-
2
-
-
0041802820
-
Targeting mTOR signaling for cancer therapy
-
Huang S, Houghton PJ. Targeting mTOR signaling for cancer therapy. Curr Opin Pharmacol, 2003,3(4):371-377.
-
(2003)
Curr Opin Pharmacol
, vol.3
, Issue.4
, pp. 371-377
-
-
Huang, S.1
Houghton, P.J.2
-
3
-
-
0141923009
-
Integration of growth factor and nutrient signaling: Implications for cancer biology
-
Shamji AF, Nghiem P, Schreiber SL. Integration of growth factor and nutrient signaling: implications for cancer biology. Mol Cell, 2003,12(2):271-280.
-
(2003)
Mol Cell
, vol.12
, Issue.2
, pp. 271-280
-
-
Shamji, A.F.1
Nghiem, P.2
Schreiber, S.L.3
-
4
-
-
36148962868
-
Role of mTOR in solid tumor systems: A therapeutical target against primary tumor growth, metastases, and angiogenesis
-
Seeliger H, Guba M, Kleespies A, et al. Role of mTOR in solid tumor systems: a therapeutical target against primary tumor growth, metastases, and angiogenesis. Cancer Metastasis Rev, 2007,26(3-4):611-621.
-
(2007)
Cancer Metastasis Rev
, vol.26
, Issue.3-4
, pp. 611-621
-
-
Seeliger, H.1
Guba, M.2
Kleespies, A.3
-
5
-
-
45949107072
-
Involvement of TSC genes and differential expression of other members of the mTOR signaling pathway in oral squamous cell carcinoma
-
Chakraborty S, Mohiyuddin SM, Gopinath KS, et al. Involvement of TSC genes and differential expression of other members of the mTOR signaling pathway in oral squamous cell carcinoma. BMC Cancer, 2008,8:163.
-
(2008)
BMC Cancer
, vol.8
, pp. 163
-
-
Chakraborty, S.1
Mohiyuddin, S.M.2
Gopinath, K.S.3
-
6
-
-
66949159435
-
Phospho-mTOR and phospho-4EBP1 in endometrial adenocarcinoma: Association with stage and grade in vivo and link with response to rapamycin treatment in vitro
-
Darb-Esfahani S, Faggad A, Noske A, et al. Phospho-mTOR and phospho-4EBP1 in endometrial adenocarcinoma: association with stage and grade in vivo and link with response to rapamycin treatment in vitro. J Cancer Res Clin Oncol, 2009,135(7):933-941.
-
(2009)
J Cancer Res Clin Oncol
, vol.135
, Issue.7
, pp. 933-941
-
-
Darb-Esfahani, S.1
Faggad, A.2
Noske, A.3
-
7
-
-
2342594006
-
The role of translation in neoplastic transformation from a pathologist's point of view
-
Rosenwald IB. The role of translation in neoplastic transformation from a pathologist's point of view. Oncogene, 2004,23(18):3230-3247.
-
(2004)
Oncogene
, vol.23
, Issue.18
, pp. 3230-3247
-
-
Rosenwald, I.B.1
-
8
-
-
10044259616
-
Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: Biallelic inactivation of TSC1 or TSC2 leads to mTOR activation
-
Chan JA, Zhang H, Roberts PS, et al. Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation. J Neuropathol Exp Neurol, 2004,63(12):1236-1242.
-
(2004)
J Neuropathol Exp Neurol
, vol.63
, Issue.12
, pp. 1236-1242
-
-
Chan, J.A.1
Zhang, H.2
Roberts, P.S.3
-
9
-
-
33745260930
-
AKT activation in human glioblastomas enhances proliferation via TSC2 and S6 kinase signaling
-
Riemenschneider MJ, Betensky RA, Pasedag SM, et al. AKT activation in human glioblastomas enhances proliferation via TSC2 and S6 kinase signaling. Cancer Res, 2006,66(11):5618-5623.
-
(2006)
Cancer Res
, vol.66
, Issue.11
, pp. 5618-5623
-
-
Riemenschneider, M.J.1
Betensky, R.A.2
Pasedag, S.M.3
-
10
-
-
0028137771
-
TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast
-
Helliwell SB, Wagner P, Kunz J, et al. TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol Biol Cell, 1994,5(1):105-118.
-
(1994)
Mol Biol Cell
, vol.5
, Issue.1
, pp. 105-118
-
-
Helliwell, S.B.1
Wagner, P.2
Kunz, J.3
-
11
-
-
0036753494
-
Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control
-
Loewith R, Jacinto E, Wullschleger S, et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell, 2002,10 (3):457-468.
-
(2002)
Mol Cell
, vol.10
, Issue.3
, pp. 457-468
-
-
Loewith, R.1
Jacinto, E.2
Wullschleger, S.3
-
12
-
-
33750858427
-
Rapamycin inhibits cell motility by suppression of mTOR-mediated S6K1 and 4E-BP1 pathways
-
Liu L, Li F, Cardelli JA, et al. Rapamycin inhibits cell motility by suppression of mTOR-mediated S6K1 and 4E-BP1 pathways. Oncogene, 2006,25(53):7029-7040.
-
(2006)
Oncogene
, vol.25
, Issue.53
, pp. 7029-7040
-
-
Liu, L.1
Li, F.2
Cardelli, J.A.3
-
13
-
-
2342545519
-
Target of rapamycin (TOR): An integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression
-
Fingar DC, Blenis J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene, 2004,23 (18): 3151-3171.
-
(2004)
Oncogene
, vol.23
, Issue.18
, pp. 3151-3171
-
-
Fingar, D.C.1
Blenis, J.2
-
14
-
-
58649092475
-
mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum-and glucocorticoid-induced protein kinase 1 (SGK1)
-
Garcia-Martinez JM, Alessi DR. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum-and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J, 2008,416(3):375-385.
