메뉴 건너뛰기




Volumn 34, Issue 5, 2013, Pages 224-233

Beyond pattern recognition: NOD-like receptors in dendritic cells

Author keywords

[No Author keywords available]

Indexed keywords

CRYOPYRIN; INTERLEUKIN 1BETA; NUCLEOTIDE BINDING OLIGOMERIZATION DOMAIN LIKE RECEPTOR;

EID: 84877102781     PISSN: 14714906     EISSN: 14714981     Source Type: Journal    
DOI: 10.1016/j.it.2012.12.003     Document Type: Review
Times cited : (67)

References (123)
  • 1
    • 77950343791 scopus 로고    scopus 로고
    • Pattern recognition receptors and inflammation
    • Takeuchi O., Akira S. Pattern recognition receptors and inflammation. Cell 2010, 140:805-820.
    • (2010) Cell , vol.140 , pp. 805-820
    • Takeuchi, O.1    Akira, S.2
  • 2
    • 84855989829 scopus 로고    scopus 로고
    • Inflammasomes in health and disease
    • Strowig T., et al. Inflammasomes in health and disease. Nature 2012, 481:278-286.
    • (2012) Nature , vol.481 , pp. 278-286
    • Strowig, T.1
  • 3
    • 58049220365 scopus 로고    scopus 로고
    • Pattern recognition receptors and control of adaptive immunity
    • Palm N.W., Medzhitov R. Pattern recognition receptors and control of adaptive immunity. Immunol. Rev. 2009, 227:221-233.
    • (2009) Immunol. Rev. , vol.227 , pp. 221-233
    • Palm, N.W.1    Medzhitov, R.2
  • 4
    • 33845905781 scopus 로고    scopus 로고
    • T-cell regulation: with complements from innate immunity
    • Kemper C., Atkinson J.P. T-cell regulation: with complements from innate immunity. Nat. Rev. Immunol. 2007, 7:9-18.
    • (2007) Nat. Rev. Immunol. , vol.7 , pp. 9-18
    • Kemper, C.1    Atkinson, J.P.2
  • 5
    • 42749088990 scopus 로고    scopus 로고
    • Innate immune 'self' recognition: a role for CD47-SIRPalpha interactions in hematopoietic stem cell transplantation
    • van den Berg T.K., van der Schoot C.E. Innate immune 'self' recognition: a role for CD47-SIRPalpha interactions in hematopoietic stem cell transplantation. Trends Immunol. 2008, 29:203-206.
    • (2008) Trends Immunol. , vol.29 , pp. 203-206
    • van den Berg, T.K.1    van der Schoot, C.E.2
  • 6
    • 79151473567 scopus 로고    scopus 로고
    • Pentraxins in innate immunity: lessons from PTX3
    • Deban L., et al. Pentraxins in innate immunity: lessons from PTX3. Cell Tissue Res. 2011, 343:237-249.
    • (2011) Cell Tissue Res. , vol.343 , pp. 237-249
    • Deban, L.1
  • 7
    • 84867389820 scopus 로고    scopus 로고
    • Overview of the killer cell immunoglobulin-like receptor system
    • Rajalingam R. Overview of the killer cell immunoglobulin-like receptor system. Methods Mol. Biol. 2012, 882:391-414.
    • (2012) Methods Mol. Biol. , vol.882 , pp. 391-414
    • Rajalingam, R.1
  • 8
    • 77955383770 scopus 로고    scopus 로고
    • DAMPening inflammation by modulating TLR signalling
    • Article ID 672395
    • Piccinini A.M., Midwood K.S. DAMPening inflammation by modulating TLR signalling. Mediators Inflamm. 2010, 2010. Article ID 672395. 10.1155/2010/672395.
    • (2010) Mediators Inflamm. , vol.2010
    • Piccinini, A.M.1    Midwood, K.S.2
  • 9
    • 84859957011 scopus 로고    scopus 로고
    • F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells
    • Ahrens S., et al. F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity 2012, 36:635-645.
    • (2012) Immunity , vol.36 , pp. 635-645
    • Ahrens, S.1
  • 10
    • 84865401654 scopus 로고    scopus 로고
    • Podoplanin-rich stromal networks induce dendritic cell motility via activation of the C-type lectin receptor CLEC-2
    • Acton S.E., et al. Podoplanin-rich stromal networks induce dendritic cell motility via activation of the C-type lectin receptor CLEC-2. Immunity 2012, 37:276-289.
    • (2012) Immunity , vol.37 , pp. 276-289
    • Acton, S.E.1
  • 11
    • 79959649316 scopus 로고    scopus 로고
    • RIG-I like receptors and their signaling crosstalk in the regulation of antiviral immunity
    • Ramos H.J., Gale M. RIG-I like receptors and their signaling crosstalk in the regulation of antiviral immunity. Curr. Opin. Virol. 2011, 1:167-176.
    • (2011) Curr. Opin. Virol. , vol.1 , pp. 167-176
    • Ramos, H.J.1    Gale, M.2
  • 12
    • 80052152283 scopus 로고    scopus 로고
    • The PYHIN protein family as mediators of host defenses
    • Schattgen S.A., Fitzgerald K.A. The PYHIN protein family as mediators of host defenses. Immunol. Rev. 2011, 243:109-118.
    • (2011) Immunol. Rev. , vol.243 , pp. 109-118
    • Schattgen, S.A.1    Fitzgerald, K.A.2
  • 13
    • 80053379974 scopus 로고    scopus 로고
    • Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity
    • Kofoed E.M., Vance R.E. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 2011, 477:592-595.
    • (2011) Nature , vol.477 , pp. 592-595
    • Kofoed, E.M.1    Vance, R.E.2
  • 14
    • 84858796861 scopus 로고    scopus 로고
    • An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages
    • Khare S., et al. An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity 2012, 36:464-476.
