메뉴 건너뛰기




Volumn 3, Issue 8-9, 2004, Pages 797-815

DSB repair: The yeast paradigm

Author keywords

DNA; Double strand break (DSB); Genome

Indexed keywords

HELICASE; PROTEIN RAD9; RESOLVASE;

EID: 3242892765     PISSN: 15687864     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.dnarep.2004.04.013     Document Type: Review
Times cited : (141)

References (247)
  • 1
    • 0344413642 scopus 로고    scopus 로고
    • The S-phase checkpoint and its regulation in Saccharomyces cerevisiae
    • Longhese M.P., Clerici M., Lucchini G. The S-phase checkpoint and its regulation in Saccharomyces cerevisiae. Mutat. Res. 532:2003;41-58
    • (2003) Mutat. Res. , vol.532 , pp. 41-58
    • Longhese, M.P.1    Clerici, M.2    Lucchini, G.3
  • 2
    • 0037312317 scopus 로고    scopus 로고
    • Molecular anatomy of the DNA damage and replication checkpoints
    • Qin J., Li L. Molecular anatomy of the DNA damage and replication checkpoints. Radiat. Res. 159:2003;139-148
    • (2003) Radiat. Res. , vol.159 , pp. 139-148
    • Qin, J.1    Li, L.2
  • 3
    • 0942279596 scopus 로고    scopus 로고
    • The Mus81 solution to resolution: Generating meiotic crossovers without Holliday Junctions
    • Hollingsworth N.M., Brill S.J. The Mus81 solution to resolution: generating meiotic crossovers without Holliday Junctions. Genes Dev. 18:2004;117-125
    • (2004) Genes Dev. , vol.18 , pp. 117-125
    • Hollingsworth, N.M.1    Brill, S.J.2
  • 5
    • 0037027880 scopus 로고    scopus 로고
    • DNA structure dependent checkpoints as regulators of DNA repair
    • Carr A.M. DNA structure dependent checkpoints as regulators of DNA repair. DNA Rep. (Amst.). 1:2002;983-994
    • (2002) DNA Rep. (Amst.) , vol.1 , pp. 983-994
    • Carr, A.M.1
  • 6
    • 0036777168 scopus 로고    scopus 로고
    • Homologous recombination: Ends as the means
    • Ray A., Langer M. Homologous recombination: ends as the means. Trends Plant Sci. 7:2002;435-440
    • (2002) Trends Plant Sci. , vol.7 , pp. 435-440
    • Ray, A.1    Langer, M.2
  • 7
    • 0035223878 scopus 로고    scopus 로고
    • Mechanism and control of meiotic recombination initiation
    • Keeney S. Mechanism and control of meiotic recombination initiation. Curr. Top. Dev. Biol. 52:2001;1-53
    • (2001) Curr. Top. Dev. Biol. , vol.52 , pp. 1-53
    • Keeney, S.1
  • 8
    • 0035345013 scopus 로고    scopus 로고
    • Meiotic recombination hot spots and cold spots
    • Petes T.D. Meiotic recombination hot spots and cold spots. Nat. Rev. Genet. 2:2001;360-369
    • (2001) Nat. Rev. Genet. , vol.2 , pp. 360-369
    • Petes, T.D.1
  • 9
    • 0036972347 scopus 로고    scopus 로고
    • Control of meiotic recombination initiation: A role for the environment?
    • Koren A., Ben-Aroya S., Kupiec M. Control of meiotic recombination initiation: a role for the environment? Curr. Genet. 42:2002;129-139
    • (2002) Curr. Genet. , vol.42 , pp. 129-139
    • Koren, A.1    Ben-Aroya, S.2    Kupiec, M.3
  • 10
    • 0035799295 scopus 로고    scopus 로고
    • Meiotic recombination: Breaking the genome to save it
    • Lichten M. Meiotic recombination: breaking the genome to save it. Curr. Biol. 11:2001;R253-256
    • (2001) Curr. Biol. , vol.11 , pp. 253-256
    • Lichten, M.1
  • 11
    • 0001743973 scopus 로고
    • Chromosome mapping in Saccharomyces: Centromere-linked genes
    • Hawthorne D.C., Mortimer R.K. Chromosome mapping in Saccharomyces: centromere-linked genes. Genetics. 45:1960;1085-1110
    • (1960) Genetics , vol.45 , pp. 1085-1110
    • Hawthorne, D.C.1    Mortimer, R.K.2
  • 13
    • 77049310288 scopus 로고
    • Studies of gene mutation in Saccharomyces