-
(2008)
Biochem J
, vol.416
, Issue.3
, pp. 375-385
-
-
Garcia-Martinez, J.M.1
Alessi, D.R.2
-
15
-
-
78649637235
-
Rapamycin inhibits cytoskeleton reorganization and cell motility by suppressing RhoA expression and activity
-
Liu L, Luo Y, Chen L, et al. Rapamycin inhibits cytoskeleton reorganization and cell motility by suppressing RhoA expression and activity. J Biol Chem, 2010,285(49):38362-38373.
-
(2010)
J Biol Chem
, vol.285
, Issue.49
, pp. 38362-38373
-
-
Liu, L.1
Luo, Y.2
Chen, L.3
-
16
-
-
7944235758
-
Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
-
Jacinto E, Loewith R, Schmidt A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol, 2004,6(11):1122-1128.
-
(2004)
Nat Cell Biol
, vol.6
, Issue.11
, pp. 1122-1128
-
-
Jacinto, E.1
Loewith, R.2
Schmidt, A.3
-
17
-
-
44449099566
-
In human endothelial cells rapamycin causes mTORC2 inhibition and impairs cell viability and function
-
Barilli A, Visigalli R, Sala R, et al. In human endothelial cells rapamycin causes mTORC2 inhibition and impairs cell viability and function. Cardiovasc Res, 2008,78(3):563-571.
-
(2008)
Cardiovasc Res
, vol.78
, Issue.3
, pp. 563-571
-
-
Barilli, A.1
Visigalli, R.2
Sala, R.3
-
18
-
-
34548151890
-
P-Rex1 links mammalian target of rapamycin signaling to Rac activation and cell migration
-
Hernandez-Negrete l, Carretero-Ortega J, Rosenfeldt H, et al. P-Rex1 links mammalian target of rapamycin signaling to Rac activation and cell migration. J Biol Chem, 2007,282 (32): 23708-23715.
-
(2007)
J Biol Chem
, vol.282
, Issue.32
, pp. 23708-23715
-
-
Hernandez-Negrete, L.1
Carretero-Ortega, J.2
Rosenfeldt, H.3
-
19
-
-
0037178781
-
Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
-
Hara K, Maruki Y, Long X, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell, 2002,110(2):177-189.
-
(2002)
Cell
, vol.110
, Issue.2
, pp. 177-189
-
-
Hara, K.1
Maruki, Y.2
Long, X.3
-
20
-
-
0037623417
-
GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR
-
Kim DH, Sarbassov DD, Ali SM, et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell, 2003,11 (4):895-904.
-
(2003)
Mol Cell
, vol.11
, Issue.4
, pp. 895-904
-
-
Kim, D.H.1
Sarbassov, D.D.2
Ali, S.M.3
-
21
-
-
33947264077
-
PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase
-
Sancak Y, Thoreen CC, Peterson TR, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell, 2007,25(6):903-915.
-
(2007)
Mol Cell
, vol.25
, Issue.6
, pp. 903-915
-
-
Sancak, Y.1
Thoreen, C.C.2
Peterson, T.R.3
-
22
-
-
78650510609
-
mTOR: From growth signal integration to cancer, diabetes and ageing
-
Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol, 2011, 12(1): 21-35.
-
(2011)
Nat Rev Mol Cell Biol
, vol.12
, Issue.1
, pp. 21-35
-
-
Zoncu, R.1
Efeyan, A.2
Sabatini, D.M.3
-
23
-
-
78651284554
-
The complexes of mammalian target of rapamycin
-
Zhou H, Huang S. The complexes of mammalian target of rapamycin. Curr Protein Pept Sci, 2010,11(6):409-424.
-
(2010)
Curr Protein Pept Sci
, vol.11
, Issue.6
, pp. 409-424
-
-
Zhou, H.1
Huang, S.2
-
24
-
-
0029055145
-
Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue
-
Chen J, Zheng XF, Brown EJ, et al. Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc Natl Acad Sci U S A, 1995,92 (11):4947-4951.
-
(1995)
Proc Natl Acad Sci U S A
, vol.92
, Issue.11
, pp. 4947-4951
-
-
Chen, J.1
Zheng, X.F.2
Brown, E.J.3
-
25
-
-
0027274978
-
Cyclosporin A, FK506 and rapamycin: More than just immunosuppression
-
Kunz J, Hall MN. Cyclosporin A, FK506 and rapamycin: more than just immunosuppression. Trends Biochem Sci, 1993,18(9): 334-338.
-
(1993)
Trends Biochem Sci
, vol.18
, Issue.9
, pp. 334-338
-
-
Kunz, J.1
Hall, M.N.2
-
26
-
-
0029842109
-
Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP
-
Choi J, Chen J, Schreiber SL, et al. Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science, 1996,273(5272):239-242.
-
(1996)
Science
, vol.273
, Issue.5272
, pp. 239-242
-
-
Choi, J.1
Chen, J.2
Schreiber, S.L.3
-
27
-
-
1942487890
-
Dissociation of raptor from mTOR is a mechanism of rapamycin-in duced inhibition of mTOR function
-
Oshiro N, Yoshino K, Hidayat S, et al. Dissociation of raptor from mTOR is a mechanism of rapamycin-in duced inhibition of mTOR function. Genes Cells, 2004,9(4):359-366.
-
(2004)
Genes Cells
, vol.9
, Issue.4
, pp. 359-366
-
-
Oshiro, N.1
Yoshino, K.2
Hidayat, S.3
-
28
-
-
0036320205
-
Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake
-
Edinger AL, Thompson CB. Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell, 2002,13(7):2276-2288.
-
(2002)
Mol Biol Cell
, vol.13
, Issue.7
, pp. 2276-2288
-
-
Edinger, A.L.1
Thompson, C.B.2
-
29
-
-
55849109650
-
Hypoxia-induced energy stress inhibits the mTOR pathway by activating an AMPK/ REDD1 signaling axis in head and neck squamous cell carcinoma
-
Schneider A, Younis RH, Gutkind JS. Hypoxia-induced energy stress inhibits the mTOR pathway by activating an AMPK/ REDD1 signaling axis in head and neck squamous cell carcinoma. Neoplasia, 2008,10(11):1295-1302.
