-
1
-
-
79551632876
-
Protein kinase signaling networks in cancer
-
Brognard J, HunterT. 2011. Protein kinase signaling networks in cancer. Curr. Opin. Genet. Dev. 21:4-11
-
(2011)
Curr. Opin. Genet. Dev.
, vol.21
, pp. 4-11
-
-
Brognard, J.1
Hunter, T.2
-
2
-
-
0036097364
-
The origins of protein phosphorylation
-
Cohen P. 2002. The origins of protein phosphorylation. Nat. Cell Biol. 4:E127-30
-
(2002)
Nat. Cell Biol.
, vol.4
-
-
Cohen, P.1
-
3
-
-
79959476700
-
The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling
-
Dar AC, Shokat KM. 2011. The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling. Annu. Rev. Biochem. 80:769-95
-
(2011)
Annu. Rev. Biochem.
, vol.80
, pp. 769-795
-
-
Dar, A.C.1
Shokat, K.M.2
-
4
-
-
67649726156
-
Protein kinase inhibitors: Contributions from structure to clinical compounds
-
Johnson LN. 2009. Protein kinase inhibitors: contributions from structure to clinical compounds. Q. Rev. Biophys. 42:1-40
-
(2009)
Q. Rev. Biophys.
, vol.42
, pp. 1-40
-
-
Johnson, L.N.1
-
5
-
-
57749188299
-
Targeting cancer with small molecule kinase inhibitors
-
Zhang J, Yang PL, Gray NS. 2009. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer 9:28-39
-
(2009)
Nat. Rev. Cancer
, vol.9
, pp. 28-39
-
-
Zhang, J.1
Yang, P.L.2
Gray, N.S.3
-
6
-
-
0035413607
-
Structural basis for control by phosphorylation
-
Johnson LN, Lewis RJ. 2001. Structural basis for control by phosphorylation. Chem. Rev. 101:2209-42
-
(2001)
Chem. Rev.
, vol.101
, pp. 2209-2242
-
-
Johnson, L.N.1
Lewis, R.J.2
-
7
-
-
0037032835
-
The protein kinase complement of the human genome
-
Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. 2002. The protein kinase complement of the human genome. Science 298:1912-34
-
(2002)
Science
, vol.298
, pp. 1912-1934
-
-
Manning, G.1
Whyte, D.B.2
Martinez, R.3
Hunter, T.4
Sudarsanam, S.5
-
8
-
-
58149193245
-
Kinomer v. 1.0: A database of systematically classified eukaryotic protein kinases
-
MartinDM, Miranda-Saavedra D, Barton GJ. 2009. Kinomer v. 1.0: a database of systematically classified eukaryotic protein kinases. Nucleic Acids Res. 37:D244-50
-
(2009)
Nucleic Acids Res.
, vol.37
-
-
Martin, D.M.1
Miranda-Saavedra, D.2
Barton, G.J.3
-
9
-
-
75349102353
-
Insights into protein kinase regulation and inhibition by large scale structural comparison
-
Eswaran J, Knapp S. 2010. Insights into protein kinase regulation and inhibition by large scale structural comparison. Biochim. Biophys. Acta 1804:429-32
-
(2010)
Biochim. Biophys. Acta
, vol.1804
, pp. 429-432
-
-
Eswaran, J.1
Knapp, S.2
-
10
-
-
0026342401
-
Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase
-
Knighton DR, Zheng JH, Ten Eyck LF, Ashford VA, Xuong NH, et al. 1991. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253:407-14
-
(1991)
Science
, vol.253
, pp. 407-414
-
-
Knighton, D.R.1
Zheng, J.H.2
Ten Eyck, L.F.3
Ashford, V.A.4
Xuong, N.H.5
-
11
-
-
0027182223
-
Crystal structure of cyclin-dependent kinase 2
-
De Bondt HL, Rosenblatt J, Jancarik J, Jones HD, Morgan DO, Kim SH. 1993. Crystal structure of cyclin-dependent kinase 2. Nature 363:595-602
-
(1993)
Nature
, vol.363
, pp. 595-602
-
-
De Bondt, H.L.1
Rosenblatt, J.2
Jancarik, J.3
Jones, H.D.4
Morgan, D.O.5
Kim, S.H.6
-
12
-
-
0037013143
-
The conformational plasticity of protein kinases
-
Huse M, Kuriyan J. 2002. The conformational plasticity of protein kinases. Cell 109:275-82
-
(2002)
Cell
, vol.109
, pp. 275-282
-
-
Huse, M.1
Kuriyan, J.2
-
13
-
-
4444353636
-
Regulation of protein kinases; Controlling activity through activation segment conformation
-
Nolen B, Taylor S, Ghosh G. 2004. Regulation of protein kinases; controlling activity through activation segment conformation. Mol. Cell 15:661-75
-
(2004)
Mol. Cell
, vol.15
, pp. 661-675
-
-
Nolen, B.1
Taylor, S.2
Ghosh, G.3
-
14
-
-
37549037063
-
Structure of the human protein kinase MPSK1 reveals an atypical activation loop architecture
-
Eswaran J, Bernad A, Ligos JM, Guinea B, Debreczeni JE, et al. 2008. Structure of the human protein kinase MPSK1 reveals an atypical activation loop architecture. Structure 16:115-24
-
(2008)
Structure
, vol.16
, pp. 115-124
-
-
Eswaran, J.1
Bernad, A.2
Ligos, J.M.3
Guinea, B.4
Debreczeni, J.E.5
-
15
-
-
73949158814
-
Structure and functional characterization of the atypical human kinase haspin
-
Eswaran J, Patnaik D, Filippakopoulos P, Wang F, Stein RL, et al. 2009. Structure and functional characterization of the atypical human kinase haspin. Proc. Natl. Acad. Sci. USA 106:20198-203
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 20198-20203
-
-
Eswaran, J.1
Patnaik, D.2
Filippakopoulos, P.3
Wang, F.4
Stein, R.L.5
-
16
-
-
33845197964
-
Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism
-
Kornev AP, Haste NM, Taylor SS, Eyck LF. 2006. Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proc. Natl. Acad. Sci. USA 103:17783-88
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 17783-17788
-
-
Kornev, A.P.1
Haste, N.M.2
Taylor, S.S.3
Eyck, L.F.4
-
19
-
-
1642323740
-
Protein kinase inhibitors: Insights into drug design from structure
-
Noble ME, Endicott JA, Johnson LN. 2004. Protein kinase inhibitors: insights into drug design from structure. Science 303:1800-5
-
(2004)
Science
, vol.303
, pp. 1800-1805
-
-
Noble, M.E.1
Endicott, J.A.2
Johnson, L.N.3
-
20
-
-
79953308071
-
Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms
-
Jura N, Zhang X, Endres NF, Seeliger MA, Schindler T, Kuriyan J. 2011. Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms. Mol. Cell 42:9-22
-
(2011)
Mol. Cell
, vol.42
, pp. 9-22
-
-
Jura, N.1
Zhang, X.2
Endres, N.F.3
Seeliger, M.A.4
Schindler, T.5
Kuriyan, J.6
-
21
-
-
2342473198
-
The importance of intrinsic disorder for protein phosphorylation
-
Iakoucheva LM, Radivojac P, BrownCJ, O'ConnorTR, Sikes JG, et al. 2004. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res. 32:1037-49
-
(2004)
Nucleic Acids Res.
, vol.32
, pp. 1037-1049
-
-
Iakoucheva, L.M.1
Radivojac, P.2
Brown, C.J.3
O'Connor, T.R.4
Sikes, J.G.5
-
22
-
-
0030812650
-
The crystal structure of a phosphorylase kinase peptide substrate complex: Kinase substrate recognition
-
Lowe ED, Noble ME, Skamnaki VT, Oikonomakos NG, Owen DJ, Johnson LN. 1997. The crystal structure of a phosphorylase kinase peptide substrate complex: kinase substrate recognition. EMBO J. 16:6646-58
-
(1997)
EMBO J.