    • Roman H. Studies of gene mutation in Saccharomyces. Cold Spring Harb. Symp. Quant. Biol. 21:1956;175-185
    • (1956) Cold Spring Harb. Symp. Quant. Biol. , vol.21 , pp. 175-185
    • Roman, H.1
  • 14
    • 0014139586 scopus 로고
    • Meiotic gene conversion in yeast tetrads and the theory of recombination
    • Fogel S., Hurst D.D. Meiotic gene conversion in yeast tetrads and the theory of recombination. Genetics. 57:1967;455-481
    • (1967) Genetics , vol.57 , pp. 455-481
    • Fogel, S.1    Hurst, D.D.2
  • 16
    • 84959678845 scopus 로고
    • A mechanism for gene conversion in fungi
    • Holliday R. A mechanism for gene conversion in fungi. Genet. Res. 5:1964;282-290
    • (1964) Genet. Res. , vol.5 , pp. 282-290
    • Holliday, R.1
  • 19
    • 0000422658 scopus 로고
    • Yeast recombination: The association between double-strand gap repair and crossing-over
    • Orr-Weaver T.L., Szostak J.W. Yeast recombination: the association between double-strand gap repair and crossing-over. Proc. Natl. Acad. Sci. U.S.A. 80:1983;4417-4421
    • (1983) Proc. Natl. Acad. Sci. U.S.A. , vol.80 , pp. 4417-4421
    • Orr-Weaver, T.L.1    Szostak, J.W.2
  • 21
    • 0029743354 scopus 로고    scopus 로고
    • A test of the double-strand break repair model for meiotic recombination in Saccharomyces cerevisiae
    • Gilbertson L.A., Stahl F.W. A test of the double-strand break repair model for meiotic recombination in Saccharomyces cerevisiae. Genetics. 144:1996;27-41
    • (1996) Genetics , vol.144 , pp. 27-41
    • Gilbertson, L.A.1    Stahl, F.W.2
  • 22
    • 0034887008 scopus 로고    scopus 로고
    • Intermediates of yeast meiotic recombination contain heteroduplex DNA
    • Allers T., Lichten M. Intermediates of yeast meiotic recombination contain heteroduplex DNA. Mol. Cell. 8:2001;225-231
    • (2001) Mol. Cell , vol.8 , pp. 225-231
    • Allers, T.1    Lichten, M.2
  • 23
    • 0024065010 scopus 로고
    • Recombination in the eukaryotic nucleus
    • Hastings P.J. Recombination in the eukaryotic nucleus. Bioessays. 9:1988;61-64
    • (1988) Bioessays , vol.9 , pp. 61-64
    • Hastings, P.J.1
  • 24
    • 0024500630 scopus 로고
    • Coconversion of flanking sequences with homothallic switching
    • McGill C., Shafer B., Strathern J. Coconversion of flanking sequences with homothallic switching. Cell. 57:1989;459-467
    • (1989) Cell , vol.57 , pp. 459-467
    • McGill, C.1    Shafer, B.2    Strathern, J.3
  • 25
    • 0024847277 scopus 로고
    • Analysis of the HO-cleaved MAT DNA intermediate generated during the mating type switch in the yeast Saccharomyces cerevisiae
    • Raveh D., Hughes S.H., Shafer B.K., Strathern J.N. Analysis of the HO-cleaved MAT DNA intermediate generated during the mating type switch in the yeast Saccharomyces cerevisiae. Mol. Gen. Genet. 220:1989;33-42
    • (1989) Mol. Gen. Genet. , vol.220 , pp. 33-42
    • Raveh, D.1    Hughes, S.H.2    Shafer, B.K.3    Strathern, J.N.4
  • 26
    • 0025020278 scopus 로고
    • Intermediates of recombination during mating type switching in Saccharomyces cerevisiae
    • White C.I., Haber J.E. Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J. 9:1990;663-673
    • (1990) EMBO J. , vol.9 , pp. 663-673
    • White, C.I.1    Haber, J.E.2
  • 27
    • 0028221221 scopus 로고
    • Fine-resolution mapping of spontaneous and double-strand break-induced gene conversion tracts in Saccharomyces cerevisiae reveals reversible mitotic conversion polarity
    • Sweetser D.B., Hough H., Whelden J.F., Arbuckle M., Nickoloff J.A. Fine-resolution mapping of spontaneous and double-strand break-induced gene conversion tracts in Saccharomyces cerevisiae reveals reversible mitotic conversion polarity. Mol. Cell Biol. 14:1994;3863-3875
