alignment on the metaphase plate
    • Antonio, C. et al. Xkid, a chromokinesin required for chromosome alignment on the metaphase plate. Cell 102, 425-435 (2000).
    • (2000) Cell , vol.102 , pp. 425-435
    • Antonio, C.1
  • 138
    • 0037416185 scopus 로고    scopus 로고
    • The human chromokinesin Kid is a plus end-directed microtubule-based motor
    • Yajima, J. et al. The human chromokinesin Kid is a plus end-directed microtubule-based motor. EMBO J. 22, 1067-1074 (2003).
    • (2003) EMBO J. , vol.22 , pp. 1067-1074
    • Yajima, J.1
  • 139
    • 84873046642 scopus 로고    scopus 로고
    • Elevated polar ejection forces stabilize kinetochore-microtubule attachments
    • Cane, S., Ye, A. A., Luks-Morgan, S. J. & Maresca, T. J. Elevated polar ejection forces stabilize kinetochore-microtubule attachments. J. Cell Biol. 200, 203-218 (2013).
    • (2013) J. Cell Biol. , vol.200 , pp. 203-218
    • Cane, S.1    Ye, A.A.2    Luks-Morgan, S.J.3    Maresca, T.J.4
  • 140
    • 0026484416 scopus 로고
    • Kinesin family in murine central nervous system
    • Aizawa, H. et al. Kinesin family in murine central nervous system. J. Cell Biol. 119, 1287-1296 (1992).
    • (1992) J. Cell Biol. , vol.119 , pp. 1287-1296
    • Aizawa, H.1
  • 141
    • 0034618611 scopus 로고    scopus 로고
    • Identification of the human homologue of mouse KIF4, a kinesin superfamily motor protein
    • Oh, S. et al. Identification of the human homologue of mouse KIF4, a kinesin superfamily motor protein. Biochim. Biophys. Acta 1493, 219-224 (2000).
    • (2000) Biochim. Biophys. Acta , vol.1493 , pp. 219-224
    • Oh, S.1
  • 142
    • 0035893561 scopus 로고    scopus 로고
    • Human kinesin superfamily member 4 is dominantly localized in the nuclear matrix and is associated with chromosomes during mitosis
    • Lee, Y. M. et al. Human kinesin superfamily member 4 is dominantly localized in the nuclear matrix and is associated with chromosomes during mitosis. Biochem. J. 360, 549-556 (2001).
    • (2001) Biochem. J. , vol.360 , pp. 549-556
    • Lee, Y.M.1
  • 143
    • 84879154670 scopus 로고    scopus 로고
    • Mitotic chromosomes are compacted laterally by KIF4 and condensin and axially by topoisomerase IIα
    • Samejima, K. et al. Mitotic chromosomes are compacted laterally by KIF4 and condensin and axially by topoisomerase IIα. J. Cell Biol. 199, 755-770 (2012).
    • (2012) J. Cell Biol. , vol.199 , pp. 755-770
    • Samejima, K.1
  • 144
    • 0023132671 scopus 로고
    • Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends
    • Gorbsky, G. J., Sammak, P. J. & Borisy, G. G. Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends. J. Cell Biol. 104, 9-18 (1987).
    • (1987) J. Cell Biol. , vol.104 , pp. 9-18
    • Gorbsky, G.J.1    Sammak, P.J.2    Borisy, G.G.3
  • 145
    • 0026722242 scopus 로고
    • Poleward kinetochore fiber movement occurs during both metaphase and anaphase-A in newt lung cell mitosis
    • Mitchison, T. J. & Salmon, E. D. Poleward kinetochore fiber movement occurs during both metaphase and anaphase-A in newt lung cell mitosis. J. Cell Biol. 119, 569-582 (1992).
    • (1992) J. Cell Biol. , vol.119 , pp. 569-582
    • Mitchison, T.J.1    Salmon, E.D.2
  • 146
    • 1642540211 scopus 로고    scopus 로고
    • Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase
    • Rogers, G. C. et al. Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase. Nature 427, 364-370 (2004)
    • (2004) Nature , vol.427 , pp. 364-370
    • Rogers, G.C.1
  • 148
    • 65249190848 scopus 로고    scopus 로고
    • Kinesin-5-dependent poleward flux and spindle length control in Drosophila embryo mitosis
    • Brust-Mascher, I., Sommi, P., Cheerambathur, D. K. & Scholey, J. M. Kinesin-5-dependent poleward flux and spindle length control in Drosophila embryo mitosis. Mol. Biol. Cell 20, 1749-1762 (2009).