    • (2012) Immunity , vol.36 , pp. 464-476
    • Khare, S.1
  • 15
    • 52549099416 scopus 로고    scopus 로고
    • Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin
    • Lightfield K.L., et al. Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat. Immunol. 2008, 9:1171-1178.
    • (2008) Nat. Immunol. , vol.9 , pp. 1171-1178
    • Lightfield, K.L.1
  • 16
    • 77951295418 scopus 로고    scopus 로고
    • Influenza virus activates inflammasomes via its intracellular M2 ion channel
    • Ichinohe T., et al. Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat. Immunol. 2010, 11:404-410.
    • (2010) Nat. Immunol. , vol.11 , pp. 404-410
    • Ichinohe, T.1
  • 17
    • 62449101446 scopus 로고    scopus 로고
    • Anthrax lethal toxin triggers the formation of a membrane-associated inflammasome complex in murine macrophages
    • Nour A.M., et al. Anthrax lethal toxin triggers the formation of a membrane-associated inflammasome complex in murine macrophages. Infect. Immun. 2009, 77:1262-1271.
    • (2009) Infect. Immun. , vol.77 , pp. 1262-1271
    • Nour, A.M.1
  • 18
    • 38049119726 scopus 로고    scopus 로고
    • Anthrax lethal toxin-induced inflammasome formation and caspase-1 activation are late events dependent on ion fluxes and the proteasome
    • Wickliffe K.E., et al. Anthrax lethal toxin-induced inflammasome formation and caspase-1 activation are late events dependent on ion fluxes and the proteasome. Cell. Microbiol. 2008, 10:332-343.
    • (2008) Cell. Microbiol. , vol.10 , pp. 332-343
    • Wickliffe, K.E.1
  • 19
    • 37549041954 scopus 로고    scopus 로고
    • Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome
    • Sutterwala F.S., et al. Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J. Exp. Med. 2007, 204:3235-3245.
    • (2007) J. Exp. Med. , vol.204 , pp. 3235-3245
    • Sutterwala, F.S.1
  • 20
    • 77649241461 scopus 로고    scopus 로고
    • Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome
    • Miao E.A., et al. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:3076-3080.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 3076-3080
    • Miao, E.A.1
  • 21
    • 47849097202 scopus 로고    scopus 로고
    • Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization
    • Hornung V., et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 2008, 9:847-856.
    • (2008) Nat. Immunol. , vol.9 , pp. 847-856
    • Hornung, V.1
  • 22
    • 77249171672 scopus 로고    scopus 로고
    • The role of NOD-like receptors in shaping adaptive immunity
    • Williams A., et al. The role of NOD-like receptors in shaping adaptive immunity. Curr. Opin. Immunol. 2010, 22:34-40.
    • (2010) Curr. Opin. Immunol. , vol.22 , pp. 34-40
    • Williams, A.1
  • 23
    • 64049111768 scopus 로고    scopus 로고
    • The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA
    • Allen I.C., et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 2009, 30:556-565.
    • (2009) Immunity , vol.30 , pp. 556-565
    • Allen, I.C.1
  • 24
    • 70349317039 scopus 로고    scopus 로고
    • Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome
    • Joly S., et al. Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. J. Immunol. 2009, 183:3578-3581.
    • (2009) J. Immunol. , vol.183 , pp. 3578-3581
    • Joly, S.1
  • 25
    • 68949092245 scopus 로고    scopus 로고
    • Fungal zymosan and mannan activate the cryopyrin inflammasome
    • Lamkanfi M., et al. Fungal zymosan and mannan activate the cryopyrin inflammasome. J. Biol. Chem. 2009, 284:20574-20581.
    • (2009) J. Biol. Chem. , vol.284 , pp. 20574-20581
    • Lamkanfi, M.1
  • 26
    • 79953315378 scopus 로고    scopus 로고
    • Differential requirements for NAIP5 in activation of the NLRC4 inflammasome
    • Lightfield K.L., et al. Differential requirements for NAIP5 in activation of the NLRC4 inflammasome. Infect. Immun. 2011, 79:1606-1614.
    • (2011) Infect. Immun. , vol.79 , pp. 1606-1614
    • Lightfield, K.L.1
  • 27
    • 33644663232 scopus 로고    scopus 로고
    • Identification of the critical residues involved in peptidoglycan detection by Nod1
    • Girardin S.E., et al. Identification of the critical residues involved in peptidoglycan detection by Nod1. J. Biol. Chem. 2005, 280:38648-38656.
    • (2005) J. Biol. Chem. , vol.280 , pp. 38648-38656
    • Girardin, S.E.1
  • 28
    • 84863336565 scopus 로고    scopus 로고
    • Pathogen sensing by nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is mediated by direct binding to muramyl dipeptide and ATP
    • Mo J., et al. Pathogen sensing by nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is mediated by direct binding to muramyl dipeptide and ATP. J. Biol. Chem. 2012, 287:23057-23067.
    • (2012) J. Biol. Chem. , vol.287 , pp. 23057-23067
    • Mo, J.1
  • 29
    • 2342583513 scopus 로고    scopus 로고
    • Regulatory regions and critical residues of NOD2 involved in muramyl dipeptide recognition
    • Tanabe T., et al. Regulatory regions and critical residues of NOD2 involved in muramyl dipeptide recognition. EMBO J. 2004, 23:1587-1597.
    • (2004) EMBO J. , vol.23 , pp. 1587-1597
    • Tanabe, T.1
  • 30
    • 79955161193 scopus 로고    scopus 로고
    • Mitochondria: sovereign of inflammation?
    • Tschopp J. Mitochondria: sovereign of inflammation?. Eur. J. Immunol. 2011, 41:1196-1202.