, vol.16
, pp. 6646-6658
-
-
Lowe, E.D.1
Noble, M.E.2
Skamnaki, V.T.3
Oikonomakos, N.G.4
Owen, D.J.5
Johnson, L.N.6
-
23
-
-
36849043083
-
Substrate and docking interactions in serine/threonine protein kinases
-
Goldsmith EJ, Akella R, Min X, Zhou T, Humphreys JM. 2007. Substrate and docking interactions in serine/threonine protein kinases. Chem. Rev. 107:5065-81
-
(2007)
Chem. Rev.
, vol.107
, pp. 5065-5081
-
-
Goldsmith, E.J.1
Akella, R.2
Min, X.3
Zhou, T.4
Humphreys, J.M.5
-
24
-
-
33747359918
-
The role of the phospho-CDK2/cyclin A recruitment site in substrate recognition
-
Cheng KY, Noble ME, Skamnaki V, Brown NR, Lowe ED, et al. 2006. The role of the phospho-CDK2/cyclin A recruitment site in substrate recognition. J. Biol. Chem. 281:23167-79
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 23167-23179
-
-
Cheng, K.Y.1
Noble, M.E.2
Skamnaki, V.3
Brown, N.R.4
Lowe, E.D.5
-
25
-
-
13244284602
-
Structure and function of Polo-like kinases
-
Lowery DM, Lim D, Yaffe MB. 2005. Structure and function of Polo-like kinases. Oncogene 24:248-59
-
(2005)
Oncogene
, vol.24
, pp. 248-259
-
-
Lowery, D.M.1
Lim, D.2
Yaffe, M.B.3
-
26
-
-
57149120091
-
Mechanism of multi-site phosphorylation from a ROCK-I:RhoE complex structure
-
Komander D, Garg R, Wan PT, Ridley AJ, Barford D. 2008. Mechanism of multi-site phosphorylation from a ROCK-I:RhoE complex structure. EMBO J. 27:3175-85
-
(2008)
EMBO J.
, vol.27
, pp. 3175-3185
-
-
Komander, D.1
Garg, R.2
Wan, P.T.3
Ridley, A.J.4
Barford, D.5
-
27
-
-
25144502820
-
Higher-order substrate recognition of eIF2alpha by the RNAdependent protein kinase PKR
-
Dar AC, Dever TE, Sicheri F. 2005. Higher-order substrate recognition of eIF2alpha by the RNAdependent protein kinase PKR. Cell 122:887-900
-
(2005)
Cell
, vol.122
, pp. 887-900
-
-
Dar, A.C.1
Dever, T.E.2
Sicheri, F.3
-
28
-
-
46349099824
-
Structural basis for the recognition of c-Src by its inactivator Csk
-
Levinson NM, Seeliger MA, Cole PA, Kuriyan J. 2008. Structural basis for the recognition of c-Src by its inactivator Csk. Cell 134:124-34
-
(2008)
Cell
, vol.134
, pp. 124-134
-
-
Levinson, N.M.1
Seeliger, M.A.2
Cole, P.A.3
Kuriyan, J.4
-
29
-
-
13244291292
-
Crystal structure of a complex between the catalytic and regulatory (RIalpha) subunits of PKA
-
Kim C, Xuong NH, Taylor SS. 2005. Crystal structure of a complex between the catalytic and regulatory (RIalpha) subunits of PKA. Science 307:690-96
-
(2005)
Science
, vol.307
, pp. 690-696
-
-
Kim, C.1
Xuong, N.H.2
Taylor, S.S.3
-
30
-
-
0035265679
-
Phosphoprotein-protein interactions revealed by the crystal structure of kinase-associated phosphatase in complex with phospho-CDK2
-
Song H, Hanlon N, Brown NR, Noble ME, Johnson LN, Barford D. 2001. Phosphoprotein-protein interactions revealed by the crystal structure of kinase-associated phosphatase in complex with phospho-CDK2. Mol. Cell 7:615-26
-
(2001)
Mol. Cell
, vol.7
, pp. 615-626
-
-
Song, H.1
Hanlon, N.2
Brown, N.R.3
Noble, M.E.4
Johnson, L.N.5
Barford, D.6
-
31
-
-
79952727150
-
Requirement for kinase-induced conformational change in eukaryotic initiation factor 2alpha (eIF2alpha) restricts phosphorylation of Ser51
-
DeyM, Velyvis A, Li JJ, Chiu E, Chiovitti D, et al. 2011. Requirement for kinase-induced conformational change in eukaryotic initiation factor 2alpha (eIF2alpha) restricts phosphorylation of Ser51. Proc. Natl. Acad. Sci. USA 108:4316-21
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 4316-4321
-
-
Dey, M.1
Velyvis, A.2
Li, J.J.3
Chiu, E.4
Chiovitti, D.5
-
32
-
-
0033517739
-
Catalytic mechanism of phosphorylase kinase probed by mutational studies
-
Skamnaki VT, Owen DJ, NobleME, Lowe ED, Lowe G, et al. 1999. Catalytic mechanism of phosphorylase kinase probed by mutational studies. Biochemistry 38:14718-30
-
(1999)
Biochemistry
, vol.38
, pp. 14718-14730
-
-
Skamnaki, V.T.1
Owen, D.J.2
Noble, M.E.3
Lowe, E.D.4
Lowe, G.5
-
33
-
-
69249106454
-
The intrinsic reactivity of ATP and the catalytic proficiencies of kinases acting on glucose, N-acetylgalactosamine, and homoserine: A thermodynamic analysis
-
Stockbridge RB, Wolfenden R. 2009. The intrinsic reactivity of ATP and the catalytic proficiencies of kinases acting on glucose, N-acetylgalactosamine, and homoserine: a thermodynamic analysis. J. Biol. Chem. 284:22747-57
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 22747-22757
-
-
Stockbridge, R.B.1
Wolfenden, R.2
-
34
-
-
0035413606
-
Kinetic and catalytic mechanisms of protein kinases
-
Adams JA. 2001. Kinetic and catalytic mechanisms of protein kinases. Chem. Rev. 101:2271-90
-
(2001)
Chem. Rev.
, vol.101
, pp. 2271-2290
-
-
Adams, J.A.1
-
35
-
-
0030049479
-
Pre-steady-state kinetic analysis of cAMP-dependent protein kinase using rapid quench flow techniques
-
Grant BD, Adams JA. 1996. Pre-steady-state kinetic analysis of cAMP-dependent protein kinase using rapid quench flow techniques. Biochemistry 35:2022-29
-
(1996)
Biochemistry
, vol.35
, pp. 2022-2029
-
-
Grant, B.D.1
Adams, J.A.2
-
36
-
-
0036215864
-
Crystal structure of a transition state mimic of the catalytic subunit of cAMP-dependent protein kinase
-
Madhusudan, Akamine P, Xuong NH, Taylor SS. 2002. Crystal structure of a transition state mimic of the catalytic subunit of cAMP-dependent protein kinase. Nat. Struct. Biol. 9:273-77
-
(2002)
Nat. Struct. Biol.
, vol.9
, pp. 273-277
-
-
Madhusudan, A.P.1
Xuong, N.H.2
Taylor, S.S.3
-
37
-
-
79959432785
-
Biological phosphoryl-transfer reactions: Understanding mechanism and catalysis
-
Lassila JK, Zalatan JG, Herschlag D. 2011. Biological phosphoryl-transfer reactions: understanding mechanism and catalysis. Annu. Rev. Biochem. 80:669-702
-
(2011)
Annu. Rev. Biochem.
