메뉴 건너뛰기




Volumn 81, Issue , 2012, Pages 587-613

The structural basis for control of eukaryotic protein kinases

Author keywords

dimerization; phosphorylation; pseudokinases; signal transduction; substrate recognition

Indexed keywords

ADENOSINE TRIPHOSPHATE; PROTEIN KINASE; SCAFFOLD PROTEIN;

EID: 84861859600     PISSN: 00664154     EISSN: 15454509     Source Type: Book Series    
DOI: 10.1146/annurev-biochem-052410-090317     Document Type: Article
Times cited : (333)

References (139)
  • 1
    • 79551632876 scopus 로고    scopus 로고
    • Protein kinase signaling networks in cancer
    • Brognard J, HunterT. 2011. Protein kinase signaling networks in cancer. Curr. Opin. Genet. Dev. 21:4-11
    • (2011) Curr. Opin. Genet. Dev. , vol.21 , pp. 4-11
    • Brognard, J.1    Hunter, T.2
  • 2
    • 0036097364 scopus 로고    scopus 로고
    • The origins of protein phosphorylation
    • Cohen P. 2002. The origins of protein phosphorylation. Nat. Cell Biol. 4:E127-30
    • (2002) Nat. Cell Biol. , vol.4
    • Cohen, P.1
  • 3
    • 79959476700 scopus 로고    scopus 로고
    • The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling
    • Dar AC, Shokat KM. 2011. The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling. Annu. Rev. Biochem. 80:769-95
    • (2011) Annu. Rev. Biochem. , vol.80 , pp. 769-795
    • Dar, A.C.1    Shokat, K.M.2
  • 4
    • 67649726156 scopus 로고    scopus 로고
    • Protein kinase inhibitors: Contributions from structure to clinical compounds
    • Johnson LN. 2009. Protein kinase inhibitors: contributions from structure to clinical compounds. Q. Rev. Biophys. 42:1-40
    • (2009) Q. Rev. Biophys. , vol.42 , pp. 1-40
    • Johnson, L.N.1
  • 5
    • 57749188299 scopus 로고    scopus 로고
    • Targeting cancer with small molecule kinase inhibitors
    • Zhang J, Yang PL, Gray NS. 2009. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer 9:28-39
    • (2009) Nat. Rev. Cancer , vol.9 , pp. 28-39
    • Zhang, J.1    Yang, P.L.2    Gray, N.S.3
  • 6
    • 0035413607 scopus 로고    scopus 로고
    • Structural basis for control by phosphorylation
    • Johnson LN, Lewis RJ. 2001. Structural basis for control by phosphorylation. Chem. Rev. 101:2209-42
    • (2001) Chem. Rev. , vol.101 , pp. 2209-2242
    • Johnson, L.N.1    Lewis, R.J.2
  • 8
    • 58149193245 scopus 로고    scopus 로고
    • Kinomer v. 1.0: A database of systematically classified eukaryotic protein kinases
    • MartinDM, Miranda-Saavedra D, Barton GJ. 2009. Kinomer v. 1.0: a database of systematically classified eukaryotic protein kinases. Nucleic Acids Res. 37:D244-50
    • (2009) Nucleic Acids Res. , vol.37
    • Martin, D.M.1    Miranda-Saavedra, D.2    Barton, G.J.3
  • 9
    • 75349102353 scopus 로고    scopus 로고
    • Insights into protein kinase regulation and inhibition by large scale structural comparison
    • Eswaran J, Knapp S. 2010. Insights into protein kinase regulation and inhibition by large scale structural comparison. Biochim. Biophys. Acta 1804:429-32
    • (2010) Biochim. Biophys. Acta , vol.1804 , pp. 429-432
    • Eswaran, J.1    Knapp, S.2
  • 10
    • 0026342401 scopus 로고
    • Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase
    • Knighton DR, Zheng JH, Ten Eyck LF, Ashford VA, Xuong NH, et al. 1991. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253:407-14
    • (1991) Science , vol.253 , pp. 407-414
    • Knighton, D.R.1    Zheng, J.H.2    Ten Eyck, L.F.3    Ashford, V.A.4    Xuong, N.H.5
  • 12
    • 0037013143 scopus 로고    scopus 로고
    • The conformational plasticity of protein kinases
    • Huse M, Kuriyan J. 2002. The conformational plasticity of protein kinases. Cell 109:275-82
    • (2002) Cell , vol.109 , pp. 275-282
    • Huse, M.1    Kuriyan, J.2
  • 13
    • 4444353636 scopus 로고    scopus 로고
    • Regulation of protein kinases; Controlling activity through activation segment conformation
    • Nolen B, Taylor S, Ghosh G. 2004. Regulation of protein kinases; controlling activity through activation segment conformation. Mol. Cell 15:661-75
    • (2004) Mol. Cell , vol.15 , pp. 661-675
    • Nolen, B.1    Taylor, S.2    Ghosh, G.3
  • 14
    • 37549037063 scopus 로고    scopus 로고
    • Structure of the human protein kinase MPSK1 reveals an atypical activation loop architecture
    • Eswaran J, Bernad A, Ligos JM, Guinea B, Debreczeni JE, et al. 2008. Structure of the human protein kinase MPSK1 reveals an atypical activation loop architecture. Structure 16:115-24
    • (2008) Structure , vol.16 , pp. 115-124
    • Eswaran, J.1    Bernad, A.2    Ligos, J.M.3    Guinea, B.4    Debreczeni, J.E.5
  • 16
    • 33845197964 scopus 로고    scopus 로고
    • Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism
    • Kornev AP, Haste NM, Taylor SS, Eyck LF. 2006. Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proc. Natl. Acad. Sci. USA 103:17783-88
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 17783-17788
    • Kornev, A.P.1    Haste, N.M.2    Taylor, S.S.3    Eyck, L.F.4
  • 18
    • 38149011438 scopus 로고    scopus 로고
    • Conserved spatial patterns across the protein kinase family
    • Ten Eyck LF, Taylor SS, Kornev AP. 2008. Conserved spatial patterns across the protein kinase family. Biochim. Biophys. Acta 1784:238-43
    • (2008) Biochim. Biophys. Acta , vol.1784 , pp. 238-243
    • Ten Eyck, L.F.1    Taylor, S.S.2    Kornev, A.P.3
  • 19
    • 1642323740 scopus 로고    scopus 로고
    • Protein kinase inhibitors: Insights into drug design from structure
    • Noble ME, Endicott JA, Johnson LN. 2004. Protein kinase inhibitors: insights into drug design from structure. Science 303:1800-5
    • (2004) Science , vol.303 , pp. 1800-1805
    • Noble, M.E.1    Endicott, J.A.2    Johnson, L.N.3
  • 20
    • 79953308071 scopus 로고    scopus 로고
    • Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms
    • Jura N, Zhang X, Endres NF, Seeliger MA, Schindler T, Kuriyan J. 2011. Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms. Mol. Cell 42:9-22
    • (2011) Mol. Cell , vol.42 , pp. 9-22
    • Jura, N.1    Zhang, X.2    Endres, N.F.3    Seeliger, M.A.4    Schindler, T.5    Kuriyan, J.6
  • 22
    • 0030812650 scopus 로고    scopus 로고
    • The crystal structure of a phosphorylase kinase peptide substrate complex: Kinase substrate recognition
    • Lowe ED, Noble ME, Skamnaki VT, Oikonomakos NG, Owen DJ, Johnson LN. 1997. The crystal structure of a phosphorylase kinase peptide substrate complex: kinase substrate recognition. EMBO J. 16:6646-58
    • (1997) EMBO J. , vol.16 , pp. 6646-6658
    • Lowe, E.D.1    Noble, M.E.2    Skamnaki, V.T.3    Oikonomakos, N.G.4    Owen, D.J.5    Johnson, L.N.6