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1749-1762
    • Brust-Mascher, I.1    Sommi, P.2    Cheerambathur, D.K.3    Scholey, J.M.4
  • 149
    • 0032476715 scopus 로고    scopus 로고
    • Time-lapse microscopy reveals unique roles for kinesins during anaphase in budding yeast
    • Straight, A. F., Sedat, J. W. & Murray, A. W. Time-lapse microscopy reveals unique roles for kinesins during anaphase in budding yeast. J. Cell Biol. 143, 687-694 (1998).
    • (1998) J. Cell Biol. , vol.143 , pp. 687-694
    • Straight, A.F.1    Sedat, J.W.2    Murray, A.W.3
  • 150
    • 34250183789 scopus 로고    scopus 로고
    • Kinesin-5 acts as a brake in anaphase spindle elongation
    • Saunders, A. M., Powers, J., Strome, S. & Saxton, W. M. Kinesin-5 acts as a brake in anaphase spindle elongation. Curr. Biol. 17, R453-R454 (2007).
    • (2007) Curr. Biol. , vol.17
    • Saunders, A.M.1    Powers, J.2    Strome, S.3    Saxton, W.M.4
  • 151
    • 58049204447 scopus 로고    scopus 로고
    • The 3Ms of central spindle assembly: Microtubules, motors and MAPs
    • Glotzer, M. The 3Ms of central spindle assembly: microtubules, motors and MAPs. Nature Rev. Mol. Cell Biol. 10, 9-20 (2009).
    • (2009) Nature Rev. Mol. Cell Biol. , vol.10 , pp. 9-20
    • Glotzer, M.1
  • 152
    • 0027230133 scopus 로고
    • Astral and spindle forces in PtK2 cells during anaphase B: A laser microbeam study
    • Aist, J. R., Liang, H. & Berns, M. W. Astral and spindle forces in PtK2 cells during anaphase B: a laser microbeam study. J. Cell Sci. 104, 1207-1216 (1993).
    • (1993) J. Cell Sci. , vol.104 , pp. 1207-1216
    • Aist, J.R.1    Liang, H.2    Berns, M.W.3
  • 153
    • 0035252546 scopus 로고    scopus 로고
    • Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo
    • Grill, S. W., Gonczy, P., Stelzer, E. H. & Hyman, A. A. Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature 409, 630-633 (2001).
    • (2001) Nature , vol.409 , pp. 630-633
    • Grill, S.W.1    Gonczy, P.2    Stelzer, E.H.3    Hyman, A.A.4
  • 154
    • 84869116731 scopus 로고    scopus 로고
    • Cytokinesis microtubule organisers at a glance
    • Lee, K. Y., Davies, T. & Mishima, M. Cytokinesis microtubule organisers at a glance. J. Cell Sci. 125, 3495-3500 (2012).
    • (2012) J. Cell Sci. , vol.125 , pp. 3495-3500
    • Lee, K.Y.1    Davies, T.2    Mishima, M.3
  • 155
    • 71649096399 scopus 로고    scopus 로고
    • Clustering of centralspindlin is essential for its accumulation to the central spindle and the midbody
    • Hutterer, A., Glotzer, M. & Mishima, M. Clustering of centralspindlin is essential for its accumulation to the central spindle and the midbody. Curr. Biol. 19, 2043-2049 (2009).
    • (2009) Curr. Biol. , vol.19 , pp. 2043-2049
    • Hutterer, A.1    Glotzer, M.2    Mishima, M.3
  • 156
    • 77953137954 scopus 로고    scopus 로고
    • Aurora B and 14-3-3 coordinately regulate clustering of centralspindlin during cytokinesis
    • Douglas, M. E., Davies, T., Joseph, N. & Mishima, M. Aurora B and 14-3-3 coordinately regulate clustering of centralspindlin during cytokinesis. Curr. Biol. 20, 927-933 (2010).