, vol.80
, pp. 669-702
-
-
Lassila, J.K.1
Zalatan, J.G.2
Herschlag, D.3
-
38
-
-
79955844083
-
Briefly bound to activate: Transient binding of a second catalytic magnesium activates the structure and dynamics of CDK2 kinase for catalysis
-
BaoZQ, JacobsenDM, YoungMA. 2011. Briefly bound to activate: transient binding of a second catalytic magnesium activates the structure and dynamics of CDK2 kinase for catalysis. Structure 19:675-90
-
(2011)
Structure
, vol.19
, pp. 675-690
-
-
Bao, Z.Q.1
Jacobsen, D.M.2
Young, M.A.3
-
39
-
-
0037062580
-
Structural studies on phospho-CDK2/cyclin A bound to nitrate, a transition state analogue: Implications for the protein kinase mechanism
-
Cook A, Lowe ED, Chrysina ED, Skamnaki VT, Oikonomakos NG, Johnson LN. 2002. Structural studies on phospho-CDK2/cyclin A bound to nitrate, a transition state analogue: implications for the protein kinase mechanism. Biochemistry 41:7301-11
-
(2002)
Biochemistry
, vol.41
, pp. 7301-7311
-
-
Cook, A.1
Lowe, E.D.2
Chrysina, E.D.3
Skamnaki, V.T.4
Oikonomakos, N.G.5
Johnson, L.N.6
-
40
-
-
0026698850
-
Energetic limits of phosphotransfer in the catalytic subunit of cAMPdependent protein kinase as measured by viscosity experiments
-
Adams JA, Taylor SS. 1992. Energetic limits of phosphotransfer in the catalytic subunit of cAMPdependent protein kinase as measured by viscosity experiments. Biochemistry 31:8516-22
-
(1992)
Biochemistry
, vol.31
, pp. 8516-8522
-
-
Adams, J.A.1
Taylor, S.S.2
-
41
-
-
77951670691
-
Phosphorylation of the transcription factor Ets-1 by ERK2: Rapid dissociation of ADP and phospho-Ets-1
-
Callaway K, Waas WF, Rainey MA, Ren P, Dalby KN. 2010. Phosphorylation of the transcription factor Ets-1 by ERK2: rapid dissociation of ADP and phospho-Ets-1. Biochemistry 49:3619-30
-
(2010)
Biochemistry
, vol.49
, pp. 3619-3630
-
-
Callaway, K.1
Waas, W.F.2
Rainey, M.A.3
Ren, P.4
Dalby, K.N.5
-
42
-
-
0029080114
-
The role of the catalytic base in the protein tyrosine kinase Csk
-
Cole PA, Grace MR, Phillips RS, Burn P, Walsh CT. 1995. The role of the catalytic base in the protein tyrosine kinase Csk. J. Biol. Chem. 270:22105-8
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 22105-22108
-
-
Cole, P.A.1
Grace, M.R.2
Phillips, R.S.3
Burn, P.4
Walsh, C.T.5
-
43
-
-
0029029617
-
Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex
-
Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, et al. 1995. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376:313-20
-
(1995)
Nature
, vol.376
, pp. 313-320
-
-
Jeffrey, P.D.1
Russo, A.A.2
Polyak, K.3
Gibbs, E.4
Hurwitz, J.5
-
44
-
-
0031034930
-
Crystal structure of the Src family tyrosine kinase Hck
-
Sicheri F, Moarefi I, Kuriyan J. 1997. Crystal structure of the Src family tyrosine kinase Hck. Nature 385:602-9
-
(1997)
Nature
, vol.385
, pp. 602-609
-
-
Sicheri, F.1
Moarefi, I.2
Kuriyan, J.3
-
45
-
-
0031025991
-
Three-dimensional structure of the tyrosine kinase c-Src
-
Xu W, Harrison SC, Eck MJ. 1997. Three-dimensional structure of the tyrosine kinase c-Src. Nature 385:595-602
-
(1997)
Nature
, vol.385
, pp. 595-602
-
-
Xu, W.1
Harrison, S.C.2
Eck, M.J.3
-
46
-
-
20444399897
-
The crystal structure of a c-Src complex in an active conformation suggests possible steps in c-Src activation
-
Cowan-Jacob SW, Fendrich G, Manley PW, JahnkeW, Fabbro D, et al. 2005. The crystal structure of a c-Src complex in an active conformation suggests possible steps in c-Src activation. Structure 13:861-71
-
(2005)
Structure
, vol.13
, pp. 861-871
-
-
Cowan-Jacob, S.W.1
Fendrich, G.2
Manley, P.W.3
Jahnkew Fabbro, D.4
-
47
-
-
0027408171
-
Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with magnesium-ATP and peptide inhibitor
-
Zheng J, KnightonDR, Ten Eyck LF, Karlsson R, XuongN, et al. 1993. Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with magnesium-ATP and peptide inhibitor. Biochemistry 32:2154-61
-
(1993)
Biochemistry
, vol.32
, pp. 2154-2161
-
-
Zheng, J.1
Knighton, D.R.2
Ten Eyck, L.F.3
Karlsson, R.4
Xuong, N.5
-
48
-
-
0028157664
-
Atomic structure of the MAP kinase ERK2 at 2.3 A resolution
-
Zhang F, Strand A, Robbins D, Cobb MH, Goldsmith EJ. 1994. Atomic structure of the MAP kinase ERK2 at 2.3 A resolution. Nature 367:704-11
-
(1994)
Nature
, vol.367
, pp. 704-711
-
-
Zhang, F.1
Strand, A.2
Robbins, D.3
Cobb, M.H.4
Goldsmith, E.J.5
-
49
-
-
18944386711
-
The active conformation of the PAK1 kinase domain
-
LeiM, Robinson MA, Harrison SC. 2005. The active conformation of the PAK1 kinase domain. Structure 13:769-78
-
(2005)
Structure
, vol.13
, pp. 769-778
-
-
Lei, M.1
Robinson, M.A.2
Harrison, S.C.3
-
50
-
-
33845963343
-
Structure and chemical inhibition of the RET tyrosine kinase domain
-
Knowles PP, Murray-Rust J, Kjaer S, Scott RP, Hanrahan S, et al. 2006. Structure and chemical inhibition of the RET tyrosine kinase domain. J. Biol. Chem. 281:33577-87
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 33577-33587
-
-
Knowles, P.P.1
Murray-Rust, J.2
Kjaer, S.3
Scott, R.P.4
Hanrahan, S.5
-
51
-
-
0042357240
-
Structure of a c-Kit product complex reveals the basis for kinase transactivation
-
Mol CD, Lim KB, Sridhar V, Zou H, Chien EY, et al. 2003. Structure of a c-Kit product complex reveals the basis for kinase transactivation. J. Biol. Chem. 278:31461-64
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 31461-31464
-
-
Mol, C.D.1
Lim, K.B.2
Sridhar, V.3
Zou, H.4
Chien, E.Y.5
-
52
-
-
0034796457
-
The TGFβ receptor activation process: An inhibitor-to substrate-binding switch
-
Huse M, Muir TW, Xu L, Chen YG, Kuriyan J, Massague J. 2001. The TGFβ receptor activation process: an inhibitor-to substrate-binding switch. Mol. Cell 8:671-82
-
(2001)
Mol. Cell
, vol.8
, pp. 671-682
-
-
Huse, M.1
Muir, T.W.2
Xu, L.3
Chen, Y.G.4
Kuriyan, J.5
Massague, J.6
-
53
-
-
50249132542
-
Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation
-
Filippakopoulos P, Kofler M, Hantschel O, Gish GD, Grebien F, et al. 2008. Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation. Cell 134:793-803
-
(2008)
Cell
, vol.134
, pp. 793-803
-
-
Filippakopoulos, P.1
Kofler, M.2
Hantschel, O.3
Gish, G.D.4
Grebien, F.5
-
54
-
-
0242330123
-
Structural basis of Aurora-A activation by TPX2 at the mitotic spindle
-
Bayliss R, Sardon T, Vernos I, Conti E. 2003. Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol. Cell 12:851-62
-
(2003)
Mol. Cell
, vol.12
, pp. 851-862
-
-
Bayliss, R.1
Sardon, T.2
Vernos, I.3
Conti, E.4
-
56
-
-
18744373865
-
Crystal structure of an activated Akt/protein kinase B ternary complex with GSK3-peptide and AMP-PNP
-
Yang J, Cron P, Good VM, Thompson V, Hemmings BA, Barford D. 2002. Crystal structure of an activated Akt/protein kinase B ternary complex with GSK3-peptide and AMP-PNP. Nat. Struct. Biol. 9:940-44
-
(2002)
Nat. Struct. Biol.