  • 23
    • 36849043083 scopus 로고    scopus 로고
    • Substrate and docking interactions in serine/threonine protein kinases
    • Goldsmith EJ, Akella R, Min X, Zhou T, Humphreys JM. 2007. Substrate and docking interactions in serine/threonine protein kinases. Chem. Rev. 107:5065-81
    • (2007) Chem. Rev. , vol.107 , pp. 5065-5081
    • Goldsmith, E.J.1    Akella, R.2    Min, X.3    Zhou, T.4    Humphreys, J.M.5
  • 24
    • 33747359918 scopus 로고    scopus 로고
    • The role of the phospho-CDK2/cyclin A recruitment site in substrate recognition
    • Cheng KY, Noble ME, Skamnaki V, Brown NR, Lowe ED, et al. 2006. The role of the phospho-CDK2/cyclin A recruitment site in substrate recognition. J. Biol. Chem. 281:23167-79
    • (2006) J. Biol. Chem. , vol.281 , pp. 23167-23179
    • Cheng, K.Y.1    Noble, M.E.2    Skamnaki, V.3    Brown, N.R.4    Lowe, E.D.5
  • 25
    • 13244284602 scopus 로고    scopus 로고
    • Structure and function of Polo-like kinases
    • Lowery DM, Lim D, Yaffe MB. 2005. Structure and function of Polo-like kinases. Oncogene 24:248-59
    • (2005) Oncogene , vol.24 , pp. 248-259
    • Lowery, D.M.1    Lim, D.2    Yaffe, M.B.3
  • 26
    • 57149120091 scopus 로고    scopus 로고
    • Mechanism of multi-site phosphorylation from a ROCK-I:RhoE complex structure
    • Komander D, Garg R, Wan PT, Ridley AJ, Barford D. 2008. Mechanism of multi-site phosphorylation from a ROCK-I:RhoE complex structure. EMBO J. 27:3175-85
    • (2008) EMBO J. , vol.27 , pp. 3175-3185
    • Komander, D.1    Garg, R.2    Wan, P.T.3    Ridley, A.J.4    Barford, D.5
  • 27
    • 25144502820 scopus 로고    scopus 로고
    • Higher-order substrate recognition of eIF2alpha by the RNAdependent protein kinase PKR
    • Dar AC, Dever TE, Sicheri F. 2005. Higher-order substrate recognition of eIF2alpha by the RNAdependent protein kinase PKR. Cell 122:887-900
    • (2005) Cell , vol.122 , pp. 887-900
    • Dar, A.C.1    Dever, T.E.2    Sicheri, F.3
  • 28
    • 46349099824 scopus 로고    scopus 로고
    • Structural basis for the recognition of c-Src by its inactivator Csk
    • Levinson NM, Seeliger MA, Cole PA, Kuriyan J. 2008. Structural basis for the recognition of c-Src by its inactivator Csk. Cell 134:124-34
    • (2008) Cell , vol.134 , pp. 124-134
    • Levinson, N.M.1    Seeliger, M.A.2    Cole, P.A.3    Kuriyan, J.4
  • 29
    • 13244291292 scopus 로고    scopus 로고
    • Crystal structure of a complex between the catalytic and regulatory (RIalpha) subunits of PKA
    • Kim C, Xuong NH, Taylor SS. 2005. Crystal structure of a complex between the catalytic and regulatory (RIalpha) subunits of PKA. Science 307:690-96
    • (2005) Science , vol.307 , pp. 690-696
    • Kim, C.1    Xuong, N.H.2    Taylor, S.S.3
  • 30
    • 0035265679 scopus 로고    scopus 로고
    • Phosphoprotein-protein interactions revealed by the crystal structure of kinase-associated phosphatase in complex with phospho-CDK2
    • Song H, Hanlon N, Brown NR, Noble ME, Johnson LN, Barford D. 2001. Phosphoprotein-protein interactions revealed by the crystal structure of kinase-associated phosphatase in complex with phospho-CDK2. Mol. Cell 7:615-26
    • (2001) Mol. Cell , vol.7 , pp. 615-626
    • Song, H.1    Hanlon, N.2    Brown, N.R.3    Noble, M.E.4    Johnson, L.N.5    Barford, D.6
  • 31
    • 79952727150 scopus 로고    scopus 로고
    • Requirement for kinase-induced conformational change in eukaryotic initiation factor 2alpha (eIF2alpha) restricts phosphorylation of Ser51
    • DeyM, Velyvis A, Li JJ, Chiu E, Chiovitti D, et al. 2011. Requirement for kinase-induced conformational change in eukaryotic initiation factor 2alpha (eIF2alpha) restricts phosphorylation of Ser51. Proc. Natl. Acad. Sci. USA 108:4316-21
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 4316-4321
    • Dey, M.1    Velyvis, A.2    Li, J.J.3    Chiu, E.4    Chiovitti, D.5
  • 32
    • 0033517739 scopus 로고    scopus 로고
    • Catalytic mechanism of phosphorylase kinase probed by mutational studies
    • Skamnaki VT, Owen DJ, NobleME, Lowe ED, Lowe G, et al. 1999. Catalytic mechanism of phosphorylase kinase probed by mutational studies. Biochemistry 38:14718-30
    • (1999) Biochemistry , vol.38 , pp. 14718-14730
    • Skamnaki, V.T.1    Owen, D.J.2    Noble, M.E.3    Lowe, E.D.4    Lowe, G.5
  • 33
    • 69249106454 scopus 로고    scopus 로고
    • The intrinsic reactivity of ATP and the catalytic proficiencies of kinases acting on glucose, N-acetylgalactosamine, and homoserine: A thermodynamic analysis
    • Stockbridge RB, Wolfenden R. 2009. The intrinsic reactivity of ATP and the catalytic proficiencies of kinases acting on glucose, N-acetylgalactosamine, and homoserine: a thermodynamic analysis. J. Biol. Chem. 284:22747-57
    • (2009) J. Biol. Chem. , vol.284 , pp. 22747-22757
    • Stockbridge, R.B.1    Wolfenden, R.2
  • 34
    • 0035413606 scopus 로고    scopus 로고
    • Kinetic and catalytic mechanisms of protein kinases
    • Adams JA. 2001. Kinetic and catalytic mechanisms of protein kinases. Chem. Rev. 101:2271-90
    • (2001) Chem. Rev. , vol.101 , pp. 2271-2290
    • Adams, J.A.1
  • 35
    • 0030049479 scopus 로고    scopus 로고
    • Pre-steady-state kinetic analysis of cAMP-dependent protein kinase using rapid quench flow techniques
    • Grant BD, Adams JA. 1996. Pre-steady-state kinetic analysis of cAMP-dependent protein kinase using rapid quench flow techniques. Biochemistry 35:2022-29
    • (1996) Biochemistry , vol.35 , pp. 2022-2029
    • Grant, B.D.1    Adams, J.A.2
  • 36
    • 0036215864 scopus 로고    scopus 로고
    • Crystal structure of a transition state mimic of the catalytic subunit of cAMP-dependent protein kinase
    • Madhusudan, Akamine P, Xuong NH, Taylor SS. 2002. Crystal structure of a transition state mimic of the catalytic subunit of cAMP-dependent protein kinase. Nat. Struct. Biol. 9:273-77
    • (2002) Nat. Struct. Biol. , vol.9 , pp. 273-277
    • Madhusudan, A.P.1    Xuong, N.H.2    Taylor, S.S.3
  • 37
    • 79959432785 scopus 로고    scopus 로고
    • Biological phosphoryl-transfer reactions: Understanding mechanism and catalysis
    • Lassila JK, Zalatan JG, Herschlag D. 2011. Biological phosphoryl-transfer reactions: understanding mechanism and catalysis. Annu. Rev. Biochem. 80:669-702
    • (2011) Annu. Rev. Biochem. , vol.80 , pp. 669-702
    • Lassila, J.K.1    Zalatan, J.G.2    Herschlag, D.3
  • 38
    • 79955844083 scopus 로고    scopus 로고
    • Briefly bound to activate: Transient binding of a second catalytic magnesium activates the structure and dynamics of CDK2 kinase for catalysis