    • (2011) Eur. J. Immunol. , vol.41 , pp. 1196-1202
    • Tschopp, J.1
  • 31
    • 84870292233 scopus 로고    scopus 로고
    • Control of innate and adaptive immunity by the inflammasome
    • Ciraci C., et al. Control of innate and adaptive immunity by the inflammasome. Microbes Infect. 2012, 14:1263-1270.
    • (2012) Microbes Infect. , vol.14 , pp. 1263-1270
    • Ciraci, C.1
  • 32
    • 84867770402 scopus 로고    scopus 로고
    • Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation
    • Juliana C., et al. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J. Biol. Chem. 2012, 287:36617-36622.
    • (2012) J. Biol. Chem. , vol.287 , pp. 36617-36622
    • Juliana, C.1
  • 33
    • 84865511926 scopus 로고    scopus 로고
    • Novel role of PKR in inflammasome activation and HMGB1 release
    • Lu B., et al. Novel role of PKR in inflammasome activation and HMGB1 release. Nature 2012, 488:670-674.
    • (2012) Nature , vol.488 , pp. 670-674
    • Lu, B.1
  • 34
    • 77749304034 scopus 로고    scopus 로고
    • Critical functions of priming and lysosomal damage for NLRP3 activation
    • Hornung V., Latz E. Critical functions of priming and lysosomal damage for NLRP3 activation. Eur. J. Immunol. 2010, 40:620-623.
    • (2010) Eur. J. Immunol. , vol.40 , pp. 620-623
    • Hornung, V.1    Latz, E.2
  • 35
    • 73949118676 scopus 로고    scopus 로고
    • Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome
    • Iyer S.S., et al. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:20388-20393.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 20388-20393
    • Iyer, S.S.1
  • 36
    • 79953068336 scopus 로고    scopus 로고
    • Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation
    • Krysko D.V., et al. Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol. 2011, 32:157-164.
    • (2011) Trends Immunol. , vol.32 , pp. 157-164
    • Krysko, D.V.1
  • 37
    • 79951642032 scopus 로고    scopus 로고
    • Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome
    • Nakahira K., et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 2011, 12:222-230.
    • (2011) Nat. Immunol. , vol.12 , pp. 222-230
    • Nakahira, K.1
  • 38
    • 84862777872 scopus 로고    scopus 로고
    • Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis
    • Shimada K., et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 2012, 36:401-414.
    • (2012) Immunity , vol.36 , pp. 401-414
    • Shimada, K.1
  • 39
    • 78651393239 scopus 로고    scopus 로고
    • A role for mitochondria in NLRP3 inflammasome activation
    • Zhou R., et al. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011, 469:221-225.
    • (2011) Nature , vol.469 , pp. 221-225
    • Zhou, R.1
  • 40
    • 0035859020 scopus 로고    scopus 로고
    • Plant pathogens and integrated defence responses to infection
    • Dangl J.L., Jones J.D. Plant pathogens and integrated defence responses to infection. Nature 2001, 411:826-833.
    • (2001) Nature , vol.411 , pp. 826-833
    • Dangl, J.L.1    Jones, J.D.2
  • 41
    • 0024669109 scopus 로고
    • Immunogenicity: role of dendritic cells
    • Steinman R., Inaba K. Immunogenicity: role of dendritic cells. Bioessays 1989, 10:145-152.
    • (1989) Bioessays , vol.10 , pp. 145-152
    • Steinman, R.1    Inaba, K.2
  • 42
    • 0024955886 scopus 로고
    • Approaching the asymptote? Evolution and revolution in immunology
    • Janeway C.A. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 1989, 54:1-13.
    • (1989) Cold Spring Harb. Symp. Quant. Biol. , vol.54 , pp. 1-13
    • Janeway, C.A.1
  • 43
    • 5444262511 scopus 로고    scopus 로고
    • Toll-like receptor control of the adaptive immune responses
    • Iwasaki A., Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 2004, 5:987-995.
    • (2004) Nat. Immunol. , vol.5 , pp. 987-995
    • Iwasaki, A.1    Medzhitov, R.2
  • 44
    • 42649091089 scopus 로고    scopus 로고
    • Migration of dendritic cell subsets and their precursors
    • Randolph G.J., et al. Migration of dendritic cell subsets and their precursors. Annu. Rev. Immunol. 2008, 26:293-316.
    • (2008) Annu. Rev. Immunol. , vol.26 , pp. 293-316
    • Randolph, G.J.1
  • 45
    • 84877148550 scopus 로고    scopus 로고
    • TLR8 and NOD signaling synergistically induce the production of IL-1b and IL-23 in monocyte-derived DCs and enhance the expression of the feedback inhibitor SOCS2. Immunobiology (in press)
    • Schwarz, H. et al. (2012) TLR8 and NOD signaling synergistically induce the production of IL-1b and IL-23 in monocyte-derived DCs and enhance the expression of the feedback inhibitor SOCS2. Immunobiology (in press).
    • (2012)
    • Schwarz, H.1
  • 46
    • 34247254780 scopus 로고    scopus 로고
    • Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity
    • Fritz J.H., et al. Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity 2007, 26:445-459.
    • (2007) Immunity , vol.26 , pp. 445-459
    • Fritz, J.H.1
  • 47
    • 0034623225 scopus 로고    scopus 로고
    • An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways
    • Inohara N., et al. An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways. J. Biol. Chem. 2000, 275:27823-27831.
    • (2000) J. Biol. Chem. , vol.275 , pp. 27823-27831
    • Inohara, N.1
  • 48
    • 84866343440 scopus 로고    scopus 로고
    • NLRP10 enhances Shigella-induced pro-inflammatory responses
    • Lautz K., et al. NLRP10 enhances Shigella-induced pro-inflammatory responses. Cell. Microbiol. 2012, 14:1568-1583.