, vol.9
, pp. 940-944
-
-
Yang, J.1
Cron, P.2
Good, V.M.3
Thompson, V.4
Hemmings, B.A.5
Barford, D.6
-
57
-
-
33751570046
-
Structure of the catalytic domain of human protein kinase C beta II complexed with a bisindolylmaleimide inhibitor
-
Grodsky N, Li Y, Bouzida D, Love R, Jensen J, et al. 2006. Structure of the catalytic domain of human protein kinase C beta II complexed with a bisindolylmaleimide inhibitor. Biochemistry 45:13970-81
-
(2006)
Biochemistry
, vol.45
, pp. 13970-13981
-
-
Grodsky, N.1
Li, Y.2
Bouzida, D.3
Love, R.4
Jensen, J.5
-
58
-
-
33644837834
-
Molecular mechanism for the regulation of rho-kinase by dimerization and its inhibition by fasudil
-
Yamaguchi H, Kasa M, Amano M, Kaibuchi K, Hakoshima T. 2006. Molecular mechanism for the regulation of rho-kinase by dimerization and its inhibition by fasudil. Structure 14:589-600
-
(2006)
Structure
, vol.14
, pp. 589-600
-
-
Yamaguchi, H.1
Kasa, M.2
Amano, M.3
Kaibuchi, K.4
Hakoshima, T.5
-
59
-
-
0037102153
-
High resolution crystal structure of the human PDK1 catalytic domain defines the regulatory phosphopeptide docking site
-
Biondi RM, Komander D, Thomas CC, Lizcano JM, Deak M, et al. 2002. High resolution crystal structure of the human PDK1 catalytic domain defines the regulatory phosphopeptide docking site. EMBO J. 21:4219-28
-
(2002)
EMBO J.
, vol.21
, pp. 4219-4228
-
-
Biondi, R.M.1
Komander, D.2
Thomas, C.C.3
Lizcano, J.M.4
Deak, M.5
-
61
-
-
34848840368
-
Structural basis forAMPbinding to mammalian AMP-activated protein kinase
-
Xiao B, HeathR, Saiu P, Leiper FC, Leone P, et al. 2007. Structural basis forAMPbinding to mammalian AMP-activated protein kinase. Nature 449:496-500
-
(2007)
Nature
, vol.449
, pp. 496-500
-
-
Xiao, B.1
Heath, R.2
Saiu, P.3
Leiper, F.C.4
Leone, P.5
-
62
-
-
34047161436
-
Crystal structures of the adenylate sensor from fission yeast AMP-activated protein kinase
-
Townley R, Shapiro L. 2007. Crystal structures of the adenylate sensor from fission yeast AMP-activated protein kinase. Science 315:1726-29
-
(2007)
Science
, vol.315
, pp. 1726-1729
-
-
Townley, R.1
Shapiro, L.2
-
63
-
-
34848843526
-
Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1
-
Amodeo GA, Rudolph MJ, Tong L. 2007. Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1. Nature 449:492-95
-
(2007)
Nature
, vol.449
, pp. 492-495
-
-
Amodeo, G.A.1
Rudolph, M.J.2
Tong, L.3
-
64
-
-
79959338922
-
AMPKis a direct adenylate charge-regulated protein kinase
-
Oakhill JS, Steel R, Chen ZP, Scott JW, LingN, et al. 2011.AMPKis a direct adenylate charge-regulated protein kinase. Science 332:1433-35
-
(2011)
Science
, vol.332
, pp. 1433-1435
-
-
Oakhill, J.S.1
Steel, R.2
Chen, Z.P.3
Scott, J.W.4
Ling, N.5
-
65
-
-
79954517977
-
Structure of mammalian AMPK and its regulation by ADP
-
Xiao B, Sanders MJ, Underwood E, Heath R, Mayer FV, et al. 2011. Structure of mammalian AMPK and its regulation by ADP. Nature 472:230-33
-
(2011)
Nature
, vol.472
, pp. 230-233
-
-
Xiao, B.1
Sanders, M.J.2
Underwood, E.3
Heath, R.4
Mayer, F.V.5
-
67
-
-
79953843867
-
Structural insights into the architecture and allostery of full-length AMP-activated protein kinase
-
Zhu L, Chen L, Zhou XM, Zhang YY, Zhang YJ, et al. 2011. Structural insights into the architecture and allostery of full-length AMP-activated protein kinase. Structure 19:515-22
-
(2011)
Structure
, vol.19
, pp. 515-522
-
-
Zhu, L.1
Chen, L.2
Zhou, X.M.3
Zhang, Y.Y.4
Zhang, Y.J.5
-
68
-
-
67649484365
-
Structural insight into the autoinhibition mechanism of AMP-activated protein kinase
-
Chen L, Jiao ZH, Zheng LS, Zhang YY, Xie ST, et al. 2009. Structural insight into the autoinhibition mechanism of AMP-activated protein kinase. Nature 459:1146-49
-
(2009)
Nature
, vol.459
, pp. 1146-1149
-
-
Chen, L.1
Zh, J.2
Zheng, L.S.3
Zhang, Y.Y.4
Xie, S.T.5
-
69
-
-
77953896432
-
Cell signaling by receptor tyrosine kinases
-
Lemmon MA, Schlessinger J. 2010. Cell signaling by receptor tyrosine kinases. Cell 141:1117-34
-
(2010)
Cell
, vol.141
, pp. 1117-1134
-
-
Lemmon, M.A.1
Schlessinger, J.2
-
70
-
-
0028582185
-
Crystal structure of the tyrosine kinase domain of the human insulin receptor
-
Hubbard SR, Wei L, Ellis L, Hendrickson WA. 1994. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372:746-54
-
(1994)
Nature
, vol.372
, pp. 746-754
-
-
Hubbard, S.R.1
Wei, L.2
Ellis, L.3
Hendrickson, W.A.4
-
71
-
-
0030766163
-
Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog
-
Hubbard SR. 1997. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 16:5572-81
-
(1997)
EMBO J.