    • BaoZQ, JacobsenDM, YoungMA. 2011. Briefly bound to activate: transient binding of a second catalytic magnesium activates the structure and dynamics of CDK2 kinase for catalysis. Structure 19:675-90
    • (2011) Structure , vol.19 , pp. 675-690
    • Bao, Z.Q.1    Jacobsen, D.M.2    Young, M.A.3
  • 39
    • 0037062580 scopus 로고    scopus 로고
    • Structural studies on phospho-CDK2/cyclin A bound to nitrate, a transition state analogue: Implications for the protein kinase mechanism
    • Cook A, Lowe ED, Chrysina ED, Skamnaki VT, Oikonomakos NG, Johnson LN. 2002. Structural studies on phospho-CDK2/cyclin A bound to nitrate, a transition state analogue: implications for the protein kinase mechanism. Biochemistry 41:7301-11
    • (2002) Biochemistry , vol.41 , pp. 7301-7311
    • Cook, A.1    Lowe, E.D.2    Chrysina, E.D.3    Skamnaki, V.T.4    Oikonomakos, N.G.5    Johnson, L.N.6
  • 40
    • 0026698850 scopus 로고
    • Energetic limits of phosphotransfer in the catalytic subunit of cAMPdependent protein kinase as measured by viscosity experiments
    • Adams JA, Taylor SS. 1992. Energetic limits of phosphotransfer in the catalytic subunit of cAMPdependent protein kinase as measured by viscosity experiments. Biochemistry 31:8516-22
    • (1992) Biochemistry , vol.31 , pp. 8516-8522
    • Adams, J.A.1    Taylor, S.S.2
  • 41
    • 77951670691 scopus 로고    scopus 로고
    • Phosphorylation of the transcription factor Ets-1 by ERK2: Rapid dissociation of ADP and phospho-Ets-1
    • Callaway K, Waas WF, Rainey MA, Ren P, Dalby KN. 2010. Phosphorylation of the transcription factor Ets-1 by ERK2: rapid dissociation of ADP and phospho-Ets-1. Biochemistry 49:3619-30
    • (2010) Biochemistry , vol.49 , pp. 3619-3630
    • Callaway, K.1    Waas, W.F.2    Rainey, M.A.3    Ren, P.4    Dalby, K.N.5
  • 43
    • 0029029617 scopus 로고
    • Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex
    • Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, et al. 1995. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376:313-20
    • (1995) Nature , vol.376 , pp. 313-320
    • Jeffrey, P.D.1    Russo, A.A.2    Polyak, K.3    Gibbs, E.4    Hurwitz, J.5
  • 44
    • 0031034930 scopus 로고    scopus 로고
    • Crystal structure of the Src family tyrosine kinase Hck
    • Sicheri F, Moarefi I, Kuriyan J. 1997. Crystal structure of the Src family tyrosine kinase Hck. Nature 385:602-9
    • (1997) Nature , vol.385 , pp. 602-609
    • Sicheri, F.1    Moarefi, I.2    Kuriyan, J.3
  • 45
    • 0031025991 scopus 로고    scopus 로고
    • Three-dimensional structure of the tyrosine kinase c-Src
    • Xu W, Harrison SC, Eck MJ. 1997. Three-dimensional structure of the tyrosine kinase c-Src. Nature 385:595-602
    • (1997) Nature , vol.385 , pp. 595-602
    • Xu, W.1    Harrison, S.C.2    Eck, M.J.3
  • 46
    • 20444399897 scopus 로고    scopus 로고
    • The crystal structure of a c-Src complex in an active conformation suggests possible steps in c-Src activation
    • Cowan-Jacob SW, Fendrich G, Manley PW, JahnkeW, Fabbro D, et al. 2005. The crystal structure of a c-Src complex in an active conformation suggests possible steps in c-Src activation. Structure 13:861-71
    • (2005) Structure , vol.13 , pp. 861-871
    • Cowan-Jacob, S.W.1    Fendrich, G.2    Manley, P.W.3    Jahnkew Fabbro, D.4
  • 47
    • 0027408171 scopus 로고
    • Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with magnesium-ATP and peptide inhibitor
    • Zheng J, KnightonDR, Ten Eyck LF, Karlsson R, XuongN, et al. 1993. Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with magnesium-ATP and peptide inhibitor. Biochemistry 32:2154-61
    • (1993) Biochemistry , vol.32 , pp. 2154-2161
    • Zheng, J.1    Knighton, D.R.2    Ten Eyck, L.F.3    Karlsson, R.4    Xuong, N.5
  • 48
  • 49
    • 18944386711 scopus 로고    scopus 로고
    • The active conformation of the PAK1 kinase domain
    • LeiM, Robinson MA, Harrison SC. 2005. The active conformation of the PAK1 kinase domain. Structure 13:769-78
    • (2005) Structure , vol.13 , pp. 769-778
    • Lei, M.1    Robinson, M.A.2    Harrison, S.C.3
  • 51
    • 0042357240 scopus 로고    scopus 로고
    • Structure of a c-Kit product complex reveals the basis for kinase transactivation
    • Mol CD, Lim KB, Sridhar V, Zou H, Chien EY, et al. 2003. Structure of a c-Kit product complex reveals the basis for kinase transactivation. J. Biol. Chem. 278:31461-64
    • (2003) J. Biol. Chem. , vol.278 , pp. 31461-31464
    • Mol, C.D.1    Lim, K.B.2    Sridhar, V.3    Zou, H.4    Chien, E.Y.5
  • 52
    • 0034796457 scopus 로고    scopus 로고
    • The TGFβ receptor activation process: An inhibitor-to substrate-binding switch
    • Huse M, Muir TW, Xu L, Chen YG, Kuriyan J, Massague J. 2001. The TGFβ receptor activation process: an inhibitor-to substrate-binding switch. Mol. Cell 8:671-82
    • (2001) Mol. Cell , vol.8 , pp. 671-682
    • Huse, M.1    Muir, T.W.2    Xu, L.3    Chen, Y.G.4    Kuriyan, J.5    Massague, J.6
  • 53
    • 50249132542 scopus 로고    scopus 로고
    • Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation
    • Filippakopoulos P, Kofler M, Hantschel O, Gish GD, Grebien F, et al. 2008. Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation. Cell 134:793-803
    • (2008) Cell , vol.134 , pp. 793-803
    • Filippakopoulos, P.1    Kofler, M.2    Hantschel, O.3    Gish, G.D.4    Grebien, F.5
  • 54
    • 0242330123 scopus 로고    scopus 로고
    • Structural basis of Aurora-A activation by TPX2 at the mitotic spindle
    • Bayliss R, Sardon T, Vernos I, Conti E. 2003. Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol. Cell 12:851-62
    • (2003) Mol. Cell , vol.12 , pp. 851-862
    • Bayliss, R.1    Sardon, T.2    Vernos, I.3    Conti, E.4
  • 56
    • 18744373865 scopus 로고    scopus 로고
    • Crystal structure of an activated Akt/protein kinase B ternary complex with GSK3-peptide and AMP-PNP
    • Yang J, Cron P, Good VM, Thompson V, Hemmings BA, Barford D. 2002. Crystal structure of an activated Akt/protein kinase B ternary complex with GSK3-peptide and AMP-PNP. Nat. Struct. Biol. 9:940-44
    • (2002) Nat. Struct. Biol. , vol.9 , pp. 940-944
    • Yang, J.1    Cron, P.2    Good, V.M.3    Thompson, V.4    Hemmings, B.A.5    Barford, D.6
  • 57
    • 33751570046 scopus 로고    scopus 로고
    • Structure of the catalytic domain of human protein kinase C beta II complexed with a bisindolylmaleimide inhibitor
    • Grodsky N, Li Y, Bouzida D, Love R, Jensen J, et al. 2006. Structure of the catalytic domain of human protein kinase C beta II complexed with a bisindolylmaleimide inhibitor. Biochemistry 45:13970-81