    • (2012) Cell. Microbiol. , vol.14 , pp. 1568-1583
    • Lautz, K.1
  • 49
    • 23844521000 scopus 로고    scopus 로고
    • Synergistic stimulation of human monocytes and dendritic cells by Toll-like receptor 4 and NOD1- and NOD2-activating agonists
    • Fritz J.H., et al. Synergistic stimulation of human monocytes and dendritic cells by Toll-like receptor 4 and NOD1- and NOD2-activating agonists. Eur. J. Immunol. 2005, 35:2459-2470.
    • (2005) Eur. J. Immunol. , vol.35 , pp. 2459-2470
    • Fritz, J.H.1
  • 50
    • 79955129532 scopus 로고    scopus 로고
    • Essential role of Rip2 in the modulation of innate and adaptive immunity triggered by Nod1 and Nod2 ligands
    • Magalhaes J.G., et al. Essential role of Rip2 in the modulation of innate and adaptive immunity triggered by Nod1 and Nod2 ligands. Eur. J. Immunol. 2011, 41:1445-1455.
    • (2011) Eur. J. Immunol. , vol.41 , pp. 1445-1455
    • Magalhaes, J.G.1
  • 51
    • 80052556040 scopus 로고    scopus 로고
    • Nucleotide oligomerization domain-containing proteins instruct T cell helper type 2 immunity through stromal activation
    • Magalhaes J.G., et al. Nucleotide oligomerization domain-containing proteins instruct T cell helper type 2 immunity through stromal activation. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:14896-14901.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 14896-14901
    • Magalhaes, J.G.1
  • 52
    • 76249085207 scopus 로고    scopus 로고
    • Nucleotide oligomerization binding domain-like receptor signaling enhances dendritic cell-mediated cross-priming in vivo
    • Asano J., et al. Nucleotide oligomerization binding domain-like receptor signaling enhances dendritic cell-mediated cross-priming in vivo. J. Immunol. 2010, 184:736-745.
    • (2010) J. Immunol. , vol.184 , pp. 736-745
    • Asano, J.1
  • 53
    • 84855999081 scopus 로고    scopus 로고
    • TLR and nucleotide-binding oligomerization domain-like receptor signals differentially regulate exogenous antigen presentation
    • Wagner C.S., Cresswell P. TLR and nucleotide-binding oligomerization domain-like receptor signals differentially regulate exogenous antigen presentation. J. Immunol. 2012, 188:686-693.
    • (2012) J. Immunol. , vol.188 , pp. 686-693
    • Wagner, C.S.1    Cresswell, P.2
  • 54
    • 74549206702 scopus 로고    scopus 로고
    • How the noninflammasome NLRs function in the innate immune system
    • Ting J.P.Y., et al. How the noninflammasome NLRs function in the innate immune system. Science 2010, 327:286-290.
    • (2010) Science , vol.327 , pp. 286-290
    • Ting, J.P.Y.1
  • 55
    • 84865404917 scopus 로고    scopus 로고
    • The innate immune sensor NLRC3 attenuates Toll-like receptor signaling via modification of the signaling adaptor TRAF6 and transcription factor NF-κB
    • Schneider M., et al. The innate immune sensor NLRC3 attenuates Toll-like receptor signaling via modification of the signaling adaptor TRAF6 and transcription factor NF-κB. Nat. Immunol. 2012, 13:823-831.
    • (2012) Nat. Immunol. , vol.13 , pp. 823-831
    • Schneider, M.1
  • 56
    • 81255189478 scopus 로고    scopus 로고
    • The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis
    • Zaki M.H., et al. The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell 2011, 20:649-660.
    • (2011) Cancer Cell , vol.20 , pp. 649-660
    • Zaki, M.H.1
  • 57
    • 28844494900 scopus 로고    scopus 로고
    • The CATERPILLER protein monarch-1 is an antagonist of toll-like receptor-, tumor necrosis factor alpha-, and Mycobacterium tuberculosis-induced pro-inflammatory signals
    • Williams K.L., et al. The CATERPILLER protein monarch-1 is an antagonist of toll-like receptor-, tumor necrosis factor alpha-, and Mycobacterium tuberculosis-induced pro-inflammatory signals. J. Biol. Chem. 2005, 280:39914-39924.
    • (2005) J. Biol. Chem. , vol.280 , pp. 39914-39924
    • Williams, K.L.1
  • 58
    • 33846473862 scopus 로고    scopus 로고
    • Monarch-1 suppresses non-canonical NF-kappaB activation and p52-dependent chemokine expression in monocytes
    • Lich J.D., et al. Monarch-1 suppresses non-canonical NF-kappaB activation and p52-dependent chemokine expression in monocytes. J. Immunol. 2007, 178:1256-1260.
    • (2007) J. Immunol. , vol.178 , pp. 1256-1260
    • Lich, J.D.1
  • 59
    • 38449087767 scopus 로고    scopus 로고
    • Heat shock protein 90 associates with monarch-1 and regulates its ability to promote degradation of NF-kappaB-inducing kinase
    • Arthur J.C., et al. Heat shock protein 90 associates with monarch-1 and regulates its ability to promote degradation of NF-kappaB-inducing kinase. J. Immunol. 2007, 179:6291-6296.
    • (2007) J. Immunol. , vol.179 , pp. 6291-6296
    • Arthur, J.C.1
  • 60
    • 0037144586 scopus 로고    scopus 로고
    • A novel PAAD-containing protein that modulates NF-kappa B induction by cytokines tumor necrosis factor-alpha and interleukin-1beta
    • Fiorentino L., et al. A novel PAAD-containing protein that modulates NF-kappa B induction by cytokines tumor necrosis factor-alpha and interleukin-1beta. J. Biol. Chem. 2002, 277:35333-35340.