-
(2008)
Neoplasia
, vol.10
, Issue.11
, pp. 1295-1302
-
-
Schneider, A.1
Younis, R.H.2
Gutkind, J.S.3
-
30
-
-
0036713778
-
TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
-
Inoki K, Li Y, Zhu T, et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol, 2002,4(9):648-657.
-
(2002)
Nat Cell Biol
, vol.4
, Issue.9
, pp. 648-657
-
-
Inoki, K.1
Li, Y.2
Zhu, T.3
-
31
-
-
0036714127
-
Akt regulates growth by directly phosphorylating Tsc2
-
Potter CJ, Pedraza LG, Xu T. Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol, 2002,4(9):658-665.
-
(2002)
Nat Cell Biol
, vol.4
, Issue.9
, pp. 658-665
-
-
Potter, C.J.1
Pedraza, L.G.2
Xu, T.3
-
32
-
-
0036712905
-
Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling
-
Gao X, Zhang Y, Arrazola P, et al. Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nat Cell Biol, 2002,4(9):699-704.
-
(2002)
Nat Cell Biol
, vol.4
, Issue.9
, pp. 699-704
-
-
Gao, X.1
Zhang, Y.2
Arrazola, P.3
-
33
-
-
0037108750
-
Tuberous sclerosis complex-1 and-2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling
-
Tee AR, Fingar DC, Manning BD, et al. Tuberous sclerosis complex-1 and-2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci USA, 2002,99 (21):13571-13576.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, Issue.21
, pp. 13571-13576
-
-
Tee, A.R.1
Fingar, D.C.2
Manning, B.D.3
-
34
-
-
0038433304
-
Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2
-
Garami A, Zwartkruis FJ, Nobukuni T, et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell, 2003,11(6):1457-1466.
-
(2003)
Mol Cell
, vol.11
, Issue.6
, pp. 1457-1466
-
-
Garami, A.1
Zwartkruis, F.J.2
Nobukuni, T.3
-
35
-
-
0347716759
-
Rheb fills a GAP between TSC and TOR
-
Manning BD, Cantley LC. Rheb fills a GAP between TSC and TOR. Trends Biochem Sci, 2003,28(11):573-576.
-
(2003)
Trends Biochem Sci
, vol.28
, Issue.11
, pp. 573-576
-
-
Manning, B.D.1
Cantley, L.C.2
-
36
-
-
0038141979
-
Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins
-
Zhang Y, Gao X, Saucedo LJ, et al. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol, 2003,5(6):578-581.
-
(2003)
Nat Cell Biol
, vol.5
, Issue.6
, pp. 578-581
-
-
Zhang, Y.1
Gao, X.2
Saucedo, L.J.3
-
37
-
-
0038304516
-
Rheb is an essential regulator of S6K in controlling cell growth in Drosophila
-
Stocker H, Radimerski T, Schindelholz B, et al. Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat Cell Biol, 2003,5(6):559-565.
-
(2003)
Nat Cell Biol
, vol.5
, Issue.6
, pp. 559-565
-
-
Stocker, H.1
Radimerski, T.2
Schindelholz, B.3
-
38
-
-
0026759874
-
Rapamycin-in duced inhibition of the 70-kilodalton S6 protein kinase
-
Price DJ, Grove JR, Calvo V, et al. Rapamycin-in duced inhibition of the 70-kilodalton S6 protein kinase. Science, 1992,257(5072):973-977.
-
(1992)
Science
, vol.257
, Issue.5072
, pp. 973-977
-
-
Price, D.J.1
Grove, J.R.2
Calvo, V.3
-
39
-
-
0030881836
-
Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin
-
Brunn GJ, Hudson CC, Sekulic A, et al. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science, 1997,277(5322):99-101.
-
(1997)
Science
, vol.277
, Issue.5322
, pp. 99-101
-
-
Brunn, G.J.1
Hudson, C.C.2
Sekulic, A.3
-
40
-
-
0028207001
-
Rapamycin selectively represses translation of the "polypyrimidine tract" mRNA family
-
Jefferies HB, Reinhard C, Kozma SC, et al. Rapamycin selectively represses translation of the "polypyrimidine tract" mRNA family. Proc Natl Acad Sci USA, 1994,91 (10):4441-4445.
-
(1994)
Proc Natl Acad Sci USA
, vol.91
, Issue.10
, pp. 4441-4445
-
-
Jefferies, H.B.1
Reinhard, C.2
Kozma, S.C.3
-
41
-
-
0028032355
-
Rapamycin selectively inhibits translation of mRNAs encoding elongation factors and ribosomal proteins
-
Terada N, Patel HR, Takase K, et al. Rapamycin selectively inhibits translation of mRNAs encoding elongation factors and ribosomal proteins. Proc Natl Acad Sci USA, 1994,91 (24): 11477-11481.
-
(1994)
Proc Natl Acad Sci USA
, vol.91
, Issue.24
, pp. 11477-11481
-
-
Terada, N.1
Patel, H.R.2
Takase, K.3
-
42
-
-
2442574729
-
Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases
-
Raught B, Peiretti F, Gingras AC, et al. Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J, 2004,23(8):1761-1769.
-
(2004)
EMBO J
, vol.23
, Issue.8
, pp. 1761-1769
-
-
Raught, B.1
Peiretti, F.2
Gingras, A.C.3
-
43
-
-
33745570504
-
The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity
-
Shahbazian D, Roux PP, Mieulet V, et al. The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO J, 2006,25(12):2781-2791.
-
(2006)
EMBO J
, vol.25
, Issue.12
, pp. 2781-2791
-
-
Shahbazian, D.1
Roux, P.P.2
Mieulet, V.3
-
44
-
-
27744569843
-
mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events
-
Holz MK, Ballif BA, Gygi SP, et al. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell, 2005,123(4):569-580.