    • (2006) Biochemistry , vol.45 , pp. 13970-13981
    • Grodsky, N.1    Li, Y.2    Bouzida, D.3    Love, R.4    Jensen, J.5
  • 58
    • 33644837834 scopus 로고    scopus 로고
    • Molecular mechanism for the regulation of rho-kinase by dimerization and its inhibition by fasudil
    • Yamaguchi H, Kasa M, Amano M, Kaibuchi K, Hakoshima T. 2006. Molecular mechanism for the regulation of rho-kinase by dimerization and its inhibition by fasudil. Structure 14:589-600
    • (2006) Structure , vol.14 , pp. 589-600
    • Yamaguchi, H.1    Kasa, M.2    Amano, M.3    Kaibuchi, K.4    Hakoshima, T.5
  • 59
    • 0037102153 scopus 로고    scopus 로고
    • High resolution crystal structure of the human PDK1 catalytic domain defines the regulatory phosphopeptide docking site
    • Biondi RM, Komander D, Thomas CC, Lizcano JM, Deak M, et al. 2002. High resolution crystal structure of the human PDK1 catalytic domain defines the regulatory phosphopeptide docking site. EMBO J. 21:4219-28
    • (2002) EMBO J. , vol.21 , pp. 4219-4228
    • Biondi, R.M.1    Komander, D.2    Thomas, C.C.3    Lizcano, J.M.4    Deak, M.5
  • 60
  • 61
    • 34848840368 scopus 로고    scopus 로고
    • Structural basis forAMPbinding to mammalian AMP-activated protein kinase
    • Xiao B, HeathR, Saiu P, Leiper FC, Leone P, et al. 2007. Structural basis forAMPbinding to mammalian AMP-activated protein kinase. Nature 449:496-500
    • (2007) Nature , vol.449 , pp. 496-500
    • Xiao, B.1    Heath, R.2    Saiu, P.3    Leiper, F.C.4    Leone, P.5
  • 62
    • 34047161436 scopus 로고    scopus 로고
    • Crystal structures of the adenylate sensor from fission yeast AMP-activated protein kinase
    • Townley R, Shapiro L. 2007. Crystal structures of the adenylate sensor from fission yeast AMP-activated protein kinase. Science 315:1726-29
    • (2007) Science , vol.315 , pp. 1726-1729
    • Townley, R.1    Shapiro, L.2
  • 63
    • 34848843526 scopus 로고    scopus 로고
    • Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1
    • Amodeo GA, Rudolph MJ, Tong L. 2007. Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1. Nature 449:492-95
    • (2007) Nature , vol.449 , pp. 492-495
    • Amodeo, G.A.1    Rudolph, M.J.2    Tong, L.3
  • 64
    • 79959338922 scopus 로고    scopus 로고
    • AMPKis a direct adenylate charge-regulated protein kinase
    • Oakhill JS, Steel R, Chen ZP, Scott JW, LingN, et al. 2011.AMPKis a direct adenylate charge-regulated protein kinase. Science 332:1433-35
    • (2011) Science , vol.332 , pp. 1433-1435
    • Oakhill, J.S.1    Steel, R.2    Chen, Z.P.3    Scott, J.W.4    Ling, N.5
  • 65
  • 67
    • 79953843867 scopus 로고    scopus 로고
    • Structural insights into the architecture and allostery of full-length AMP-activated protein kinase
    • Zhu L, Chen L, Zhou XM, Zhang YY, Zhang YJ, et al. 2011. Structural insights into the architecture and allostery of full-length AMP-activated protein kinase. Structure 19:515-22
    • (2011) Structure , vol.19 , pp. 515-522
    • Zhu, L.1    Chen, L.2    Zhou, X.M.3    Zhang, Y.Y.4    Zhang, Y.J.5
  • 68
    • 67649484365 scopus 로고    scopus 로고
    • Structural insight into the autoinhibition mechanism of AMP-activated protein kinase
    • Chen L, Jiao ZH, Zheng LS, Zhang YY, Xie ST, et al. 2009. Structural insight into the autoinhibition mechanism of AMP-activated protein kinase. Nature 459:1146-49
    • (2009) Nature , vol.459 , pp. 1146-1149
    • Chen, L.1    Zh, J.2    Zheng, L.S.3    Zhang, Y.Y.4    Xie, S.T.5
  • 69
    • 77953896432 scopus 로고    scopus 로고
    • Cell signaling by receptor tyrosine kinases
    • Lemmon MA, Schlessinger J. 2010. Cell signaling by receptor tyrosine kinases. Cell 141:1117-34
    • (2010) Cell , vol.141 , pp. 1117-1134
    • Lemmon, M.A.1    Schlessinger, J.2
  • 70
    • 0028582185 scopus 로고
    • Crystal structure of the tyrosine kinase domain of the human insulin receptor
    • Hubbard SR, Wei L, Ellis L, Hendrickson WA. 1994. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372:746-54
    • (1994) Nature , vol.372 , pp. 746-754
    • Hubbard, S.R.1    Wei, L.2    Ellis, L.3    Hendrickson, W.A.4
  • 71
    • 0030766163 scopus 로고    scopus 로고
    • Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog
    • Hubbard SR. 1997. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 16:5572-81
    • (1997) EMBO J. , vol.16 , pp. 5572-5581
    • Hubbard, S.R.1
  • 72
    • 0030598848 scopus 로고    scopus 로고
    • Structure of the FG Freceptor tyrosine kinase domain reveals a novel autoinhibitory mechanism
    • Mohammadi M, Schlessinger J, Hubbard SR. 1996. Structure of theFGFreceptor tyrosine kinase domain reveals a novel autoinhibitory mechanism. Cell 86:577-87
    • (1996) Cell , vol.86 , pp. 577-587
    • Mohammadi, M.1    Schlessinger, J.2    Hubbard, S.R.3
  • 73
    • 0036710123 scopus 로고    scopus 로고
    • Crystal structure of the MuSK tyrosine kinase: Insights into receptor autoregulation
    • Till JH, Becerra M, Watty A, Lu Y, Ma Y, et al. 2002. Crystal structure of the MuSK tyrosine kinase: insights into receptor autoregulation. Structure 10:1187-96
    • (2002) Structure , vol.10 , pp. 1187-1196
    • Till, J.H.1    Becerra, M.2    Watty, A.3    Lu, Y.4    Ma, Y.5
  • 74
    • 77954252168 scopus 로고    scopus 로고
    • The cytoplasmic adaptor proteinDok7 activates the receptor tyrosine kinase MuSK via dimerization
    • Bergamin E, Hallock PT, Burden SJ, Hubbard SR. 2010. The cytoplasmic adaptor proteinDok7 activates the receptor tyrosine kinase MuSK via dimerization. Mol. Cell 39:100-9
    • (2010) Mol. Cell , vol.39 , pp. 100-109
    • Bergamin, E.1    Hallock, P.T.2    Burden, S.J.3    Hubbard, S.R.4
  • 75
    • 0035929146 scopus 로고    scopus 로고
    • Structural basis for autoinhibition of the EphB2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region
    • Wybenga-Groot LE, Baskin B, Ong SH, Tong J, Pawson T, Sicheri F. 2001. Structural basis for autoinhibition of the EphB2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region. Cell 106:745-57
    • (2001) Cell , vol.106 , pp. 745-757
    • Wybenga-Groot, L.E.1    Baskin, B.2    Ong, S.H.3    Tong, J.4    Pawson, T.5    Sicheri, F.6
  • 76
    • 0842310394 scopus 로고    scopus 로고
    • The structural basis for autoinhibition of FLT3 by the juxtamembrane domain
    • Griffith J, Black J, Faerman C, Swenson L, WynnM, et al. 2004. The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol. Cell 13:169-78
    • (2004) Mol. Cell , vol.13 , pp. 169-178