    • (2010) Curr. Biol. , vol.20 , pp. 927-933
    • Douglas, M.E.1    Davies, T.2    Joseph, N.3    Mishima, M.4
  • 157
    • 84861847191 scopus 로고    scopus 로고
    • ARF6 GTPase protects the post-mitotic midbody from 14-3-3-mediated disintegration
    • Joseph, N., Hutterer, A., Poser, I. & Mishima, M. ARF6 GTPase protects the post-mitotic midbody from 14-3-3-mediated disintegration. EMBO J. 31, 2604-2614 (2012).
    • (2012) EMBO J. , vol.31 , pp. 2604-2614
    • Joseph, N.1    Hutterer, A.2    Poser, I.3    Mishima, M.4
  • 158
    • 4444346337 scopus 로고    scopus 로고
    • Essential roles of KIF4 and its binding partner PRC1 in organized central spindle midzone formation
    • Kurasawa, Y., Earnshaw, W. C., Mochizuki, Y., Dohmae, N. & Todokoro, K. Essential roles of KIF4 and its binding partner PRC1 in organized central spindle midzone formation. EMBO J. 23, 3237-3248 (2004).
    • (2004) EMBO J. , vol.23 , pp. 3237-3248
    • Kurasawa, Y.1    Earnshaw, W.C.2    Mochizuki, Y.3    Dohmae, N.4    Todokoro, K.5
  • 159
    • 77955339199 scopus 로고    scopus 로고
    • A minimal midzone protein module controls formation and length of antiparallel microtubule overlaps
    • Bieling, P., Telley, I. A. & Surrey, T. A minimal midzone protein module controls formation and length of antiparallel microtubule overlaps. Cell 142, 420-432 (2010).
    • (2010) Cell , vol.142 , pp. 420-432
    • Bieling, P.1    Telley, I.A.2    Surrey, T.3
  • 160
    • 79957503202 scopus 로고    scopus 로고
    • KIF4 regulates midzone length during cytokinesis
    • Hu, C. K., Coughlin, M., Field, C. M. & Mitchison, T. J. KIF4 regulates midzone length during cytokinesis. Curr. Biol. 21, 815-824 (2011).
    • (2011) Curr. Biol. , vol.21 , pp. 815-824
    • Hu, C.K.1    Coughlin, M.2    Field, C.M.3    Mitchison, T.J.4
  • 161
    • 84884249418 scopus 로고    scopus 로고
    • Aurora B suppresses microtubule dynamics and limits central spindle size by locally activating KIF4A
    • Nunes Bastos, R. et al. Aurora B suppresses microtubule dynamics and limits central spindle size by locally activating KIF4A. J. Cell Biol. 202, 605-621 (2013).
    • (2013) J. Cell Biol. , vol.202 , pp. 605-621
    • Nunes Bastos, R.1
  • 162
    • 84884221536 scopus 로고    scopus 로고
    • Aurora B and Kif2A control microtubule length for assembly of a functional central spindle during anaphase
    • Uehara, R. et al. Aurora B and Kif2A control microtubule length for assembly of a functional central spindle during anaphase. J. Cell Biol. 202, 623-636 (2013).
    • (2013) J. Cell Biol. , vol.202 , pp. 623-636
    • Uehara, R.1
  • 163
    • 79551525710 scopus 로고    scopus 로고
    • Five challenges to bringing single-molecule force spectroscopy into living cells
    • Dufrene, Y. F. et al. Five challenges to bringing single-molecule force spectroscopy into living cells. Nature Methods 8, 123-127 (2011)
    • (2011) Nature Methods , vol.8 , pp. 123-127
    • Dufrene, Y.F.1
  • 164
    • 69549120405 scopus 로고    scopus 로고
    • How do anti-mitotic drugs kill cancer cells?
    • Gascoigne, K. E. & Taylor, S. S. How do anti-mitotic drugs kill cancer cells? J. Cell Sci. 122, 2579-2585 (2009).