-
(2005)
Cell
, vol.123
, Issue.4
, pp. 569-580
-
-
Holz, M.K.1
Ballif, B.A.2
Gygi, S.P.3
-
45
-
-
0033152072
-
Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G
-
Marcotrigiano J, Gingras AC, Sonenberg N, et al. Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol Cell, 1999,3(6):707-716.
-
(1999)
Mol Cell
, vol.3
, Issue.6
, pp. 707-716
-
-
Marcotrigiano, J.1
Gingras, A.C.2
Sonenberg, N.3
-
46
-
-
0028034233
-
Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function
-
Pause A, Belsham GJ, Gingras AC, et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature, 1994,371(6500):762-767.
-
(1994)
Nature
, vol.371
, Issue.6500
, pp. 762-767
-
-
Pause, A.1
Belsham, G.J.2
Gingras, A.C.3
-
47
-
-
79958696694
-
The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling
-
Hsu PP, Kang SA, Rameseder J, et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science, 2011,332(6035): 1317-1322.
-
(2011)
Science
, vol.332
, Issue.6035
, pp. 1317-1322
-
-
Hsu, P.P.1
Kang, S.A.2
Rameseder, J.3
-
48
-
-
79958696336
-
Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling
-
Yu Y, Yoon SO, Poulogiannis G, et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science, 2011,332(6035): 1322-1326.
-
(2011)
Science
, vol.332
, Issue.6035
, pp. 1322-1326
-
-
Yu, Y.1
Yoon, S.O.2
Poulogiannis, G.3
-
49
-
-
32944457518
-
mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt
-
O'Reilly KE, Rojo F, She QB, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res, 2006,66(3):1500-1508.
-
(2006)
Cancer Res
, vol.66
, Issue.3
, pp. 1500-1508
-
-
O'Reilly, K.E.1
Rojo, F.2
She, Q.B.3
-
50
-
-
33644886769
-
Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation
-
Tzatsos A, Kandror KV. Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation. Mol Cell Biol, 2006,26(1):63-76.
-
(2006)
Mol Cell Biol
, vol.26
, Issue.1
, pp. 63-76
-
-
Tzatsos, A.1
Kandror, K.V.2
-
51
-
-
0016724057
-
Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle
-
Vezina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo), 1975,28(10): 721-726.
-
(1975)
J Antibiot (Tokyo)
, vol.28
, Issue.10
, pp. 721-726
-
-
Vezina, C.1
Kudelski, A.2
Sehgal, S.N.3
-
52
-
-
0016713286
-
Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization
-
Sehgal SN, Baker H, Vezina C. Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot (Tokyo), 1975,28(10):727-732.
-
(1975)
J Antibiot (Tokyo)
, vol.28
, Issue.10
, pp. 727-732
-
-
Sehgal, S.N.1
Baker, H.2
Vezina, C.3
-
54
-
-
0033557578
-
Rapamycin causes poorly reversible inhibition of mTOR and induces p53-in dependent apoptosis in human rhabdomyosarcoma cells
-
Hosoi H, Dilling MB, Shikata T, et al. Rapamycin causes poorly reversible inhibition of mTOR and induces p53-in dependent apoptosis in human rhabdomyosarcoma cells. Cancer Res, 1999,59(4):886-894.
-
(1999)
Cancer Res
, vol.59
, Issue.4
, pp. 886-894
-
-
Hosoi, H.1
Dilling, M.B.2
Shikata, T.3
-
55
-
-
0028925744
-
Rapamycin enhances apoptosis and increases sensitivity to cisplatin in vitro
-
Shi Y, Frankel A, Radvanyi LG, et al. Rapamycin enhances apoptosis and increases sensitivity to cisplatin in vitro. Cancer Res, 1995,55(9):1982-1988.
-
(1995)
Cancer Res
, vol.55
, Issue.9
, pp. 1982-1988
-
-
Shi, Y.1
Frankel, A.2
Radvanyi, L.G.3
-
56
-
-
0031566152
-
Rapamycin potentiates dexamethasone-induced apoptosis and inhibits JNK activity in lymphoblastoid cells
-
Ishizuka T, Sakata N, Johnson GL, et al. Rapamycin potentiates dexamethasone-induced apoptosis and inhibits JNK activity in lymphoblastoid cells. Biochem Biophys Res Commun, 1997,230(2):386-391.
-
(1997)
Biochem Biophys Res Commun
, vol.230
, Issue.2
, pp. 386-391
-
-
Ishizuka, T.1
Sakata, N.2
Johnson, G.L.3
-
57
-
-
70449390905
-
Rapamycin and mTOR kinase inhibitors
-
Ballou LM, Lin RZ. Rapamycin and mTOR kinase inhibitors. J Chem Biol, 2008,1(1-4):27-36.
-
(2008)
J Chem Biol
, vol.1
, Issue.1-4
, pp. 27-36
-
-
Ballou, L.M.1
Lin, R.Z.2
-
58
-
-
51449096670
-
A phase 2 clinical trial of deforolimus (AP23573, MK-8669), a novel mammalian target of rapamycin inhibitor, in patients with relapsed or refractory hematologic malignancies
-
Rizzieri DA, Feldman E, Dipersio JF, et al. A phase 2 clinical trial of deforolimus (AP23573, MK-8669), a novel mammalian target of rapamycin inhibitor, in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res, 2008,14 (9):2756-2762.
-
(2008)
Clin Cancer Res
, vol.14
, Issue.9
, pp. 2756-2762
-
-
Rizzieri, D.A.1
Feldman, E.2
Dipersio, J.F.3
-
59
-
-
34548700597
-
Rapamycin: Something old, something new, sometimes borrowed and now renewed
-
Hartford CM, Ratain MJ. Rapamycin: something old, something new, sometimes borrowed and now renewed. Clin Pharmacol Ther, 2007,82(4):381-388.