    • Griffith, J.1    Black, J.2    Faerman, C.3    Swenson, L.4    Wynn, M.5
  • 77
    • 0034435424 scopus 로고    scopus 로고
    • Structure of the Tie2 RTK domain: Self-inhibition by the nucleotide binding loop, activation loop, and C-terminal tail
    • Shewchuk LM, Hassell AM, Ellis B, Holmes WD, Davis R, et al. 2000. Structure of the Tie2 RTK domain: self-inhibition by the nucleotide binding loop, activation loop, and C-terminal tail. Structure 8:1105-13
    • (2000) Structure , vol.8 , pp. 1105-1113
    • Shewchuk, L.M.1    Hassell, A.M.2    Ellis, B.3    Holmes, W.D.4    Davis, R.5
  • 78
    • 2942594298 scopus 로고    scopus 로고
    • Juxtamembrane autoinhibition in receptor tyrosine kinases
    • Hubbard SR. 2004. Juxtamembrane autoinhibition in receptor tyrosine kinases. Nat. Rev. Mol. Cell Biol. 5:464-71
    • (2004) Nat. Rev. Mol. Cell Biol. , vol.5 , pp. 464-471
    • Hubbard, S.R.1
  • 79
    • 34547154729 scopus 로고    scopus 로고
    • Activation segment exchange: A common mechanism of kinase autophosphorylation?
    • Oliver AW, Knapp S, Pearl LH. 2007. Activation segment exchange: a common mechanism of kinase autophosphorylation? Trends Biochem. Sci. 32:351-56
    • (2007) Trends Biochem. Sci. , vol.32 , pp. 351-356
    • Oliver, A.W.1    Knapp, S.2    Pearl, L.H.3
  • 80
    • 33746318035 scopus 로고    scopus 로고
    • Trans-activation of the DNA-damage signalling protein kinase Chk2 by T-loop exchange
    • Oliver AW, Paul A, Boxall KJ, Barrie SE, Aherne GW, et al. 2006. Trans-activation of the DNA-damage signalling protein kinase Chk2 by T-loop exchange. EMBO J. 25:3179-90
    • (2006) EMBO J. , vol.25 , pp. 3179-3190
    • Oliver, A.W.1    Paul, A.2    Boxall, K.J.3    Barrie, S.E.4    Aherne, G.W.5
  • 81
    • 33645846943 scopus 로고    scopus 로고
    • Two-stage mechanism for activation of the DNA replication checkpoint kinase Cds1 in fission yeast
    • Xu YJ, Davenport M, Kelly TJ. 2006. Two-stage mechanism for activation of the DNA replication checkpoint kinase Cds1 in fission yeast. Genes Dev. 20:990-1003
    • (2006) Genes Dev. , vol.20 , pp. 990-1003
    • Xu, Y.J.1    Davenport, M.2    Kelly, T.J.3
  • 82
    • 39449119544 scopus 로고    scopus 로고
    • Activation segment dimerization: A mechanism for kinase autophosphorylation of non-consensus sites
    • Pike AC, Rellos P, Niesen FH, Turnbull A, Oliver AW, et al. 2008. Activation segment dimerization: a mechanism for kinase autophosphorylation of non-consensus sites. EMBO J. 27:704-14
    • (2008) EMBO J. , vol.27 , pp. 704-714
    • Pike, A.C.1    Rellos, P.2    Niesen, F.H.3    Turnbull, A.4    Oliver, A.W.5
  • 83
    • 33847737716 scopus 로고    scopus 로고
    • DNA damage checkpoints: From initiation to recovery or adaptation
    • Bartek J, Lukas J. 2007. DNA damage checkpoints: from initiation to recovery or adaptation. Curr. Opin. Cell Biol. 19:238-45
    • (2007) Curr. Opin. Cell Biol. , vol.19 , pp. 238-245
    • Bartek, J.1    Lukas, J.2
  • 84
    • 47949099916 scopus 로고    scopus 로고
    • From endoplasmic-reticulum stress to the inflammatory response
    • Zhang K, Kaufman RJ. 2008. From endoplasmic-reticulum stress to the inflammatory response. Nature 454:455-62
    • (2008) Nature , vol.454 , pp. 455-462
    • Zhang, K.1    Kaufman, R.J.2
  • 85
    • 79952283168 scopus 로고    scopus 로고
    • Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response
    • Ali MM, Bagratuni T, Davenport EL, Nowak PR, Silva-SantistebanMC, et al. 2011. Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response. EMBO J. 30:894-905
    • (2011) EMBO J. , vol.30 , pp. 894-905
    • Ali, M.M.1    Bagratuni, T.2    Davenport, E.L.3    Nowak, P.R.4    Silva-Santisteban, M.C.5
  • 86
    • 37649004940 scopus 로고    scopus 로고
    • Structure of the dual enzyme Ire1 reveals the basis for catalysis and regulation in nonconventional RNA splicing
    • Lee KP, DeyM, Neculai D, Cao C, Dever TE, Sicheri F. 2008. Structure of the dual enzyme Ire1 reveals the basis for catalysis and regulation in nonconventional RNA splicing. Cell 132:89-100
    • (2008) Cell , vol.132 , pp. 89-100
    • Lee, K.P.1    Dey, M.2    Neculai, D.3    Cao, C.4    Dever, T.E.5    Sicheri, F.6
  • 87
    • 59649111087 scopus 로고    scopus 로고
    • The unfolded protein response signals through high-order assembly of Ire1
    • Korennykh AV, Egea PF, Korostelev AA, Finer-Moore J, Zhang C, et al. 2009. The unfolded protein response signals through high-order assembly of Ire1. Nature 457:687-93
    • (2009) Nature , vol.457 , pp. 687-693
    • Korennykh, A.V.1    Egea, P.F.2    Korostelev, A.A.3    Finer-Moore, J.4    Zhang, C.5
  • 88
    • 77950887221 scopus 로고    scopus 로고
    • Flavonol activation defines an unanticipated ligand-binding site in the kinase-RNase domain of IRE1
    • Wiseman RL, Zhang Y, Lee KP, Harding HP, Haynes CM, et al. 2010. Flavonol activation defines an unanticipated ligand-binding site in the kinase-RNase domain of IRE1. Mol. Cell 38:291-304
    • (2010) Mol. Cell , vol.38 , pp. 291-304
    • Wiseman, R.L.1    Zhang, Y.2    Lee, K.P.3    Harding, H.P.4    Haynes, C.M.5
  • 89
    • 0344395603 scopus 로고    scopus 로고
    • Bypassing a kinase activity with an ATP-competitive drug
    • Papa FR, Zhang C, Shokat K, Walter P. 2003. Bypassing a kinase activity with an ATP-competitive drug. Science 302:1533-37
    • (2003) Science , vol.302 , pp. 1533-1537
    • Papa, F.R.1    Zhang, C.2    Shokat, K.3    Walter, P.4
  • 90
    • 48249158391 scopus 로고    scopus 로고
    • Structure-based view of epidermal growth factor receptor regulation
    • Ferguson KM. 2008. Structure-based view of epidermal growth factor receptor regulation. Annu. Rev. Biophys. 37:353-73
    • (2008) Annu. Rev. Biophys. , vol.37 , pp. 353-373
    • Ferguson, K.M.1
  • 91
    • 77952338791 scopus 로고    scopus 로고
    • ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation
    • Shi F, Telesco SE, Liu Y, Radhakrishnan R, Lemmon MA. 2010. ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proc. Natl. Acad. Sci. USA 107:7692-97
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 7692-7697
    • Shi, F.1    Telesco, S.E.2    Liu, Y.3    Radhakrishnan, R.4    Lemmon, M.A.5
  • 92
    • 76049128717 scopus 로고    scopus 로고
    • Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3
    • Jura N, Shan Y, Cao X, Shaw DE, Kuriyan J. 2009. Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3. Proc. Natl. Acad. Sci. USA 106:21608-13
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 21608-21613
    • Jura, N.1    Shan, Y.2    Cao, X.3    Shaw, D.E.4    Kuriyan, J.5
  • 93