    • (2002) J. Biol. Chem. , vol.277 , pp. 35333-35340
    • Fiorentino, L.1
  • 61
    • 40049089542 scopus 로고    scopus 로고
    • NLRP2, an inhibitor of the NF-kappaB pathway, is transcriptionally activated by NF-kappaB and exhibits a nonfunctional allelic variant
    • Fontalba A., et al. NLRP2, an inhibitor of the NF-kappaB pathway, is transcriptionally activated by NF-kappaB and exhibits a nonfunctional allelic variant. J. Immunol. 2007, 179:8519-8524.
    • (2007) J. Immunol. , vol.179 , pp. 8519-8524
    • Fontalba, A.1
  • 62
    • 79957576718 scopus 로고    scopus 로고
    • NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis
    • Elinav E., et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 2011, 145:745-757.
    • (2011) Cell , vol.145 , pp. 745-757
    • Elinav, E.1
  • 63
    • 84865130689 scopus 로고    scopus 로고
    • NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens
    • Anand P.K., et al. NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens. Nature 2012, 488:389-393.
    • (2012) Nature , vol.488 , pp. 389-393
    • Anand, P.K.1
  • 64
    • 40249111682 scopus 로고    scopus 로고
    • NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-kappaB and JNK pathways by inducing reactive oxygen species production
    • Tattoli I., et al. NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-kappaB and JNK pathways by inducing reactive oxygen species production. EMBO Rep. 2008, 9:293-300.
    • (2008) EMBO Rep. , vol.9 , pp. 293-300
    • Tattoli, I.1
  • 65
    • 38749097018 scopus 로고    scopus 로고
    • NLRX1 is a regulator of mitochondrial antiviral immunity
    • Moore C.B., et al. NLRX1 is a regulator of mitochondrial antiviral immunity. Nature 2008, 451:573-577.
    • (2008) Nature , vol.451 , pp. 573-577
    • Moore, C.B.1
  • 66
    • 79959329537 scopus 로고    scopus 로고
    • NLRX1 negatively regulates TLR-induced NF-κB signaling by targeting TRAF6 and IKK
    • Xia X., et al. NLRX1 negatively regulates TLR-induced NF-κB signaling by targeting TRAF6 and IKK. Immunity 2011, 34:843-853.
    • (2011) Immunity , vol.34 , pp. 843-853
    • Xia, X.1
  • 67
    • 70249138036 scopus 로고    scopus 로고
    • Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression
    • Bauernfeind F.G., et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 2009, 183:787-791.
    • (2009) J. Immunol. , vol.183 , pp. 787-791
    • Bauernfeind, F.G.1
  • 68
    • 4544234467 scopus 로고    scopus 로고
    • Specificity and expression of CIITA, the master regulator of MHC class II genes
    • LeibundGut-Landmann S., et al. Specificity and expression of CIITA, the master regulator of MHC class II genes. Eur. J. Immunol. 2004, 34:1513-1525.
    • (2004) Eur. J. Immunol. , vol.34 , pp. 1513-1525
    • LeibundGut-Landmann, S.1
  • 69
    • 0035379670 scopus 로고    scopus 로고
    • Dendritic cell-specific MHC class II transactivator contains a caspase recruitment domain that confers potent transactivation activity
    • Nickerson K., et al. Dendritic cell-specific MHC class II transactivator contains a caspase recruitment domain that confers potent transactivation activity. J. Biol. Chem. 2001, 276:19089-19093.
    • (2001) J. Biol. Chem. , vol.276 , pp. 19089-19093
    • Nickerson, K.1
  • 70
    • 4644342017 scopus 로고    scopus 로고
    • MHC class II expression is differentially regulated in plasmacytoid and conventional dendritic cells
    • LeibundGut-Landmann S., et al. MHC class II expression is differentially regulated in plasmacytoid and conventional dendritic cells. Nat. Immunol. 2004, 5:899-908.
    • (2004) Nat. Immunol. , vol.5 , pp. 899-908
    • LeibundGut-Landmann, S.1
  • 71
    • 84863630606 scopus 로고    scopus 로고
    • Cutting edge: impaired MHC class I expression in mice deficient for nlrc5/class I transactivator
    • Biswas A., et al. Cutting edge: impaired MHC class I expression in mice deficient for nlrc5/class I transactivator. J. Immunol. 2012, 189:516-520.
    • (2012) J. Immunol. , vol.189 , pp. 516-520
    • Biswas, A.1
  • 72
    • 84861137231 scopus 로고    scopus 로고
    • NLRC5 controls basal MHC class I gene expression in an MHC enhanceosome-dependent manner
    • Neerincx A., et al. NLRC5 controls basal MHC class I gene expression in an MHC enhanceosome-dependent manner. J. Immunol. 2012, 188:4940-4950.
    • (2012) J. Immunol. , vol.188 , pp. 4940-4950
    • Neerincx, A.1
  • 73
    • 84860316429 scopus 로고    scopus 로고
    • NLRC5 deficiency selectively impairs MHC class I- dependent lymphocyte killing by cytotoxic T cells
    • Staehli F., et al. NLRC5 deficiency selectively impairs MHC class I- dependent lymphocyte killing by cytotoxic T cells. J. Immunol. 2012, 188:3820-3828.
    • (2012) J. Immunol. , vol.188 , pp. 3820-3828
    • Staehli, F.1
  • 74
    • 45749111446 scopus 로고    scopus 로고
    • Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants
    • Eisenbarth S.C., et al. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 2008, 453:1122-1126.
    • (2008) Nature , vol.453 , pp. 1122-1126
    • Eisenbarth, S.C.1
  • 75
    • 34250792190 scopus 로고    scopus 로고
    • Activation of the IL-1beta-processing inflammasome is involved in contact hypersensitivity
    • Watanabe H., et al. Activation of the IL-1beta-processing inflammasome is involved in contact hypersensitivity. J. Invest. Dermatol. 2007, 127:1956-1963.