, vol.16
, pp. 5572-5581
-
-
Hubbard, S.R.1
-
72
-
-
0030598848
-
Structure of the FG Freceptor tyrosine kinase domain reveals a novel autoinhibitory mechanism
-
Mohammadi M, Schlessinger J, Hubbard SR. 1996. Structure of theFGFreceptor tyrosine kinase domain reveals a novel autoinhibitory mechanism. Cell 86:577-87
-
(1996)
Cell
, vol.86
, pp. 577-587
-
-
Mohammadi, M.1
Schlessinger, J.2
Hubbard, S.R.3
-
73
-
-
0036710123
-
Crystal structure of the MuSK tyrosine kinase: Insights into receptor autoregulation
-
Till JH, Becerra M, Watty A, Lu Y, Ma Y, et al. 2002. Crystal structure of the MuSK tyrosine kinase: insights into receptor autoregulation. Structure 10:1187-96
-
(2002)
Structure
, vol.10
, pp. 1187-1196
-
-
Till, J.H.1
Becerra, M.2
Watty, A.3
Lu, Y.4
Ma, Y.5
-
74
-
-
77954252168
-
The cytoplasmic adaptor proteinDok7 activates the receptor tyrosine kinase MuSK via dimerization
-
Bergamin E, Hallock PT, Burden SJ, Hubbard SR. 2010. The cytoplasmic adaptor proteinDok7 activates the receptor tyrosine kinase MuSK via dimerization. Mol. Cell 39:100-9
-
(2010)
Mol. Cell
, vol.39
, pp. 100-109
-
-
Bergamin, E.1
Hallock, P.T.2
Burden, S.J.3
Hubbard, S.R.4
-
75
-
-
0035929146
-
Structural basis for autoinhibition of the EphB2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region
-
Wybenga-Groot LE, Baskin B, Ong SH, Tong J, Pawson T, Sicheri F. 2001. Structural basis for autoinhibition of the EphB2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region. Cell 106:745-57
-
(2001)
Cell
, vol.106
, pp. 745-757
-
-
Wybenga-Groot, L.E.1
Baskin, B.2
Ong, S.H.3
Tong, J.4
Pawson, T.5
Sicheri, F.6
-
76
-
-
0842310394
-
The structural basis for autoinhibition of FLT3 by the juxtamembrane domain
-
Griffith J, Black J, Faerman C, Swenson L, WynnM, et al. 2004. The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol. Cell 13:169-78
-
(2004)
Mol. Cell
, vol.13
, pp. 169-178
-
-
Griffith, J.1
Black, J.2
Faerman, C.3
Swenson, L.4
Wynn, M.5
-
77
-
-
0034435424
-
Structure of the Tie2 RTK domain: Self-inhibition by the nucleotide binding loop, activation loop, and C-terminal tail
-
Shewchuk LM, Hassell AM, Ellis B, Holmes WD, Davis R, et al. 2000. Structure of the Tie2 RTK domain: self-inhibition by the nucleotide binding loop, activation loop, and C-terminal tail. Structure 8:1105-13
-
(2000)
Structure
, vol.8
, pp. 1105-1113
-
-
Shewchuk, L.M.1
Hassell, A.M.2
Ellis, B.3
Holmes, W.D.4
Davis, R.5
-
78
-
-
2942594298
-
Juxtamembrane autoinhibition in receptor tyrosine kinases
-
Hubbard SR. 2004. Juxtamembrane autoinhibition in receptor tyrosine kinases. Nat. Rev. Mol. Cell Biol. 5:464-71
-
(2004)
Nat. Rev. Mol. Cell Biol.
, vol.5
, pp. 464-471
-
-
Hubbard, S.R.1
-
79
-
-
34547154729
-
Activation segment exchange: A common mechanism of kinase autophosphorylation?
-
Oliver AW, Knapp S, Pearl LH. 2007. Activation segment exchange: a common mechanism of kinase autophosphorylation? Trends Biochem. Sci. 32:351-56
-
(2007)
Trends Biochem. Sci.
, vol.32
, pp. 351-356
-
-
Oliver, A.W.1
Knapp, S.2
Pearl, L.H.3
-
80
-
-
33746318035
-
Trans-activation of the DNA-damage signalling protein kinase Chk2 by T-loop exchange
-
Oliver AW, Paul A, Boxall KJ, Barrie SE, Aherne GW, et al. 2006. Trans-activation of the DNA-damage signalling protein kinase Chk2 by T-loop exchange. EMBO J. 25:3179-90
-
(2006)
EMBO J.
, vol.25
, pp. 3179-3190
-
-
Oliver, A.W.1
Paul, A.2
Boxall, K.J.3
Barrie, S.E.4
Aherne, G.W.5
-
81
-
-
33645846943
-
Two-stage mechanism for activation of the DNA replication checkpoint kinase Cds1 in fission yeast
-
Xu YJ, Davenport M, Kelly TJ. 2006. Two-stage mechanism for activation of the DNA replication checkpoint kinase Cds1 in fission yeast. Genes Dev. 20:990-1003
-
(2006)
Genes Dev.
, vol.20
, pp. 990-1003
-
-
Xu, Y.J.1
Davenport, M.2
Kelly, T.J.3
-
82
-
-
39449119544
-
Activation segment dimerization: A mechanism for kinase autophosphorylation of non-consensus sites
-
Pike AC, Rellos P, Niesen FH, Turnbull A, Oliver AW, et al. 2008. Activation segment dimerization: a mechanism for kinase autophosphorylation of non-consensus sites. EMBO J. 27:704-14
-
(2008)
EMBO J.
, vol.27
, pp. 704-714
-
-
Pike, A.C.1
Rellos, P.2
Niesen, F.H.3
Turnbull, A.4
Oliver, A.W.5
-
83
-
-
33847737716
-
DNA damage checkpoints: From initiation to recovery or adaptation
-
Bartek J, Lukas J. 2007. DNA damage checkpoints: from initiation to recovery or adaptation. Curr. Opin. Cell Biol. 19:238-45
-
(2007)
Curr. Opin. Cell Biol.
, vol.19
, pp. 238-245
-
-
Bartek, J.1
Lukas, J.2
-
84
-
-
47949099916
-
From endoplasmic-reticulum stress to the inflammatory response
-
Zhang K, Kaufman RJ. 2008. From endoplasmic-reticulum stress to the inflammatory response. Nature 454:455-62
-
(2008)
Nature
, vol.454
, pp. 455-462
-
-
Zhang, K.1
Kaufman, R.J.2
-
85
-
-
79952283168
-
Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response
-
Ali MM, Bagratuni T, Davenport EL, Nowak PR, Silva-SantistebanMC, et al. 2011. Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response. EMBO J. 30:894-905
-
(2011)
EMBO J.
, vol.30
, pp. 894-905
-
-
Ali, M.M.1
Bagratuni, T.2
Davenport, E.L.3
Nowak, P.R.4
Silva-Santisteban, M.C.5
-
86
-
-
37649004940
-
Structure of the dual enzyme Ire1 reveals the basis for catalysis and regulation in nonconventional RNA splicing
-
Lee KP, DeyM, Neculai D, Cao C, Dever TE, Sicheri F. 2008. Structure of the dual enzyme Ire1 reveals the basis for catalysis and regulation in nonconventional RNA splicing. Cell 132:89-100
-
(2008)
Cell
, vol.132
, pp. 89-100
-
-
Lee, K.P.1
Dey, M.2
Neculai, D.3
Cao, C.4
Dever, T.E.5
Sicheri, F.6
-
87
-
-
59649111087
-
The unfolded protein response signals through high-order assembly of Ire1
-
Korennykh AV, Egea PF, Korostelev AA, Finer-Moore J, Zhang C, et al. 2009. The unfolded protein response signals through high-order assembly of Ire1. Nature 457:687-93
-
(2009)
Nature
, vol.457
, pp. 687-693
-
-
Korennykh, A.V.1
Egea, P.F.2
Korostelev, A.A.3
Finer-Moore, J.4
Zhang, C.5
-
88
-
-
77950887221
-
Flavonol activation defines an unanticipated ligand-binding site in the kinase-RNase domain of IRE1
-
Wiseman RL, Zhang Y, Lee KP, Harding HP, Haynes CM, et al. 2010. Flavonol activation defines an unanticipated ligand-binding site in the kinase-RNase domain of IRE1. Mol. Cell 38:291-304
-
(2010)
Mol. Cell
, vol.38
, pp. 291-304
-
-
Wiseman, R.L.1
Zhang, Y.2
Lee, K.P.3
Harding, H.P.4
Haynes, C.M.5
-
89
-
-
0344395603
-
Bypassing a kinase activity with an ATP-competitive drug
-
Papa FR, Zhang C, Shokat K, Walter P. 2003. Bypassing a kinase activity with an ATP-competitive drug. Science 302:1533-37
-
(2003)
Science
, vol.302
, pp. 1533-1537
-
-
Papa, F.R.1
Zhang, C.2
Shokat, K.3
Walter, P.4
-
90
-
-
48249158391
-
Structure-based view of epidermal growth factor receptor regulation
-
Ferguson KM. 2008. Structure-based view of epidermal growth factor receptor regulation. Annu. Rev. Biophys. 37:353-73
-
(2008)
Annu. Rev. Biophys.