    • 67449146917 scopus 로고    scopus 로고
    • The juxtamembrane region of the EGF receptor functions as an activation domain
    • Red Brewer M, Choi SH, Alvarado D, Moravcevic K, Pozzi A, et al. 2009. The juxtamembrane region of the EGF receptor functions as an activation domain. Mol. Cell 34:641-51
    • (2009) Mol. Cell , vol.34 , pp. 641-651
    • Red Brewer, M.1    Choi, S.H.2    Alvarado, D.3    Moravcevic, K.4    Pozzi, A.5
  • 94
    • 67549145398 scopus 로고    scopus 로고
    • Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment
    • Jura N, Endres NF, Engel K, Deindl S, Das R, et al. 2009. Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell 137:1293-307
    • (2009) Cell , vol.137 , pp. 1293-1307
    • Jura, N.1    Endres, N.F.2    Engel, K.3    Deindl, S.4    Das, R.5
  • 95
    • 0141599428 scopus 로고    scopus 로고
    • Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor
    • Stamos J, Sliwkowski MX, Eigenbrot C. 2002. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 277:46265-72
    • (2002) J. Biol. Chem. , vol.277 , pp. 46265-46272
    • Stamos, J.1    Sliwkowski, M.X.2    Eigenbrot, C.3
  • 96
    • 79956310563 scopus 로고    scopus 로고
    • Structural analysis of the mechanism of inhibition and allosteric activation of the kinase domain of HER2 protein
    • Aertgeerts K, Skene R, Yano J, Sang BC, Zou H, et al. 2011. Structural analysis of the mechanism of inhibition and allosteric activation of the kinase domain of HER2 protein. J. Biol. Chem. 286:18756-65
    • (2011) J. Biol. Chem. , vol.286 , pp. 18756-18765
    • Aertgeerts, K.1    Skene, R.2    Yano, J.3    Sang, B.C.4    Zou, H.5
  • 97
    • 40049099848 scopus 로고    scopus 로고
    • Mechanism of activation and inhibition of the HER4/ErbB4 kinase
    • Qiu C, Tarrant MK, Choi SH, Sathyamurthy A, Bose R, et al. 2008. Mechanism of activation and inhibition of the HER4/ErbB4 kinase. Structure 16:460-67
    • (2008) Structure , vol.16 , pp. 460-467
    • Qiu, C.1    Tarrant, M.K.2    Choi, S.H.3    Sathyamurthy, A.4    Bose, R.5
  • 98
    • 33745002702 scopus 로고    scopus 로고
    • An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor
    • Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J. 2006. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125:1137-49
    • (2006) Cell , vol.125 , pp. 1137-1149
    • Zhang, X.1    Gureasko, J.2    Shen, K.3    Cole, P.A.4    Kuriyan, J.5
  • 99
    • 77951248565 scopus 로고    scopus 로고
    • Her4 and Her2/neu tyrosine kinase domains dimerize and activate in a reconstituted in vitro system
    • Monsey J, ShenW, Schlesinger P, Bose R. 2010. Her4 and Her2/neu tyrosine kinase domains dimerize and activate in a reconstituted in vitro system. J. Biol. Chem. 285:7035-44
    • (2010) J. Biol. Chem. , vol.285 , pp. 7035-7044
    • Monsey, J.1    Shenw Schlesinger, P.2    Bose, R.3
  • 100
    • 34248576576 scopus 로고    scopus 로고
    • KSR and CNK: Two scaffolds regulating RAS-mediated RAF activation
    • Claperon A, Therrien M. 2007. KSR and CNK: two scaffolds regulating RAS-mediated RAF activation. Oncogene 26:3143-58
    • (2007) Oncogene , vol.26 , pp. 3143-3158
    • Claperon, A.1    Therrien, M.2
  • 101
    • 27644575157 scopus 로고    scopus 로고
    • Coordinating ERK/MAPK signalling through scaffolds and inhibitors
    • Kolch W. 2005. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat. Rev. Mol. Cell Biol. 6:827-37
    • (2005) Nat. Rev. Mol. Cell Biol. , vol.6 , pp. 827-837
    • Kolch, W.1
  • 103
    • 12144289677 scopus 로고    scopus 로고
    • Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF
    • Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, et al. 2004. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116:855-67
    • (2004) Cell , vol.116 , pp. 855-867
    • Wan, P.T.1    Garnett, M.J.2    Roe, S.M.3    Lee, S.4    Niculescu-Duvaz, D.5
  • 104
    • 42949149240 scopus 로고    scopus 로고
    • Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity
    • Tsai J, Lee JT, Wang W, Zhang J, Cho H, et al. 2008. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc. Natl. Acad. Sci. USA 105:3041-46
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 3041-3046
    • Tsai, J.1    Lee, J.T.2    Wang, W.3    Zhang, J.4    Cho, H.5
  • 106
    • 33845730781 scopus 로고    scopus 로고
    • Demonstration of a genetic therapeutic index for tumors expressing oncogenic BRAF by the kinase inhibitor SB-590885
    • King AJ, Patrick DR, Batorsky RS, Ho ML, DoHT, et al. 2006. Demonstration of a genetic therapeutic index for tumors expressing oncogenic BRAF by the kinase inhibitor SB-590885. Cancer Res. 66:11100-5
    • (2006) Cancer Res. , vol.66 , pp. 11100-11105
    • King, A.J.1    Patrick, D.R.2    Batorsky, R.S.3    Ho, M.L.4    Do, H.T.5
  • 108
    • 79955472800 scopus 로고    scopus 로고
    • A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK
    • Brennan DF, Dar AC, Hertz NT, Chao WC, Burlingame AL, et al. 2011. A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK. Nature 472:366-69
    • (2011) Nature , vol.472 , pp. 366-369
    • Brennan, D.F.1    Dar, A.C.2    Hertz, N.T.3    Chao, W.C.4    Burlingame, A.L.5
  • 109
    • 79955044151 scopus 로고    scopus 로고
    • Mutation that blocks ATP binding creates a pseudokinase stabilizing the scaffolding function of kinase suppressor of Ras, CRAF and BRAF
    • Hu J, Yu H, Kornev AP, Zhao J, Filbert EL, et al. 2011. Mutation that blocks ATP binding creates a pseudokinase stabilizing the scaffolding function of kinase suppressor of Ras, CRAF and BRAF. Proc. Natl. Acad. Sci. USA 108:6067-72
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 6067-6072
    • Hu, J.1    Yu, H.2    Kornev, A.P.3    Zhao, J.4    Filbert, E.L.5
  • 110
    • 77949732073 scopus 로고    scopus 로고
    • RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF
    • Poulikakos PI, Zhang C, Bollag G, ShokatKM, RosenN. 2010. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464:427-30
    • (2010) Nature , vol.464 , pp. 427-430
    • Poulikakos, P.I.1    Zhang, C.2    Bollag, G.3    Shokat, K.M.4    Rosen, N.5
  • 111
    • 79953784580 scopus 로고    scopus 로고
    • RAF inhibitor-induced KSR1/B-RAF binding and its effects on ERK cascade signaling
    • McKay MM, Ritt DA, Morrison DK. 2011. RAF inhibitor-induced KSR1/B-RAF binding and its effects on ERK cascade signaling. Curr. Biol. 21:563-68
    • (2011) Curr. Biol. , vol.21 , pp. 563-568
    • Mc Kay, M.M.1    Ritt, D.A.2    Morrison, D.K.3
  • 113
    • 78649642175 scopus 로고    scopus 로고
    • Pseudokinases-remnants of evolution or key allosteric regulators?