-
(2007)
Clin Pharmacol Ther
, vol.82
, Issue.4
, pp. 381-388
-
-
Hartford, C.M.1
Ratain, M.J.2
-
60
-
-
48649107474
-
Efficacy of everolimus in advanced renal cell carcinoma: A double-blind, randomised, placebo-controlled phase III trial
-
Motzer RJ, Escudier B, Oudard S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet, 2008,372(9637):449-456.
-
(2008)
Lancet
, vol.372
, Issue.9637
, pp. 449-456
-
-
Motzer, R.J.1
Escudier, B.2
Oudard, S.3
-
61
-
-
68949102180
-
Phase III study to evaluate temsirolimus compared with investigator's choice therapy for the treatment of relapsed or refractory mantle cell lymphoma
-
Hess G, Herbrecht R, Romaguera J, et al. Phase III study to evaluate temsirolimus compared with investigator's choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J Clin Oncol, 2009,27(23):3822-3829.
-
(2009)
J Clin Oncol
, vol.27
, Issue.23
, pp. 3822-3829
-
-
Hess, G.1
Herbrecht, R.2
Romaguera, J.3
-
62
-
-
78649826428
-
Updates of mTOR inhibitors
-
Zhou H, Luo Y, Huang S. Updates of mTOR inhibitors. Anticancer Agents Med Chem, 2010,10(7):571-581.
-
(2010)
Anticancer Agents Med Chem
, vol.10
, Issue.7
, pp. 571-581
-
-
Zhou, H.1
Luo, Y.2
Huang, S.3
-
63
-
-
72849150434
-
Targeting tumorigenesis: Development and use of mTOR inhibitors in cancer therapy
-
Yuan R, Kay A, Berg WJ, et al. Targeting tumorigenesis: development and use of mTOR inhibitors in cancer therapy. J Hematol Oncol, 2009,2:45.
-
(2009)
J Hematol Oncol
, vol.2
, pp. 45
-
-
Yuan, R.1
Kay, A.2
Berg, W.J.3
-
64
-
-
65549167833
-
Targeting the mTOR signaling network for cancer therapy
-
Meric-Bernstam F, Gonzalez-Angulo AM. Targeting the mTOR signaling network for cancer therapy. J Clin Oncol, 2009,27 (13):2278-2287.
-
(2009)
J Clin Oncol
, vol.27
, Issue.13
, pp. 2278-2287
-
-
Meric-Bernstam, F.1
Gonzalez-Angulo, A.M.2
-
65
-
-
79957530990
-
Mechanisms of mTOR inhibitor resistance in cancer therapy
-
Carew JS, Kelly KR, Nawrocki ST. Mechanisms of mTOR inhibitor resistance in cancer therapy. Target Oncol, 2011,6(1): 17-27.
-
(2011)
Target Oncol
, vol.6
, Issue.1
, pp. 17-27
-
-
Carew, J.S.1
Kelly, K.R.2
Nawrocki, S.T.3
-
66
-
-
6044259204
-
Targeting mammalian target of rapamycin synergistically enhances chemotherapy-induced cytotoxicity in breast cancer cells
-
Mondesire WH, Jian W, Zhang H, et al. Targeting mammalian target of rapamycin synergistically enhances chemotherapy-induced cytotoxicity in breast cancer cells. Clin Cancer Res, 2004,10(20):7031-7042.
-
(2004)
Clin Cancer Res
, vol.10
, Issue.20
, pp. 7031-7042
-
-
Mondesire, W.H.1
Jian, W.2
Zhang, H.3
-
67
-
-
33751117795
-
Combination therapy for treating breast cancer using antiestrogen, ERA-923, and the mammalian target of rapamycin inhibitor, temsirolimus
-
Sadler TM, Gavriil M, Annable T, et al. Combination therapy for treating breast cancer using antiestrogen, ERA-923, and the mammalian target of rapamycin inhibitor, temsirolimus. Endocr Relat Cancer, 2006,13(3):863-873.
-
(2006)
Endocr Relat Cancer
, vol.13
, Issue.3
, pp. 863-873
-
-
Sadler, T.M.1
Gavriil, M.2
Annable, T.3
-
68
-
-
3342895823
-
Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptorindependent pathway that regulates the cytoskeleton
-
Sarbassov DD, Ali SM, Kim DH, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptorindependent pathway that regulates the cytoskeleton. Curr Biol, 2004,14(14):1296-1302.
-
(2004)
Curr Biol
, vol.14
, Issue.14
, pp. 1296-1302
-
-
Sarbassov, D.D.1
Ali, S.M.2
Kim, D.H.3
-
69
-
-
33748471980
-
mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s
-
Frias MA, Thoreen CC, Jaffe JD, et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol, 2006,16(18):1865-1870.
-
(2006)
Curr Biol
, vol.16
, Issue.18
, pp. 1865-1870
-
-
Frias, M.A.1
Thoreen, C.C.2
Jaffe, J.D.3
-
70
-
-
34347210090
-
Identification of Protor as a novel Rictor-binding component of mTOR complex-2
-
Pearce LR, Huang X, Boudeau J, et al. Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J, 2007,405(3):513-522.
-
(2007)
Biochem J
, vol.405
, Issue.3
, pp. 513-522
-
-
Pearce, L.R.1
Huang, X.2
Boudeau, J.3
-
71
-
-
34548509880
-
PRR5, a novel component of mTOR complex 2, regulates platelet-derived growth factor receptor beta expression and signaling
-
Woo SY, Kim DH, Jun CB, et al. PRR5, a novel component of mTOR complex 2, regulates platelet-derived growth factor receptor beta expression and signaling. J Biol Chem, 2007,282 (35):25604-25612.
-
(2007)
J Biol Chem
, vol.282
, Issue.35
, pp. 25604-25612
-
-
Woo, S.Y.1
Kim, D.H.2
Jun, C.B.3
-
72
-
-
45449114764
-
Hsp70 associates with Rictor and is required for mTORC2 formation and activity
-
Martin J, Masri J, Bernath A, et al. Hsp70 associates with Rictor and is required for mTORC2 formation and activity. Biochem Biophys Res Commun, 2008,372(4):578-583.