, vol.37
, pp. 353-373
-
-
Ferguson, K.M.1
-
91
-
-
77952338791
-
ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation
-
Shi F, Telesco SE, Liu Y, Radhakrishnan R, Lemmon MA. 2010. ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proc. Natl. Acad. Sci. USA 107:7692-97
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 7692-7697
-
-
Shi, F.1
Telesco, S.E.2
Liu, Y.3
Radhakrishnan, R.4
Lemmon, M.A.5
-
92
-
-
76049128717
-
Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3
-
Jura N, Shan Y, Cao X, Shaw DE, Kuriyan J. 2009. Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3. Proc. Natl. Acad. Sci. USA 106:21608-13
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 21608-21613
-
-
Jura, N.1
Shan, Y.2
Cao, X.3
Shaw, D.E.4
Kuriyan, J.5
-
93
-
-
67449146917
-
The juxtamembrane region of the EGF receptor functions as an activation domain
-
Red Brewer M, Choi SH, Alvarado D, Moravcevic K, Pozzi A, et al. 2009. The juxtamembrane region of the EGF receptor functions as an activation domain. Mol. Cell 34:641-51
-
(2009)
Mol. Cell
, vol.34
, pp. 641-651
-
-
Red Brewer, M.1
Choi, S.H.2
Alvarado, D.3
Moravcevic, K.4
Pozzi, A.5
-
94
-
-
67549145398
-
Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment
-
Jura N, Endres NF, Engel K, Deindl S, Das R, et al. 2009. Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell 137:1293-307
-
(2009)
Cell
, vol.137
, pp. 1293-1307
-
-
Jura, N.1
Endres, N.F.2
Engel, K.3
Deindl, S.4
Das, R.5
-
95
-
-
0141599428
-
Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor
-
Stamos J, Sliwkowski MX, Eigenbrot C. 2002. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 277:46265-72
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 46265-46272
-
-
Stamos, J.1
Sliwkowski, M.X.2
Eigenbrot, C.3
-
96
-
-
79956310563
-
Structural analysis of the mechanism of inhibition and allosteric activation of the kinase domain of HER2 protein
-
Aertgeerts K, Skene R, Yano J, Sang BC, Zou H, et al. 2011. Structural analysis of the mechanism of inhibition and allosteric activation of the kinase domain of HER2 protein. J. Biol. Chem. 286:18756-65
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 18756-18765
-
-
Aertgeerts, K.1
Skene, R.2
Yano, J.3
Sang, B.C.4
Zou, H.5
-
97
-
-
40049099848
-
Mechanism of activation and inhibition of the HER4/ErbB4 kinase
-
Qiu C, Tarrant MK, Choi SH, Sathyamurthy A, Bose R, et al. 2008. Mechanism of activation and inhibition of the HER4/ErbB4 kinase. Structure 16:460-67
-
(2008)
Structure
, vol.16
, pp. 460-467
-
-
Qiu, C.1
Tarrant, M.K.2
Choi, S.H.3
Sathyamurthy, A.4
Bose, R.5
-
98
-
-
33745002702
-
An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor
-
Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J. 2006. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125:1137-49
-
(2006)
Cell
, vol.125
, pp. 1137-1149
-
-
Zhang, X.1
Gureasko, J.2
Shen, K.3
Cole, P.A.4
Kuriyan, J.5
-
99
-
-
77951248565
-
Her4 and Her2/neu tyrosine kinase domains dimerize and activate in a reconstituted in vitro system
-
Monsey J, ShenW, Schlesinger P, Bose R. 2010. Her4 and Her2/neu tyrosine kinase domains dimerize and activate in a reconstituted in vitro system. J. Biol. Chem. 285:7035-44
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 7035-7044
-
-
Monsey, J.1
Shenw Schlesinger, P.2
Bose, R.3
-
100
-
-
34248576576
-
KSR and CNK: Two scaffolds regulating RAS-mediated RAF activation
-
Claperon A, Therrien M. 2007. KSR and CNK: two scaffolds regulating RAS-mediated RAF activation. Oncogene 26:3143-58
-
(2007)
Oncogene
, vol.26
, pp. 3143-3158
-
-
Claperon, A.1
Therrien, M.2
-
101
-
-
27644575157
-
Coordinating ERK/MAPK signalling through scaffolds and inhibitors
-
Kolch W. 2005. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat. Rev. Mol. Cell Biol. 6:827-37
-
(2005)
Nat. Rev. Mol. Cell Biol.
, vol.6
, pp. 827-837
-
-
Kolch, W.1
-
103
-
-
12144289677
-
Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF
-
Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, et al. 2004. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116:855-67
-
(2004)
Cell
, vol.116
, pp. 855-867
-
-
Wan, P.T.1
Garnett, M.J.2
Roe, S.M.3
Lee, S.4
Niculescu-Duvaz, D.5
-
104
-
-
42949149240
-
Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity
-
Tsai J, Lee JT, Wang W, Zhang J, Cho H, et al. 2008. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc. Natl. Acad. Sci. USA 105:3041-46
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 3041-3046
-
-
Tsai, J.1
Lee, J.T.2
Wang, W.3
Zhang, J.4
Cho, H.5
-
105
-
-
48849095518
-
Potent and selective pyrazole-based inhibitors of B-Raf kinase
-
Hansen JD, Grina J, Newhouse B, Welch M, TopalovG, et al. 2008. Potent and selective pyrazole-based inhibitors of B-Raf kinase. Bioorg. Med. Chem. Lett. 18:4692-95
-
(2008)
Bioorg. Med. Chem. Lett.
, vol.18
, pp. 4692-4695
-
-
Hansen, J.D.1
Grina, J.2
Newhouse, B.3
Welch, M.4
Topalov, G.5
-
106
-
-
33845730781
-
Demonstration of a genetic therapeutic index for tumors expressing oncogenic BRAF by the kinase inhibitor SB-590885
-
King AJ, Patrick DR, Batorsky RS, Ho ML, DoHT, et al. 2006. Demonstration of a genetic therapeutic index for tumors expressing oncogenic BRAF by the kinase inhibitor SB-590885. Cancer Res. 66:11100-5
-
(2006)
Cancer Res.