    • (2009) J. Cell Sci. , vol.122 , pp. 2579-2585
    • Gascoigne, K.E.1    Taylor, S.S.2
  • 165
    • 84885954101 scopus 로고    scopus 로고
    • Mitosis-targeting therapies: A troubleshooting guide
    • Doménech, E. & Malumbres, M. Mitosis-targeting therapies: a troubleshooting guide. Curr. Opin. Pharmacol. 13, 1-10 (2013).
    • (2013) Curr. Opin. Pharmacol. , vol.13 , pp. 1-10
    • Doménech, E.1    Malumbres, M.2
  • 166
    • 84888297107 scopus 로고    scopus 로고
    • Design, synthesis, and biological evaluation of an allosteric inhibitor of HSET that targets cancer cells with supernumerary centrosomes
    • Watts, C. A. et al. Design, synthesis, and biological evaluation of an allosteric inhibitor of HSET that targets cancer cells with supernumerary centrosomes. Chem. Biol. 20, 1399-1410 (2013).
    • (2013) Chem. Biol. , vol.20 , pp. 1399-1410
    • Watts, C.A.1
  • 168
    • 0037457808 scopus 로고    scopus 로고
    • Interaction of the mitotic inhibitor monastrol with human kinesin Eg5
    • Debonis, S. et al. Interaction of the mitotic inhibitor monastrol with human kinesin Eg5. Biochemistry 42, 338-349 (2003).
    • (2003) Biochemistry , vol.42 , pp. 338-349
    • Debonis, S.1
  • 169
    • 2642572753 scopus 로고    scopus 로고
    • Monastrol stabilises an attached low-friction mode of Eg5
    • Crevel, I. M.-T. C., Alonso, M. C. & Cross, R. A. Monastrol stabilises an attached low-friction mode of Eg5. Curr. Biol. 14, R411-R412 (2004).
    • (2004) Curr. Biol. , vol.14
    • Crevel, I.M.-T.C.1    Alonso, M.C.2    Cross, R.A.3
  • 170
    • 49649127224 scopus 로고    scopus 로고
    • A novel small-molecule inhibitor reveals a possible role of kinesin-5 in anastral spindle-pole assembly
    • Groen, A. C. et al. A novel small-molecule inhibitor reveals a possible role of kinesin-5 in anastral spindle-pole assembly. J. Cell Sci. 121, 2293-2300 (2008).
    • (2008) J. Cell Sci. , vol.121 , pp. 2293-2300
    • Groen, A.C.1
  • 171
    • 77950525308 scopus 로고    scopus 로고
    • Antitumor activity of an allosteric inhibitor of centromere-associated protein-E
    • Wood, K. W. et al. Antitumor activity of an allosteric inhibitor of centromere-associated protein-E. Proc. Natl. Acad. Sci. USA 107, 5839-5844 (2010).
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 5839-5844
    • Wood, K.W.1
  • 172
    • 84894633297 scopus 로고    scopus 로고
    • Kinesin inhibitor marches toward first-in-class pivotal trial
    • Owens, B. Kinesin inhibitor marches toward first-in-class pivotal trial. Nature Med. 19, 1550 (2013).
    • (2013) Nature Med. , vol.19 , pp. 1550
    • Owens, B.1
  • 173
    • 84880684448 scopus 로고    scopus 로고
    • Microtubule motors: A new hope for Kinesin-5 inhibitors?
    • Groen, A. Microtubule motors: a new hope for Kinesin-5 inhibitors? Curr. Biol. 23, R617-R618 (2013).
    • (2013) Curr. Biol. , vol.23
    • Groen, A.1
  • 174
    • 1342296567 scopus 로고    scopus 로고
    • A common mechanism for microtubule destabilizers-M type kinesins stabilize curling of the protofilament using the class-specific neck and loops
    • Ogawa, T. T., Nitta, R. R., Okada, Y. Y. & Hirokawa, N. A common mechanism for microtubule destabilizers-M type kinesins stabilize curling of the protofilament using the class-specific neck and loops. Cell 116, 591-602 (2004).