    • Zeqiraj E, Van Aalten DM. 2010. Pseudokinases-remnants of evolution or key allosteric regulators? Curr. Opin. Struct. Biol. 20:772-81
    • (2010) Curr. Opin. Struct. Biol. , vol.20 , pp. 772-781
    • Zeqiraj, E.1    Van Aalten, D.M.2
  • 114
    • 3142600709 scopus 로고    scopus 로고
    • Crystal structure of the kinase domain of WNK1, a kinase that causes a hereditary form of hypertension
    • Min X, Lee BH, Cobb MH, Goldsmith EJ. 2004. Crystal structure of the kinase domain of WNK1, a kinase that causes a hereditary form of hypertension. Structure 12:1303-11
    • (2004) Structure , vol.12 , pp. 1303-1311
    • Min, X.1    Lee, B.H.2    Cobb, M.H.3    Goldsmith, E.J.4
  • 115
    • 0032578901 scopus 로고    scopus 로고
    • Structural basis for activation of the titin kinase domain during myofibrillogenesis
    • Mayans O, Van der Ven PF, Wilm M, Mues A, Young P, et al. 1998. Structural basis for activation of the titin kinase domain during myofibrillogenesis. Nature 395:863-69
    • (1998) Nature , vol.395 , pp. 863-869
    • Mayans, O.1    Van Der Ven, P.F.2    Wilm, M.3    Mues, A.4    Young, P.5
  • 116
  • 118
    • 72949115493 scopus 로고    scopus 로고
    • Structure of the LKB1-STRAD-MO25 complex reveals an allosteric mechanism of kinase activation
    • Zeqiraj E, Filippi BM, Deak M, Alessi DR, Van Aalten DM.2009. Structure of the LKB1-STRAD-MO25 complex reveals an allosteric mechanism of kinase activation. Science 326:1707-11
    • (2009) Science , vol.326 , pp. 1707-1711
    • Zeqiraj, E.1    Filippi, B.M.2    Deak, M.3    Alessi, D.R.4    Van Aalten, D.M.5
  • 119
    • 0038371050 scopus 로고    scopus 로고
    • Autoinhibition of Jak2 tyrosine kinase is dependent on specific regions in its pseudokinase domain
    • Saharinen P, Vihinen M, Silvennoinen O. 2003. Autoinhibition of Jak2 tyrosine kinase is dependent on specific regions in its pseudokinase domain. Mol. Biol. Cell 14:1448-59
    • (2003) Mol. Biol. Cell , vol.14 , pp. 1448-1459
    • Saharinen, P.1    Vihinen, M.2    Silvennoinen, O.3
  • 120
    • 79955136973 scopus 로고    scopus 로고
    • Analysis of Jak2 catalytic function by peptide microarrays: The role of the JH2 domain and V617F mutation
    • Sanz A, Ungureanu D, Pekkala T, Ruijtenbeek R, Touw IP, et al. 2011. Analysis of Jak2 catalytic function by peptide microarrays: the role of the JH2 domain and V617F mutation. PLoS ONE 6:e18522
    • (2011) PLoS ONE , vol.6
    • Sanz, A.1    Ungureanu, D.2    Pekkala, T.3    Ruijtenbeek, R.4    Touw, I.P.5
  • 121
    • 80052492285 scopus 로고    scopus 로고
    • The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling
    • Ungureanu D, Wu J, Pekkala T, Niranjan Y, Young C, et al. 2011. The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling. Nat. Struct. Mol. Biol. 18:971-76
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 971-976
    • Ungureanu, D.1    Wu, J.2    Pekkala, T.3    Niranjan, Y.4    Young, C.5
  • 122
    • 77954385114 scopus 로고    scopus 로고
    • Structural and thermodynamic characterization of the TYK2 and JAK3 kinase domains in complex with CP-690550 and CMP-6
    • Chrencik JE, Patny A, Leung IK, Korniski B, Emmons TL, et al. 2010. Structural and thermodynamic characterization of the TYK2 and JAK3 kinase domains in complex with CP-690550 and CMP-6. J. Mol. Biol. 400:413-33
    • (2010) J. Mol. Biol. , vol.400 , pp. 413-433
    • Chrencik, J.E.1    Patny, A.2    Leung, I.K.3    Korniski, B.4    Emmons, T.L.5
  • 123
    • 71149097258 scopus 로고    scopus 로고
    • The pseudoactive site of ILK is essential for its binding to alpha-Parvin and localization to focal adhesions
    • Fukuda K, Gupta S, Chen K, Wu C, Qin J. 2009. The pseudoactive site of ILK is essential for its binding to alpha-Parvin and localization to focal adhesions. Mol. Cell 36:819-30
    • (2009) Mol. Cell , vol.36 , pp. 819-830
    • Fukuda, K.1    Gupta, S.2    Chen, K.3    Wu, C.4    Qin, J.5
  • 124
    • 79957552048 scopus 로고    scopus 로고
    • Biochemical, proteomic, structural, and thermodynamic characterizations of integrin-linked kinase (ILK): Cross-validation of the pseudokinase
    • Fukuda K, Knight JD, Piszczek G, Kothary R, Qin J. 2011. Biochemical, proteomic, structural, and thermodynamic characterizations of integrin-linked kinase (ILK): cross-validation of the pseudokinase. J. Biol. Chem. 286:21886-95
    • (2011) J. Biol. Chem. , vol.286 , pp. 21886-21895
    • Fukuda, K.1    Knight, J.D.2    Piszczek, G.3    Kothary, R.4    Qin, J.5
  • 125
    • 58149204174 scopus 로고    scopus 로고
    • Structure of the pseudokinase VRK3 reveals a degraded catalytic site, a highly conserved kinase fold, and a putative regulatory binding site
    • Scheeff ED, Eswaran J, Bunkoczi G, Knapp S, Manning G. 2009. Structure of the pseudokinase VRK3 reveals a degraded catalytic site, a highly conserved kinase fold, and a putative regulatory binding site. Structure 17:128-38
    • (2009) Structure , vol.17 , pp. 128-138
    • Scheeff, E.D.1    Eswaran, J.2    Bunkoczi, G.3    Knapp, S.4    Manning, G.5
  • 126
    • 79955770162 scopus 로고    scopus 로고
    • Scaffold proteins: Hubs for controlling the flow of cellular information
    • Good MC, Zalatan JG, Lim WA. 2011. Scaffold proteins: hubs for controlling the flow of cellular information. Science 332:680-86
    • (2011) Science , vol.332 , pp. 680-686
    • Good, M.C.1    Zalatan, J.G.2    Lim, W.A.3
  • 127
    • 10944251582 scopus 로고    scopus 로고
    • Principles of MAP kinase signaling specificity in Saccharomyces cerevisiae