, vol.66
, pp. 11100-11105
-
-
King, A.J.1
Patrick, D.R.2
Batorsky, R.S.3
Ho, M.L.4
Do, H.T.5
-
107
-
-
70349438995
-
A dimerization-dependent mechanism drives RAF catalytic activation
-
Rajakulendran T, Sahmi M, Lefrancois M, Sicheri F, Therrien M. 2009. A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461:542-45
-
(2009)
Nature
, vol.461
, pp. 542-545
-
-
Rajakulendran, T.1
Sahmi, M.2
Lefrancois, M.3
Sicheri, F.4
Therrien, M.5
-
108
-
-
79955472800
-
A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK
-
Brennan DF, Dar AC, Hertz NT, Chao WC, Burlingame AL, et al. 2011. A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK. Nature 472:366-69
-
(2011)
Nature
, vol.472
, pp. 366-369
-
-
Brennan, D.F.1
Dar, A.C.2
Hertz, N.T.3
Chao, W.C.4
Burlingame, A.L.5
-
109
-
-
79955044151
-
Mutation that blocks ATP binding creates a pseudokinase stabilizing the scaffolding function of kinase suppressor of Ras, CRAF and BRAF
-
Hu J, Yu H, Kornev AP, Zhao J, Filbert EL, et al. 2011. Mutation that blocks ATP binding creates a pseudokinase stabilizing the scaffolding function of kinase suppressor of Ras, CRAF and BRAF. Proc. Natl. Acad. Sci. USA 108:6067-72
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 6067-6072
-
-
Hu, J.1
Yu, H.2
Kornev, A.P.3
Zhao, J.4
Filbert, E.L.5
-
110
-
-
77949732073
-
RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF
-
Poulikakos PI, Zhang C, Bollag G, ShokatKM, RosenN. 2010. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464:427-30
-
(2010)
Nature
, vol.464
, pp. 427-430
-
-
Poulikakos, P.I.1
Zhang, C.2
Bollag, G.3
Shokat, K.M.4
Rosen, N.5
-
111
-
-
79953784580
-
RAF inhibitor-induced KSR1/B-RAF binding and its effects on ERK cascade signaling
-
McKay MM, Ritt DA, Morrison DK. 2011. RAF inhibitor-induced KSR1/B-RAF binding and its effects on ERK cascade signaling. Curr. Biol. 21:563-68
-
(2011)
Curr. Biol.
, vol.21
, pp. 563-568
-
-
Mc Kay, M.M.1
Ritt, D.A.2
Morrison, D.K.3
-
113
-
-
78649642175
-
Pseudokinases-remnants of evolution or key allosteric regulators?
-
Zeqiraj E, Van Aalten DM. 2010. Pseudokinases-remnants of evolution or key allosteric regulators? Curr. Opin. Struct. Biol. 20:772-81
-
(2010)
Curr. Opin. Struct. Biol.
, vol.20
, pp. 772-781
-
-
Zeqiraj, E.1
Van Aalten, D.M.2
-
114
-
-
3142600709
-
Crystal structure of the kinase domain of WNK1, a kinase that causes a hereditary form of hypertension
-
Min X, Lee BH, Cobb MH, Goldsmith EJ. 2004. Crystal structure of the kinase domain of WNK1, a kinase that causes a hereditary form of hypertension. Structure 12:1303-11
-
(2004)
Structure
, vol.12
, pp. 1303-1311
-
-
Min, X.1
Lee, B.H.2
Cobb, M.H.3
Goldsmith, E.J.4
-
115
-
-
0032578901
-
Structural basis for activation of the titin kinase domain during myofibrillogenesis
-
Mayans O, Van der Ven PF, Wilm M, Mues A, Young P, et al. 1998. Structural basis for activation of the titin kinase domain during myofibrillogenesis. Nature 395:863-69
-
(1998)
Nature
, vol.395
, pp. 863-869
-
-
Mayans, O.1
Van Der Ven, P.F.2
Wilm, M.3
Mues, A.4
Young, P.5
-
116
-
-
41949128173
-
CASK functions as a Mg2+-independent neurexin kinase
-
Mukherjee K, Sharma M, Urlaub H, Bourenkov GP, Jahn R, et al. 2008. CASK functions as a Mg2+-independent neurexin kinase. Cell 133:328-39
-
(2008)
Cell
, vol.133
, pp. 328-339
-
-
Mukherjee, K.1
Sharma, M.2
Urlaub, H.3
Bourenkov, G.P.4
Jahn, R.5
-
118
-
-
72949115493
-
Structure of the LKB1-STRAD-MO25 complex reveals an allosteric mechanism of kinase activation
-
Zeqiraj E, Filippi BM, Deak M, Alessi DR, Van Aalten DM.2009. Structure of the LKB1-STRAD-MO25 complex reveals an allosteric mechanism of kinase activation. Science 326:1707-11
-
(2009)
Science
, vol.326
, pp. 1707-1711
-
-
Zeqiraj, E.1
Filippi, B.M.2
Deak, M.3
Alessi, D.R.4
Van Aalten, D.M.5
-
119
-
-
0038371050
-
Autoinhibition of Jak2 tyrosine kinase is dependent on specific regions in its pseudokinase domain
-
Saharinen P, Vihinen M, Silvennoinen O. 2003. Autoinhibition of Jak2 tyrosine kinase is dependent on specific regions in its pseudokinase domain. Mol. Biol. Cell 14:1448-59
-
(2003)
Mol. Biol. Cell
, vol.14
, pp. 1448-1459
-
-
Saharinen, P.1
Vihinen, M.2
Silvennoinen, O.3
-
120
-
-
79955136973
-
Analysis of Jak2 catalytic function by peptide microarrays: The role of the JH2 domain and V617F mutation
-
Sanz A, Ungureanu D, Pekkala T, Ruijtenbeek R, Touw IP, et al. 2011. Analysis of Jak2 catalytic function by peptide microarrays: the role of the JH2 domain and V617F mutation. PLoS ONE 6:e18522
-
(2011)
PLoS ONE
, vol.6
-
-
Sanz, A.1
Ungureanu, D.2
Pekkala, T.3
Ruijtenbeek, R.4
Touw, I.P.5
-
121
-
-
80052492285
-
The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling
-
Ungureanu D, Wu J, Pekkala T, Niranjan Y, Young C, et al. 2011. The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling. Nat. Struct. Mol. Biol. 18:971-76
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 971-976
-
-
Ungureanu, D.1
Wu, J.2
Pekkala, T.3
Niranjan, Y.4
Young, C.5
-
122
-
-
77954385114
-
Structural and thermodynamic characterization of the TYK2 and JAK3 kinase domains in complex with CP-690550 and CMP-6
-
Chrencik JE, Patny A, Leung IK, Korniski B, Emmons TL, et al. 2010. Structural and thermodynamic characterization of the TYK2 and JAK3 kinase domains in complex with CP-690550 and CMP-6. J. Mol. Biol. 400:413-33
-
(2010)
J. Mol. Biol.
, vol.400
, pp. 413-433
-
-
Chrencik, J.E.1
Patny, A.2
Leung, I.K.3
Korniski, B.4
Emmons, T.L.5
-
123
-
-
71149097258
-
The pseudoactive site of ILK is essential for its binding to alpha-Parvin and localization to focal adhesions
-
Fukuda K, Gupta S, Chen K, Wu C, Qin J. 2009. The pseudoactive site of ILK is essential for its binding to alpha-Parvin and localization to focal adhesions. Mol. Cell 36:819-30
-
(2009)
Mol. Cell
, vol.36
, pp. 819-830
-
-
Fukuda, K.1
Gupta, S.2
Chen, K.3
Wu, C.4
Qin, J.5
-
124
-
-
79957552048
-
Biochemical, proteomic, structural, and thermodynamic characterizations of integrin-linked kinase (ILK): Cross-validation of the pseudokinase
-
Fukuda K, Knight JD, Piszczek G, Kothary R, Qin J. 2011. Biochemical, proteomic, structural, and thermodynamic characterizations of integrin-linked kinase (ILK): cross-validation of the pseudokinase. J. Biol. Chem. 286:21886-95
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 21886-21895
-
-
Fukuda, K.1
Knight, J.D.2
Piszczek, G.3
Kothary, R.4
Qin, J.5
-
125
-
-
58149204174
-
Structure of the pseudokinase VRK3 reveals a degraded catalytic site, a highly conserved kinase fold, and a putative regulatory binding site
-
Scheeff ED, Eswaran J, Bunkoczi G, Knapp S, Manning G. 2009. Structure of the pseudokinase VRK3 reveals a degraded catalytic site, a highly conserved kinase fold, and a putative regulatory binding site. Structure 17:128-38
-
(2009)
Structure
, vol.17
, pp. 128-138
-
-
Scheeff, E.D.1
Eswaran, J.2
Bunkoczi, G.3
Knapp, S.4
Manning, G.5
-
126
-
-
79955770162
-
Scaffold proteins: Hubs for controlling the flow of cellular information
-
Good MC, Zalatan JG, Lim WA. 2011. Scaffold proteins: hubs for controlling the flow of cellular information. Science 332:680-86
-
(2011)
Science
, vol.332
, pp. 680-686
-
-
Good, M.C.1
Zalatan, J.G.2
Lim, W.A.3
-
127
-
-
10944251582
-
Principles of MAP kinase signaling specificity in Saccharomyces cerevisiae
-
Schwartz MA, Madhani HD. 2004. Principles of MAP kinase signaling specificity in Saccharomyces cerevisiae. Annu. Rev. Genet. 38:725-48
-
(2004)
Annu. Rev. Genet.