    • (2007) J. Invest. Dermatol. , vol.127 , pp. 1956-1963
    • Watanabe, H.1
  • 76
    • 70350569295 scopus 로고    scopus 로고
    • Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors
    • Ghiringhelli F., et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat. Med. 2009, 15:1170-1178.
    • (2009) Nat. Med. , vol.15 , pp. 1170-1178
    • Ghiringhelli, F.1
  • 77
    • 47849087075 scopus 로고    scopus 로고
    • Cutting edge: inflammasome activation by alum and alum's adjuvant effect are mediated by NLRP3
    • Li H., et al. Cutting edge: inflammasome activation by alum and alum's adjuvant effect are mediated by NLRP3. J. Immunol. 2008, 181:17-21.
    • (2008) J. Immunol. , vol.181 , pp. 17-21
    • Li, H.1
  • 78
    • 84863263746 scopus 로고    scopus 로고
    • Analysis of NLRP3 in the development of allergic airway disease in mice
    • Allen I.C., et al. Analysis of NLRP3 in the development of allergic airway disease in mice. J. Immunol. 2012, 188:2884-2893.
    • (2012) J. Immunol. , vol.188 , pp. 2884-2893
    • Allen, I.C.1
  • 79
    • 70449713915 scopus 로고    scopus 로고
    • Alum induces innate immune responses through macrophage and mast cell sensors, but these sensors are not required for alum to act as an adjuvant for specific immunity
    • McKee A.S., et al. Alum induces innate immune responses through macrophage and mast cell sensors, but these sensors are not required for alum to act as an adjuvant for specific immunity. J. Immunol. 2009, 183:4403-4414.
    • (2009) J. Immunol. , vol.183 , pp. 4403-4414
    • McKee, A.S.1
  • 80
    • 64049096334 scopus 로고    scopus 로고
    • The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1
    • Thomas P.G., et al. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity 2009, 30:566-575.
    • (2009) Immunity , vol.30 , pp. 566-575
    • Thomas, P.G.1
  • 81
    • 50849112477 scopus 로고    scopus 로고
    • The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1beta secretion but dispensable for adjuvant activity
    • Franchi L., Núñez G. The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1beta secretion but dispensable for adjuvant activity. Eur. J. Immunol. 2008, 38:2085-2089.
    • (2008) Eur. J. Immunol. , vol.38 , pp. 2085-2089
    • Franchi, L.1    Núñez, G.2
  • 82
    • 56149119563 scopus 로고    scopus 로고
    • Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome
    • Kool M., et al. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J. Immunol. 2008, 181:3755-3759.
    • (2008) J. Immunol. , vol.181 , pp. 3755-3759
    • Kool, M.1
  • 83
    • 79954597670 scopus 로고    scopus 로고
    • An unexpected role for uric acid as an inducer of T helper 2 cell immunity to inhaled antigens and inflammatory mediator of allergic asthma
    • Kool M., et al. An unexpected role for uric acid as an inducer of T helper 2 cell immunity to inhaled antigens and inflammatory mediator of allergic asthma. Immunity 2011, 34:527-540.
    • (2011) Immunity , vol.34 , pp. 527-540
    • Kool, M.1
  • 84
    • 84862988248 scopus 로고    scopus 로고
    • NLRP3 inflammasome induces chemotactic immune cell migration to the CNS in experimental autoimmune encephalomyelitis
    • Inoue M., et al. NLRP3 inflammasome induces chemotactic immune cell migration to the CNS in experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:10480-10485.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 10480-10485
    • Inoue, M.1
  • 85
    • 77955475968 scopus 로고    scopus 로고
    • NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses
    • Gris D., et al. NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses. J. Immunol. 2010, 185:974-981.
    • (2010) J. Immunol. , vol.185 , pp. 974-981
    • Gris, D.1
  • 86
    • 77954478334 scopus 로고    scopus 로고
    • Cutting edge: critical role for PYCARD/ASC in the development of experimental autoimmune encephalomyelitis
    • Shaw P.J., et al. Cutting edge: critical role for PYCARD/ASC in the development of experimental autoimmune encephalomyelitis. J. Immunol. 2010, 184:4610-4614.
    • (2010) J. Immunol. , vol.184 , pp. 4610-4614
    • Shaw, P.J.1
  • 87
    • 60549112774 scopus 로고    scopus 로고
    • Inflammasome recognition of influenza virus is essential for adaptive immune responses
    • Ichinohe T., et al. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J. Exp. Med. 2009, 206:79-87.
    • (2009) J. Exp. Med. , vol.206 , pp. 79-87
    • Ichinohe, T.1
  • 88
    • 0031712324 scopus 로고    scopus 로고
    • Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation
    • Sallusto F., et al. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur. J. Immunol. 1998, 28:2760-2769.
    • (1998) Eur. J. Immunol. , vol.28 , pp. 2760-2769
    • Sallusto, F.1
  • 89
    • 4143096772 scopus 로고    scopus 로고
    • CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions
    • Ohl L., et al. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 2004, 21:279-288.
    • (2004) Immunity , vol.21 , pp. 279-288
    • Ohl, L.1
  • 90
    • 84860233490 scopus 로고    scopus 로고
    • NLRP10 is a NOD-like receptor essential to initiate adaptive immunity by dendritic cells
    • Eisenbarth S.C., et al. NLRP10 is a NOD-like receptor essential to initiate adaptive immunity by dendritic cells. Nature 2012, 484:510-513.
    • (2012) Nature , vol.484 , pp. 510-513
    • Eisenbarth, S.C.1
  • 91
    • 33847338043 scopus 로고    scopus 로고
    • Caspase-11 regulates cell migration by promoting Aip1-Cofilin-mediated actin depolymerization
    • Li J., et al. Caspase-11 regulates cell migration by promoting Aip1-Cofilin-mediated actin depolymerization. Nat. Cell Biol. 2007, 9:276-286.