-
(2008)
Biochem Biophys Res Commun
, vol.372
, Issue.4
, pp. 578-583
-
-
Martin, J.1
Masri, J.2
Bernath, A.3
-
73
-
-
13844312400
-
Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
-
Sarbassov DD, Guertin DA, Ali SM, et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 2005,307(5712):1098-1101.
-
(2005)
Science
, vol.307
, Issue.5712
, pp. 1098-1101
-
-
Sarbassov, D.D.1
Guertin, D.A.2
Ali, S.M.3
-
74
-
-
65949103405
-
Rictor/TORC2 regulates Caenorhabditis elegans fat storage, body size, and development through sgk-1
-
Jones KT, Greer ER, Pearce D, et al. Rictor/TORC2 regulates Caenorhabditis elegans fat storage, body size, and development through sgk-1. PLoS Biol, 2009,7(3):e60.
-
(2009)
PLoS Biol
, vol.7
, Issue.3
-
-
Jones, K.T.1
Greer, E.R.2
Pearce, D.3
-
75
-
-
61449244533
-
Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans
-
Soukas AA, Kane EA, Carr CE, et al. Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans. Genes Dev, 2009,23(4):496-511.
-
(2009)
Genes Dev
, vol.23
, Issue.4
, pp. 496-511
-
-
Soukas, A.A.1
Kane, E.A.2
Carr, C.E.3
-
76
-
-
33646023695
-
Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB
-
Sarbassov DD, Ali SM, Sengupta S, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell, 2006,22(2): 159-168.
-
(2006)
Mol Cell
, vol.22
, Issue.2
, pp. 159-168
-
-
Sarbassov, D.D.1
Ali, S.M.2
Sengupta, S.3
-
77
-
-
50649123206
-
Rapamycin inhibits F-actin reorganization and phosphorylation of focal adhesion proteins
-
Liu L, Chen L, Chung J, et al. Rapamycin inhibits F-actin reorganization and phosphorylation of focal adhesion proteins. Oncogene, 2008,27(37):4998-5010.
-
(2008)
Oncogene
, vol.27
, Issue.37
, pp. 4998-5010
-
-
Liu, L.1
Chen, L.2
Chung, J.3
-
78
-
-
34250788809
-
AKT/PKB signaling: Navigating downstream
-
Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell, 2007,129(7):1261-1274.
-
(2007)
Cell
, vol.129
, Issue.7
, pp. 1261-1274
-
-
Manning, B.D.1
Cantley, L.C.2
-
79
-
-
77954235821
-
Targeting mTOR: Prospects for mTOR complex 2 inhibitors in cancer therapy
-
Sparks CA, Guertin DA. Targeting mTOR: prospects for mTOR complex 2 inhibitors in cancer therapy. Oncogene, 2011,29 (26):3733-3744.
-
(2011)
Oncogene
, vol.29
, Issue.26
, pp. 3733-3744
-
-
Sparks, C.A.1
Guertin, D.A.2
-
80
-
-
79955785100
-
Pushing the envelope in the mTOR pathway: The second generation of inhibitors
-
Vilar E, Perez-Garcia J, Tabernero J. Pushing the envelope in the mTOR pathway: the second generation of inhibitors. Mol Cancer Ther, 2011,10(3):395-403.
-
(2011)
Mol Cancer Ther
, vol.10
, Issue.3
, pp. 395-403
-
-
Vilar, E.1
Perez-Garcia, J.2
Tabernero, J.3
-
81
-
-
51349164790
-
Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer
-
Carracedo A, Ma L, Teruya-Feldstein J, et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest, 2008,118(9):3065-3074.
-
(2008)
J Clin Invest
, vol.118
, Issue.9
, pp. 3065-3074
-
-
Carracedo, A.1
Ma, L.2
Teruya-Feldstein, J.3
-
82
-
-
77950048995
-
Identification of GNE-477, a potent and efficacious dual PI3K/mTOR inhibitor
-
Heffron TP, Berry M, Castanedo G, et al. Identification of GNE-477, a potent and efficacious dual PI3K/mTOR inhibitor. Bioorg Med Chem Lett, 2010,20(8):2408-2411.
-
(2010)
Bioorg Med Chem Lett
, vol.20
, Issue.8
, pp. 2408-2411
-
-
Heffron, T.P.1
Berry, M.2
Castanedo, G.3
-
83
-
-
51049109033
-
Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity
-
Maira SM, Stauffer F, Brueggen J, et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther, 2008,7(7):1851-1863.
-
(2008)
Mol Cancer Ther
, vol.7
, Issue.7
, pp. 1851-1863
-
-
Maira, S.M.1
Stauffer, F.2
Brueggen, J.3
-
84
-
-
67649534502
-
A novel dual PI3Kalpha/ mTOR inhibitor PI-103 with high antitumor activity in non-small cell lung cancer cells
-
Zou ZQ, Zhang XH, Wang F, et al. A novel dual PI3Kalpha/ mTOR inhibitor PI-103 with high antitumor activity in non-small cell lung cancer cells. Int J Mol Med, 2009,24(1):97-101.
-
(2009)
Int J Mol Med
, vol.24
, Issue.1
, pp. 97-101
-
-
Zou, Z.Q.1
Zhang, X.H.2
Wang, F.3
-
85
-
-
62549160588
-
First-in-class, first-in-human phase I results of targeted agents: Highlights of the 2008 American Society of Clinical Oncology Meeting
-
Molckovsky A, Siu LL. First-in-class, first-in-human phase I results of targeted agents: highlights of the 2008 American Society of Clinical Oncology Meeting. J Hematol Oncol, 2008,1: 20.