, vol.38
, pp. 725-748
-
-
Schwartz, M.A.1
Madhani, H.D.2
-
128
-
-
62149128986
-
The Ste5 scaffold directs mating signaling by catalytically unlocking the Fus3 MAP kinase for activation
-
Good M, Tang G, Singleton J, Remenyi A, Lim WA. 2009. The Ste5 scaffold directs mating signaling by catalytically unlocking the Fus3 MAP kinase for activation. Cell 136:1085-97
-
(2009)
Cell
, vol.136
, pp. 1085-1097
-
-
Good, M.1
Tang, G.2
Singleton, J.3
Remenyi, A.4
Lim, W.A.5
-
129
-
-
78650942010
-
Crystal structure and allosteric activation of protein kinase C betaII
-
Leonard TA, Rozycki B, Saidi LF, Hummer G, Hurley JH. 2011. Crystal structure and allosteric activation of protein kinase C betaII. Cell 144:55-66
-
(2011)
Cell
, vol.144
, pp. 55-66
-
-
Leonard, T.A.1
Rozycki, B.2
Saidi, L.F.3
Hummer, G.4
Hurley, J.H.5
-
130
-
-
77949272793
-
Intersubunit capture of regulatory segments is a component of cooperative CaMKII activation
-
Chao LH, Pellicena P, Deindl S, Barclay LA, Schulman H, Kuriyan J. 2010. Intersubunit capture of regulatory segments is a component of cooperative CaMKII activation. Nat. Struct. Mol. Biol. 17:264-72
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 264-272
-
-
Chao, L.H.1
Pellicena, P.2
Deindl, S.3
Barclay, L.A.4
Schulman, H.5
Kuriyan, J.6
-
131
-
-
77955039883
-
Structure of the CaMKIIdelta/calmodulin complex reveals the molecular mechanism of CaMKII kinase activation
-
Rellos P, Pike AC, Niesen FH, Salah E, LeeWH, et al. 2010. Structure of the CaMKIIdelta/calmodulin complex reveals the molecular mechanism of CaMKII kinase activation. PLoS Biol. 8:e1000426
-
(2010)
PLoS Biol.
, vol.8
-
-
Rellos, P.1
Pike, A.C.2
Niesen, F.H.3
Salah, E.4
Lee, W.H.5
-
132
-
-
80052284705
-
A mechanism for tunable autoinhibition in the structure of a human Ca2 +calmodulin-dependent kinase II holoenzyme
-
Chao LH, Stratton MM, Lee IH, Rosenberg OS, Levitz J, et al. 2011. A mechanism for tunable autoinhibition in the structure of a human Ca2 +calmodulin-dependent kinase II holoenzyme. Cell 146:732-45
-
(2011)
Cell
, vol.146
, pp. 732-745
-
-
Chao, L.H.1
Stratton, M.M.2
Lee, I.H.3
Rosenberg, O.S.4
Levitz, J.5
-
133
-
-
62149111407
-
Sensing chromosome bi-orientation by spatial separation of Aurora B kinase from kinetochore substrates
-
Liu D, Vader G, Vromans MJ, Lampson MA, Lens SM. 2009. Sensing chromosome bi-orientation by spatial separation of Aurora B kinase from kinetochore substrates. Science 323:1350-53
-
(2009)
Science
, vol.323
, pp. 1350-1353
-
-
Liu, D.1
Vader, G.2
Vromans, M.J.3
Lampson, M.A.4
Lens, S.M.5
-
134
-
-
77951952612
-
AuroraBphosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface
-
Welburn JP, VleugelM, Liu D, Yates JR3rd, LampsonMA, et al. 2010. AuroraBphosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface. Mol. Cell 38:383-92
-
(2010)
Mol. Cell
, vol.38
, pp. 383-392
-
-
Welburn, J.P.1
Vleugel, M.2
Liu, D.3
Yates Iii., J.R.4
Lampson, M.A.5
-
135
-
-
78650043246
-
Gradient of increasing Aurora B kinase activity is required for cells to execute mitosis
-
Xu Z, Vagnarelli P, OgawaH, SamejimaK, EarnshawWC. 2010. Gradient of increasing Aurora B kinase activity is required for cells to execute mitosis. J. Biol. Chem. 285:40163-70
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 40163-40170
-
-
Xu, Z.1
Vagnarelli, P.2
Ogawa, H.3
Samejima, K.4
Earnshaw, W.C.5
-
136
-
-
79959706804
-
Spatial exclusivity combined with positive and negative selection of phosphorylation motifs is the basis for context-dependent mitotic signaling
-
Alexander J, Lim D, Joughin BA, Hegemann B, Hutchins JR, et al. 2011. Spatial exclusivity combined with positive and negative selection of phosphorylation motifs is the basis for context-dependent mitotic signaling. Sci. Signal. 4:ra42
-
(2011)
Sci. Signal.
, vol.4
-
-
Alexander, J.1
Lim, D.2
Joughin, B.A.3
Hegemann, B.4
Hutchins, J.R.5
-
137
-
-
0027409462
-
Phosphotransferase and substrate binding mechanism of the cAMP-dependent protein kinase catalytic subunit from porcine heart as deduced from the 2.0 A structure of the complex with Mn2+ adenylyl imidodiphosphate and inhibitor peptide PKI(5-24)
-
Bossemeyer D, Engh RA, Kinzel V, Ponstingl H, Huber R. 1993. Phosphotransferase and substrate binding mechanism of the cAMP-dependent protein kinase catalytic subunit from porcine heart as deduced from the 2.0 ?A structure of the complex with Mn2+ adenylyl imidodiphosphate and inhibitor peptide PKI(5-24). EMBO J. 12:849-59
-
(1993)
EMBO J.
, vol.12
, pp. 849-859
-
-
Bossemeyer, D.1
Engh, R.A.2
Kinzel, V.3
Ponstingl, H.4
Huber, R.5
-
138
-
-
0026326821
-
Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase
-
Knighton DR, Zheng JH, Ten Eyck LF, Xuong NH, Taylor SS, Sowadski JM. 1991. Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253:414-20
-
(1991)
Science
, vol.253
, pp. 414-420
-
-
Knighton, D.R.1
Zheng, J.H.2
Ten Eyck, L.F.3
Xuong, N.H.4
Taylor, S.S.5
Sowadski, J.M.6
-
139
-
-
0033224309
-
The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases
-
Brown NR, Noble ME, Endicott JA, Johnson LN. 1999. The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat. Cell Biol. 1:438-43
-
(1999)
Nat. Cell Biol.
, vol.1
, pp. 438-443
-
-
Brown, N.R.1
Noble, M.E.2
Endicott, J.A.3
Johnson, L.N.4
|