    • (2007) Nat. Cell Biol. , vol.9 , pp. 276-286
    • Li, J.1
  • 92
    • 80052968438 scopus 로고    scopus 로고
    • The inflammasome adaptor ASC regulates the function of adaptive immune cells by controlling Dock2-mediated Rac activation and actin polymerization
    • Ippagunta S.K., et al. The inflammasome adaptor ASC regulates the function of adaptive immune cells by controlling Dock2-mediated Rac activation and actin polymerization. Nat. Immunol. 2011, 12:1010-1016.
    • (2011) Nat. Immunol. , vol.12 , pp. 1010-1016
    • Ippagunta, S.K.1
  • 93
    • 84865827014 scopus 로고    scopus 로고
    • Addendum: defective Dock2 expression in a subset of ASC-deficient mouse lines
    • Ippagunta S.K., et al. Addendum: defective Dock2 expression in a subset of ASC-deficient mouse lines. Nat. Immunol. 2012, 13:701-702.
    • (2012) Nat. Immunol. , vol.13 , pp. 701-702
    • Ippagunta, S.K.1
  • 94
    • 78049489590 scopus 로고    scopus 로고
    • Cutting edge: NLRP12 controls dendritic and myeloid cell migration to affect contact hypersensitivity
    • Arthur J.C., et al. Cutting edge: NLRP12 controls dendritic and myeloid cell migration to affect contact hypersensitivity. J. Immunol. 2010, 185:4515-4519.
    • (2010) J. Immunol. , vol.185 , pp. 4515-4519
    • Arthur, J.C.1
  • 95
    • 84856091176 scopus 로고    scopus 로고
    • Characterization of NLRP12 during the development of allergic airway disease in mice
    • Allen I.C., et al. Characterization of NLRP12 during the development of allergic airway disease in mice. PLoS ONE 2012, 7:e30612.
    • (2012) PLoS ONE , vol.7
    • Allen, I.C.1
  • 96
    • 0037121946 scopus 로고    scopus 로고
    • Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen
    • Eisenbarth S.C., et al. Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J. Exp. Med. 2002, 196:1645-1651.
    • (2002) J. Exp. Med. , vol.196 , pp. 1645-1651
    • Eisenbarth, S.C.1
  • 97
    • 0034775153 scopus 로고    scopus 로고
    • Toll-like receptors control activation of adaptive immune responses
    • Schnare M., et al. Toll-like receptors control activation of adaptive immune responses. Nat. Immunol. 2001, 2:947-950.
    • (2001) Nat. Immunol. , vol.2 , pp. 947-950
    • Schnare, M.1
  • 98
    • 84870500778 scopus 로고    scopus 로고
    • Toll-like receptor-2 agonist-allergen coupling efficiently redirects th2 cell responses and inhibits allergic airway eosinophilia
    • Krishnaswamy J.K., et al. Toll-like receptor-2 agonist-allergen coupling efficiently redirects th2 cell responses and inhibits allergic airway eosinophilia. Am. J. Respir. Cell Mol. Biol. 2012, 47:852-863.
    • (2012) Am. J. Respir. Cell Mol. Biol. , vol.47 , pp. 852-863
    • Krishnaswamy, J.K.1
  • 99
    • 0033524482 scopus 로고    scopus 로고
    • A two-step, two-signal model for the primary activation of precursor helper T cells
    • Bretscher P.A. A two-step, two-signal model for the primary activation of precursor helper T cells. Proc. Natl. Acad. Sci. U.S.A. 1999, 96:185-190.
    • (1999) Proc. Natl. Acad. Sci. U.S.A. , vol.96 , pp. 185-190
    • Bretscher, P.A.1
  • 100
    • 0015043748 scopus 로고
    • Mutation and cancer: statistical study of retinoblastoma
    • Knudson A.G. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl. Acad. Sci. U.S.A. 1971, 68:820-823.
    • (1971) Proc. Natl. Acad. Sci. U.S.A. , vol.68 , pp. 820-823
    • Knudson, A.G.1
  • 102
    • 79956314385 scopus 로고    scopus 로고
    • Host defense pathways: role of redundancy and compensation in infectious disease phenotypes
    • Nish S., Medzhitov R. Host defense pathways: role of redundancy and compensation in infectious disease phenotypes. Immunity 2011, 34:629-636.
    • (2011) Immunity , vol.34 , pp. 629-636
    • Nish, S.1    Medzhitov, R.2
  • 103
    • 84856988610 scopus 로고    scopus 로고
    • Simultaneous targeting of toll- and nod-like receptors induces effective tumor-specific immune responses
    • Garaude J., et al. Simultaneous targeting of toll- and nod-like receptors induces effective tumor-specific immune responses. Sci. Transl. Med. 2012, 4:120ra116.
    • (2012) Sci. Transl. Med. , vol.4
    • Garaude, J.1
  • 104
    • 33847183077 scopus 로고    scopus 로고
    • Cooperation of Toll-like receptor signals in innate immune defence
    • Trinchieri G., Sher A. Cooperation of Toll-like receptor signals in innate immune defence. Nat. Rev. Immunol. 2007, 7:179-190.
    • (2007) Nat. Rev. Immunol. , vol.7 , pp. 179-190
    • Trinchieri, G.1    Sher, A.2
  • 106
    • 0028201732 scopus 로고
    • Tolerance, danger, and the extended family
    • Matzinger P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 1994, 12:991-1045.
    • (1994) Annu. Rev. Immunol. , vol.12 , pp. 991-1045
    • Matzinger, P.1
  • 107
    • 66949122854 scopus 로고    scopus 로고
    • Approaching the asymptote: 20 years later
    • Medzhitov R. Approaching the asymptote: 20 years later. Immunity 2009, 30:766-775.