-
(2008)
J Hematol Oncol
, vol.1
, pp. 20
-
-
Molckovsky, A.1
Siu, L.L.2
-
86
-
-
77956255150
-
WJD008, a dual phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin inhibitor, prevents PI3K signaling and inhibits the proliferation of transformed cells with oncogenic PI3K mutant
-
Li T, Wang J, Wang X, et al. WJD008, a dual phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin inhibitor, prevents PI3K signaling and inhibits the proliferation of transformed cells with oncogenic PI3K mutant. J Pharmacol Exp Ther, 2010,334(3):830-838.
-
(2010)
J Pharmacol Exp Ther
, vol.334
, Issue.3
, pp. 830-838
-
-
Li, T.1
Wang, J.2
Wang, X.3
-
87
-
-
84860390340
-
Preclinical modeling of combined phosphatidylinositol-3-kinase inhibition with endocrine therapy for estrogen receptor-positive breast cancer
-
Sanchez CG, Ma CX, Crowder RJ, et al. Preclinical modeling of combined phosphatidylinositol-3-kinase inhibition with endocrine therapy for estrogen receptor-positive breast cancer. Breast Cancer Res, 2011,13(2):R21.
-
(2011)
Breast Cancer Res
, vol.13
, Issue.2
-
-
Sanchez, C.G.1
Ma, C.X.2
Crowder, R.J.3
-
88
-
-
34250823572
-
Pharmacologic characterization of a potent inhibitor of class I phosphatidylinositide 3-kinases
-
Raynaud FI, Eccles S, Clarke PA, et al. Pharmacologic characterization of a potent inhibitor of class I phosphatidylinositide 3-kinases. Cancer Res, 2007,67 (12): 5840-5850.
-
(2007)
Cancer Res
, vol.67
, Issue.12
, pp. 5840-5850
-
-
Raynaud, F.I.1
Eccles, S.2
Clarke, P.A.3
-
89
-
-
33646382364
-
A dual PI3 kinase/ mTOR inhibitor reveals emergent efficacy in glioma
-
Fan QW, Knight ZA, Goldenberg DD, et al. A dual PI3 kinase/ mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell, 2006,9(5):341-349.
-
(2006)
Cancer Cell
, vol.9
, Issue.5
, pp. 341-349
-
-
Fan, Q.W.1
Knight, Z.A.2
Goldenberg, D.D.3
-
90
-
-
51649088622
-
PI-103, a dual inhibitor of Class IA phosphatidylinositide 3-kinase and mTOR, has antileukemic activity in AML
-
Park S, Chapuis N, Bardet V, et al. PI-103, a dual inhibitor of Class IA phosphatidylinositide 3-kinase and mTOR, has antileukemic activity in AML. Leukemia, 2008,22(9):1698-1706.
-
(2008)
Leukemia
, vol.22
, Issue.9
, pp. 1698-1706
-
-
Park, S.1
Chapuis, N.2
Bardet, V.3
-
91
-
-
70349974841
-
The pyridinylfuranopyrimidine inhibitor, PI-103, chemosensitizes glioblastoma cells for apoptosis by inhibiting DNA repair
-
Westhoff MA, Kandenwein JA, Karl S, et al. The pyridinylfuranopyrimidine inhibitor, PI-103, chemosensitizes glioblastoma cells for apoptosis by inhibiting DNA repair. Oncogene, 2009,28(40):3586-3596.
-
(2009)
Oncogene
, vol.28
, Issue.40
, pp. 3586-3596
-
-
Westhoff, M.A.1
Kandenwein, J.A.2
Karl, S.3
-
92
-
-
48649096069
-
Class I PI3 kinase inhibition by the pyridinylfuranopyrimidine inhibitor PI-103 enhances tumor radiosensitivity
-
Prevo R, Deutsch E, Sampson O, et al. Class I PI3 kinase inhibition by the pyridinylfuranopyrimidine inhibitor PI-103 enhances tumor radiosensitivity. Cancer Res, 2008,68 (14):5915-5923.
-
(2008)
Cancer Res
, vol.68
, Issue.14
, pp. 5915-5923
-
-
Prevo, R.1
Deutsch, E.2
Sampson, O.3
-
93
-
-
51849111524
-
NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations
-
Serra V, Markman B, Scaltriti M, et al. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res, 2008,68(19):8022-8030.
-
(2008)
Cancer Res
, vol.68
, Issue.19
, pp. 8022-8030
-
-
Serra, V.1
Markman, B.2
Scaltriti, M.3
-
94
-
-
64949155000
-
Activity of a novel, dual PI3-kinase/mTor inhibitor NVP-BEZ235 against primary human pancreatic cancers grown as orthotopic xenografts
-
Cao P, Maira SM, Garcia-Echeverria C, et al. Activity of a novel, dual PI3-kinase/mTor inhibitor NVP-BEZ235 against primary human pancreatic cancers grown as orthotopic xenografts. Br J Cancer, 2009,100(8):1267-1276.
-
(2009)
Br J Cancer
, vol.100
, Issue.8
, pp. 1267-1276
-
-
Cao, P.1
Maira, S.M.2
Garcia-Echeverria, C.3
-
95
-
-
58149481284
-
The novel orally bioavailable inhibitor of phosphoinositol-3-kinase and mammalian target of rapamycin, NVP-BEZ235, inhibits growth and proliferation in multiple myeloma
-
Baumann P, Mandl-Weber S, Oduncu F, et al. The novel orally bioavailable inhibitor of phosphoinositol-3-kinase and mammalian target of rapamycin, NVP-BEZ235, inhibits growth and proliferation in multiple myeloma. Exp Cell Res, 2009,315 (3):485-497.
-
(2009)
Exp Cell Res
, vol.315
, Issue.3
, pp. 485-497
-
-
Baumann, P.1
Mandl-Weber, S.2
Oduncu, F.3
-
96
-
-
67650995912
-
Antimyeloma activity of the orally bioavailable dual phosphatidylinositol 3-kinase/ mammalian target of rapamycin inhibitor NVP-BEZ235
-
McMillin DW, Ooi M, Delmore J, et al. Antimyeloma activity of the orally bioavailable dual phosphatidylinositol 3-kinase/ mammalian target of rapamycin inhibitor NVP-BEZ235. Cancer Res, 2009,69(14):5835-5842.