    • Schwartz MA, Madhani HD. 2004. Principles of MAP kinase signaling specificity in Saccharomyces cerevisiae. Annu. Rev. Genet. 38:725-48
    • (2004) Annu. Rev. Genet. , vol.38 , pp. 725-748
    • Schwartz, M.A.1    Madhani, H.D.2
  • 128
    • 62149128986 scopus 로고    scopus 로고
    • The Ste5 scaffold directs mating signaling by catalytically unlocking the Fus3 MAP kinase for activation
    • Good M, Tang G, Singleton J, Remenyi A, Lim WA. 2009. The Ste5 scaffold directs mating signaling by catalytically unlocking the Fus3 MAP kinase for activation. Cell 136:1085-97
    • (2009) Cell , vol.136 , pp. 1085-1097
    • Good, M.1    Tang, G.2    Singleton, J.3    Remenyi, A.4    Lim, W.A.5
  • 129
    • 78650942010 scopus 로고    scopus 로고
    • Crystal structure and allosteric activation of protein kinase C betaII
    • Leonard TA, Rozycki B, Saidi LF, Hummer G, Hurley JH. 2011. Crystal structure and allosteric activation of protein kinase C betaII. Cell 144:55-66
    • (2011) Cell , vol.144 , pp. 55-66
    • Leonard, T.A.1    Rozycki, B.2    Saidi, L.F.3    Hummer, G.4    Hurley, J.H.5
  • 131
    • 77955039883 scopus 로고    scopus 로고
    • Structure of the CaMKIIdelta/calmodulin complex reveals the molecular mechanism of CaMKII kinase activation
    • Rellos P, Pike AC, Niesen FH, Salah E, LeeWH, et al. 2010. Structure of the CaMKIIdelta/calmodulin complex reveals the molecular mechanism of CaMKII kinase activation. PLoS Biol. 8:e1000426
    • (2010) PLoS Biol. , vol.8
    • Rellos, P.1    Pike, A.C.2    Niesen, F.H.3    Salah, E.4    Lee, W.H.5
  • 132
    • 80052284705 scopus 로고    scopus 로고
    • A mechanism for tunable autoinhibition in the structure of a human Ca2 +calmodulin-dependent kinase II holoenzyme
    • Chao LH, Stratton MM, Lee IH, Rosenberg OS, Levitz J, et al. 2011. A mechanism for tunable autoinhibition in the structure of a human Ca2 +calmodulin-dependent kinase II holoenzyme. Cell 146:732-45
    • (2011) Cell , vol.146 , pp. 732-745
    • Chao, L.H.1    Stratton, M.M.2    Lee, I.H.3    Rosenberg, O.S.4    Levitz, J.5
  • 133
    • 62149111407 scopus 로고    scopus 로고
    • Sensing chromosome bi-orientation by spatial separation of Aurora B kinase from kinetochore substrates
    • Liu D, Vader G, Vromans MJ, Lampson MA, Lens SM. 2009. Sensing chromosome bi-orientation by spatial separation of Aurora B kinase from kinetochore substrates. Science 323:1350-53
    • (2009) Science , vol.323 , pp. 1350-1353
    • Liu, D.1    Vader, G.2    Vromans, M.J.3    Lampson, M.A.4    Lens, S.M.5
  • 134
    • 77951952612 scopus 로고    scopus 로고
    • AuroraBphosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface
    • Welburn JP, VleugelM, Liu D, Yates JR3rd, LampsonMA, et al. 2010. AuroraBphosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface. Mol. Cell 38:383-92
    • (2010) Mol. Cell , vol.38 , pp. 383-392
    • Welburn, J.P.1    Vleugel, M.2    Liu, D.3    Yates Iii., J.R.4    Lampson, M.A.5
  • 135
    • 78650043246 scopus 로고    scopus 로고
    • Gradient of increasing Aurora B kinase activity is required for cells to execute mitosis
    • Xu Z, Vagnarelli P, OgawaH, SamejimaK, EarnshawWC. 2010. Gradient of increasing Aurora B kinase activity is required for cells to execute mitosis. J. Biol. Chem. 285:40163-70
    • (2010) J. Biol. Chem. , vol.285 , pp. 40163-40170
    • Xu, Z.1    Vagnarelli, P.2    Ogawa, H.3    Samejima, K.4    Earnshaw, W.C.5
  • 136
    • 79959706804 scopus 로고    scopus 로고
    • Spatial exclusivity combined with positive and negative selection of phosphorylation motifs is the basis for context-dependent mitotic signaling
    • Alexander J, Lim D, Joughin BA, Hegemann B, Hutchins JR, et al. 2011. Spatial exclusivity combined with positive and negative selection of phosphorylation motifs is the basis for context-dependent mitotic signaling. Sci. Signal. 4:ra42
    • (2011) Sci. Signal. , vol.4
    • Alexander, J.1    Lim, D.2    Joughin, B.A.3    Hegemann, B.4    Hutchins, J.R.5
  • 137
    • 0027409462 scopus 로고
    • Phosphotransferase and substrate binding mechanism of the cAMP-dependent protein kinase catalytic subunit from porcine heart as deduced from the 2.0 A structure of the complex with Mn2+ adenylyl imidodiphosphate and inhibitor peptide PKI(5-24)
    • Bossemeyer D, Engh RA, Kinzel V, Ponstingl H, Huber R. 1993. Phosphotransferase and substrate binding mechanism of the cAMP-dependent protein kinase catalytic subunit from porcine heart as deduced from the 2.0 ?A structure of the complex with Mn2+ adenylyl imidodiphosphate and inhibitor peptide PKI(5-24). EMBO J. 12:849-59
    • (1993) EMBO J. , vol.12 , pp. 849-859
    • Bossemeyer, D.1    Engh, R.A.2    Kinzel, V.3    Ponstingl, H.4    Huber, R.5
  • 138
    • 0026326821 scopus 로고
    • Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase
    • Knighton DR, Zheng JH, Ten Eyck LF, Xuong NH, Taylor SS, Sowadski JM. 1991. Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253:414-20
    • (1991) Science , vol.253 , pp. 414-420
    • Knighton, D.R.1    Zheng, J.H.2    Ten Eyck, L.F.3    Xuong, N.H.4    Taylor, S.S.5    Sowadski, J.M.6
  • 139
    • 0033224309 scopus 로고    scopus 로고
    • The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases
    • Brown NR, Noble ME, Endicott JA, Johnson LN. 1999. The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat. Cell Biol. 1:438-43
    • (1999) Nat. Cell Biol. , vol.1 , pp. 438-443
    • Brown, N.R.1    Noble, M.E.2    Endicott, J.A.3    Johnson, L.N.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.