    • (2009) Immunity , vol.30 , pp. 766-775
    • Medzhitov, R.1
  • 108
    • 0022616253 scopus 로고
    • Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy
    • Karre K., et al. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 1986, 319:675-678.
    • (1986) Nature , vol.319 , pp. 675-678
    • Karre, K.1
  • 109
    • 51149100023 scopus 로고    scopus 로고
    • The IFN-gamma-induced transcriptional program of the CIITA gene is inhibited by statins
    • Lee S.J., et al. The IFN-gamma-induced transcriptional program of the CIITA gene is inhibited by statins. Eur. J. Immunol. 2008, 38:2325-2336.
    • (2008) Eur. J. Immunol. , vol.38 , pp. 2325-2336
    • Lee, S.J.1
  • 110
    • 77954952875 scopus 로고    scopus 로고
    • Muropeptides trigger distinct activation profiles in macrophages and dendritic cells
    • Pashenkov M.V., et al. Muropeptides trigger distinct activation profiles in macrophages and dendritic cells. Int. Immunopharmacol. 2010, 10:875-882.
    • (2010) Int. Immunopharmacol. , vol.10 , pp. 875-882
    • Pashenkov, M.V.1
  • 111
    • 84858677223 scopus 로고    scopus 로고
    • Sensing and reacting to microbes through the inflammasomes
    • Franchi L., et al. Sensing and reacting to microbes through the inflammasomes. Nat. Immunol. 2012, 13:325-332.
    • (2012) Nat. Immunol. , vol.13 , pp. 325-332
    • Franchi, L.1
  • 112
    • 84861214708 scopus 로고    scopus 로고
    • Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome
    • Levinsohn J.L., et al. Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. PLoS Pathog. 2012, 8:e1002638.
    • (2012) PLoS Pathog. , vol.8
    • Levinsohn, J.L.1
  • 113
    • 84864317101 scopus 로고    scopus 로고
    • The NLRP12 inflammasome recognizes Yersinia pestis
    • Vladimer G.I., et al. The NLRP12 inflammasome recognizes Yersinia pestis. Immunity 2012, 37:96-107.
    • (2012) Immunity , vol.37 , pp. 96-107
    • Vladimer, G.I.1
  • 114
    • 10644258637 scopus 로고    scopus 로고
    • PAN1/NALP2/PYPAF2, an inducible inflammatory mediator that regulates NF-kappaB and caspase-1 activation in macrophages
    • Bruey J.M., et al. PAN1/NALP2/PYPAF2, an inducible inflammatory mediator that regulates NF-kappaB and caspase-1 activation in macrophages. J. Biol. Chem. 2004, 279:51897-51907.
    • (2004) J. Biol. Chem. , vol.279 , pp. 51897-51907
    • Bruey, J.M.1
  • 115
    • 84862815491 scopus 로고    scopus 로고
    • NLRP4 negatively regulates type I interferon signaling by targeting the kinase TBK1 for degradation via the ubiquitin ligase DTX4
    • Cui J., et al. NLRP4 negatively regulates type I interferon signaling by targeting the kinase TBK1 for degradation via the ubiquitin ligase DTX4. Nat. Immunol. 2012, 13:387-395.
    • (2012) Nat. Immunol. , vol.13 , pp. 387-395
    • Cui, J.1
  • 116
    • 40449140937 scopus 로고    scopus 로고
    • The NLR gene family: a standard nomenclature
    • Ting J.P., et al. The NLR gene family: a standard nomenclature. Immunity 2008, 28:285-287.
    • (2008) Immunity , vol.28 , pp. 285-287
    • Ting, J.P.1
  • 118
    • 34247345833 scopus 로고    scopus 로고
    • The apoptosome: signalling platform of cell death
    • Riedl S.J., Salvesen G.S. The apoptosome: signalling platform of cell death. Nat. Rev. Mol. Cell Biol. 2007, 8:405-413.
    • (2007) Nat. Rev. Mol. Cell Biol. , vol.8 , pp. 405-413
    • Riedl, S.J.1    Salvesen, G.S.2
  • 119
    • 76949091325 scopus 로고    scopus 로고
    • In vivo requirement for Atg5 in antigen presentation by dendritic cells
    • Lee H.K., et al. In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity 2010, 32:227-239.
    • (2010) Immunity , vol.32 , pp. 227-239
    • Lee, H.K.1
  • 120
    • 73849121209 scopus 로고    scopus 로고
    • Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry
    • Travassos L.H., et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 2010, 11:55-62.
    • (2010) Nat. Immunol. , vol.11 , pp. 55-62
    • Travassos, L.H.1
  • 121
    • 73849151394 scopus 로고    scopus 로고
    • NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation
    • Cooney R., et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med. 2010, 16:90-97.
    • (2010) Nat. Med. , vol.16 , pp. 90-97
    • Cooney, R.1
  • 122
    • 79251588741 scopus 로고    scopus 로고
    • NLRP4 negatively regulates autophagic processes through an association with beclin1
    • Jounai N., et al. NLRP4 negatively regulates autophagic processes through an association with beclin1. J. Immunol. 2011, 186:1646-1655.
    • (2011) J. Immunol. , vol.186 , pp. 1646-1655
    • Jounai, N.1
  • 123
    • 78649510272 scopus 로고    scopus 로고
    • The stromal and haematopoietic antigen-presenting cells that reside in secondary lymphoid organs
    • Turley S.J., et al. The stromal and haematopoietic antigen-presenting cells that reside in secondary lymphoid organs. Nat. Rev. Immunol. 2010, 10:813-825.
    • (2010) Nat. Rev. Immunol. , vol.10 , pp. 813-825
    • Turley, S.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.