-
(2009)
Cancer Res
, vol.69
, Issue.14
, pp. 5835-5842
-
-
McMillin, D.W.1
Ooi, M.2
Delmore, J.3
-
97
-
-
68849091778
-
NVP-BEZ235, a novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor, elicits multifaceted antitumor activities in human gliomas
-
Liu TJ, Koul D, LaFortune T, et al. NVP-BEZ235, a novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor, elicits multifaceted antitumor activities in human gliomas. Mol Cancer Ther, 2009,8(8):2204-2210.
-
(2009)
Mol Cancer Ther
, vol.8
, Issue.8
, pp. 2204-2210
-
-
Liu, T.J.1
Koul, D.2
la Fortune, T.3
-
98
-
-
74549164751
-
NVP-BEZ235 as a new therapeutic option for sarcomas
-
Manara MC, Nicoletti G, Zambelli D, et al. NVP-BEZ235 as a new therapeutic option for sarcomas. Clin Cancer Res, 2010,16 (2):530-540.
-
(2010)
Clin Cancer Res
, vol.16
, Issue.2
, pp. 530-540
-
-
Manara, M.C.1
Nicoletti, G.2
Zambelli, D.3
-
99
-
-
84874189647
-
-
ASCO. Alexandria, VA: American Society of Clinical Oncology
-
Burris H, Rodon, J, Sharma, RS, et al. First-in-human phase I study of the oral PI3K inhibitor BEZ235 in patients (pts) with advanced solid tumors. ASCO. Alexandria, VA: American Society of Clinical Oncology, 2010:3005.
-
(2010)
First-in-human phase I study of the oral PI3K inhibitor BEZ235 in patients (pts) with advanced solid tumors
, pp. 3005
-
-
Burris, H.1
Rodon, J.2
Sharma, R.S.3
-
100
-
-
61349141302
-
Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2
-
Feldman ME, Apsel B, Uotila A, et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol, 2009,7(2):e38.
-
(2009)
PLoS Biol
, vol.7
, Issue.2
-
-
Feldman, M.E.1
Apsel, B.2
Uotila, A.3
-
101
-
-
65549145048
-
An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
-
Thoreen CC, Kang SA, Chang JW, et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem, 2009,284(12): 8023-8032.
-
(2009)
J Biol Chem
, vol.284
, Issue.12
, pp. 8023-8032
-
-
Thoreen, C.C.1
Kang, S.A.2
Chang, J.W.3
-
102
-
-
68049137608
-
Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin
-
Yu K, Toral-Barza L, Shi C, et al. Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res, 2009,69(15): 6232-6240.
-
(2009)
Cancer Res
, vol.69
, Issue.15
, pp. 6232-6240
-
-
Yu, K.1
Toral-Barza, L.2
Shi, C.3
-
103
-
-
67650312583
-
Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR)
-
Garcia-Martinez JM, Moran J, Clarke RG, et al. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem J, 2009,421(1):29-42.
-
(2009)
Biochem J
, vol.421
, Issue.1
, pp. 29-42
-
-
Garcia-Martinez, J.M.1
Moran, J.2
Clarke, R.G.3
-
104
-
-
78649471733
-
Targeting TORC2 in multiple myeloma with a new mTOR kinase inhibitor
-
Hoang B, Frost P, Shi Y, et al. Targeting TORC2 in multiple myeloma with a new mTOR kinase inhibitor. Blood, 2010,116 (22):4560-4568.
-
(2010)
Blood
, vol.116
, Issue.22
, pp. 4560-4568
-
-
Hoang, B.1
Frost, P.2
Shi, Y.3
-
105
-
-
75149112670
-
AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity
-
Chresta CM, Davies BR, Hickson I, et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res, 2010,70(1):288-298.
-
(2010)
Cancer Res
, vol.70
, Issue.1
, pp. 288-298
-
-
Chresta, C.M.1
Davies, B.R.2
Hickson, I.3
-
106
-
-
84874192381
-
-
ASCO. Alexandria, VA: American Society of Clinical Oncology
-
Tan DS, Dumez H, Olmos D, et al. First-in-human phase I study exploring three schedules of OSI-027, a novel small molecule TORC1/TORC2 inhibitor, in patients with advanced solid tumors and lymphoma. ASCO. Alexandria, VA: American Society of Clinical Oncology, 2010:3006.
-
(2010)
First-in-human phase I study exploring three schedules of OSI-027, a novel small molecule TORC1/TORC2 inhibitor, in patients with advanced solid tumors and lymphoma
, pp. 3006
-
-
Tan, D.S.1
Dumez, H.2
Olmos, D.3
-
108
-
-
79958806173
-
mTOR kinase inhibitor AZD8055 enhances the immunotherapeutic activity of an agonist CD40 antibody in cancer treatment
-
Jiang Q, Weiss JM, Back T, et al. mTOR kinase inhibitor AZD8055 enhances the immunotherapeutic activity of an agonist CD40 antibody in cancer treatment. Cancer Res, 2011,71(12):4074-4084.
-
(2011)
Cancer Res
, vol.71
, Issue.12
, pp. 4074-4084
-
-
Jiang, Q.1
Weiss, J.M.2
Back, T.3
-
109
-
-
80051590039
-
Preclinical characterization of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2: Distinct from rapamycin
-
Bhagwat SV, Gokhale PC, Crew AP, et al. Preclinical characterization of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2: distinct from rapamycin. Mol Cancer Ther, 2011, 10(8):1394-406.
-
(2011)
Mol Cancer Ther
, vol.10
, Issue.8
, pp. 1394-1406
-
-
Bhagwat, S.V.1
Gokhale, P.C.2
Crew, A.P.3
|