    • (2004) Cell , vol.116 , pp. 591-602
    • Ogawa, T.T.1    Nitta, R.R.2    Okada, Y.Y.3    Hirokawa, N.4
  • 175
    • 77449158973 scopus 로고    scopus 로고
    • Catalysis of the microtubule on-rate is the major parameter regulating the depolymerase activity of MCAK
    • Cooper, J. R., Wagenbach, M., Asbury, C. L. & Wordeman, L. Catalysis of the microtubule on-rate is the major parameter regulating the depolymerase activity of MCAK. Nature Struc. Mol. Biol. 17, 77-82 (2010).
    • (2010) Nature Struc. Mol. Biol. , vol.17 , pp. 77-82
    • Cooper, J.R.1    Wagenbach, M.2    Asbury, C.L.3    Wordeman, L.4
  • 176
    • 84860357530 scopus 로고    scopus 로고
    • Kif2C minimal functional domain has unusual nucleotide binding properties that are adapted to microtubule depolymerization
    • Wang, W. W. et al. Kif2C minimal functional domain has unusual nucleotide binding properties that are adapted to microtubule depolymerization. J. Biol. Chem. 287, 15143-15153 (2012).
    • (2012) J. Biol. Chem. , vol.287 , pp. 15143-15153
    • Wang, W.W.1
  • 177
    • 65249163575 scopus 로고    scopus 로고
    • A new model for binding of kinesin 13 to curved microtubule protofilaments
    • Mulder, A. M. et al. A new model for binding of kinesin 13 to curved microtubule protofilaments. J. Cell Biol. 185, 51-57 (2009).
    • (2009) J. Cell Biol. , vol.185 , pp. 51-57
    • Mulder, A.M.1
  • 178
    • 84875806836 scopus 로고    scopus 로고
    • Structural model for tubulin recognition and deformation by kinesin-13 microtubule depolymerases
    • Asenjo, A. B. et al. Structural model for tubulin recognition and deformation by kinesin-13 microtubule depolymerases. Cell Rep. 3, 759-768 (2013).
    • (2013) Cell Rep. , vol.3 , pp. 759-768
    • Asenjo, A.B.1
  • 179
    • 58149203506 scopus 로고    scopus 로고
    • A kinesin-13 mutant catalytically depolymerizes microtubules in ADP
    • Wagenbach, M., Domnitz, S., Wordeman, L. & Cooper, J. A kinesin-13 mutant catalytically depolymerizes microtubules in ADP. J. Cell Biol. 183, 617-623 (2008).
    • (2008) J. Cell Biol. , vol.183 , pp. 617-623
    • Wagenbach, M.1    Domnitz, S.2    Wordeman, L.3    Cooper, J.4
  • 180
    • 84881396280 scopus 로고    scopus 로고
    • Structure of a kinesin-tubulin complex and implications for kinesin motility
    • Gigant, B. et al. Structure of a kinesin-tubulin complex and implications for kinesin motility. Nature Struc. Mol. Biol. 20, 1001-1008 (2013).
    • (2013) Nature Struc. Mol. Biol. , vol.20 , pp. 1001-1008
    • Gigant, B.1
  • 181
    • 34147188510 scopus 로고    scopus 로고
    • An ATP gate controls tubulin binding by the tethered head of kinesin-1
    • Alonso, M. C. et al. An ATP gate controls tubulin binding by the tethered head of kinesin-1. Science 316, 120-123 (2007).
    • (2007) Science , vol.316 , pp. 120-123
    • Alonso, M.C.1
  • 182
    • 27944435774 scopus 로고    scopus 로고
    • Kinetochore fiber formation in animal somatic cells: Dueling mechanisms come to a draw
    • Rieder, C.L. Kinetochore fiber formation in animal somatic cells: dueling mechanisms come to a draw. Chromosoma 114, 310-318 (2005).
    • (2005) Chromosoma , vol.114 , pp. 310-318
    • Rieder, C.L.1
  • 183
    • 0028786819 scopus 로고
    • Kinetochore microtubule dynamics and the metaphase-anaphase transition
    • Zhai, Y., Kronebusch, P. J. & Borisy, G. G. Kinetochore microtubule dynamics and the metaphase-anaphase transition. J. Cell Biol. 131, 721-734 (1995).
    • (1995) J. Cell Biol. , vol.131 , pp. 721-734
    • Zhai, Y.1    Kronebusch, P.J.2    Borisy, G.G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.