    • (1994) Mol. Cell Biol. , vol.14 , pp. 3863-3875
    • Sweetser, D.B.1    Hough, H.2    Whelden, J.F.3    Arbuckle, M.4    Nickoloff, J.A.5
  • 28
    • 0028956271 scopus 로고
    • Recombination of Ty elements in yeast can be induced by a double-strand break
    • Parket A., Inbar O., Kupiec M. Recombination of Ty elements in yeast can be induced by a double-strand break. Genetics. 140:1995;67-77
    • (1995) Genetics , vol.140 , pp. 67-77
    • Parket, A.1    Inbar, O.2    Kupiec, M.3
  • 29
    • 0033008194 scopus 로고    scopus 로고
    • Homology search and choice of homologous partner during mitotic recombination
    • Inbar O., Kupiec M. Homology search and choice of homologous partner during mitotic recombination. Mol. Cell Biol. 19:1999;4134-4142
    • (1999) Mol. Cell Biol. , vol.19 , pp. 4134-4142
    • Inbar, O.1    Kupiec, M.2
  • 30
    • 0037317683 scopus 로고    scopus 로고
    • Molecular dissection of mitotic recombination in the yeast Saccharomyces cerevisiae
    • Aylon Y., Liefshitz B., Bitan-Banin G., Kupiec M. Molecular dissection of mitotic recombination in the yeast Saccharomyces cerevisiae. Mol. Cell Biol. 23:2003;1403-1417
    • (2003) Mol. Cell Biol. , vol.23 , pp. 1403-1417
    • Aylon, Y.1    Liefshitz, B.2    Bitan-Banin, G.3    Kupiec, M.4
  • 31
    • 0033525095 scopus 로고    scopus 로고
    • Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases
    • Holmes A.M., Haber J.E. Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases. Cell. 96:1999;415-424
    • (1999) Cell , vol.96 , pp. 415-424
    • Holmes, A.M.1    Haber, J.E.2
  • 32
    • 0042691728 scopus 로고    scopus 로고
    • The checkpoint protein Rad24 of Saccharomyces cerevisiae is involved in processing double-strand break ends and in recombination partner choice
    • Aylon Y., Kupiec M. The checkpoint protein Rad24 of Saccharomyces cerevisiae is involved in processing double-strand break ends and in recombination partner choice. Mol. Cell Biol. 23:2003;6585-6596
    • (2003) Mol. Cell Biol. , vol.23 , pp. 6585-6596
    • Aylon, Y.1    Kupiec, M.2
  • 33
    • 0345447604 scopus 로고    scopus 로고
    • Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast
    • Ira G., Malkova A., Liberi G., Foiani M., Haber J.E. Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell. 115:2003;401-411
    • (2003) Cell , vol.115 , pp. 401-411
    • Ira, G.1    Malkova, A.2    Liberi, G.3    Foiani, M.4    Haber, J.E.5
  • 35
    • 0038141976 scopus 로고    scopus 로고
    • Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre
    • Lisby M., Mortensen U.H., Rothstein R. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nat. Cell Biol. 5:2003;572-577
    • (2003) Nat. Cell Biol. , vol.5 , pp. 572-577
    • Lisby, M.1    Mortensen, U.H.2    Rothstein, R.3
  • 36
    • 1842509858 scopus 로고    scopus 로고
    • In vivo assembly and disassembly of Rad51 and Rad52 complexes during double-strand break repair
    • Miyazaki T., Bressan D.A., Shinohara M., Haber J.E., Shinohara A. In vivo assembly and disassembly of Rad51 and Rad52 complexes during double-strand break repair. EMBO J. 23:2004;939-949
    • (2004) EMBO J. , vol.23 , pp. 939-949
    • Miyazaki, T.1    Bressan, D.A.2    Shinohara, M.3    Haber, J.E.4    Shinohara, A.5
  • 37
    • 0041903834 scopus 로고    scopus 로고
    • In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination
    • Sugawara N., Wang X., Haber J.E. In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol. Cell. 12:2003;209-219
    • (2003) Mol. Cell , vol.12 , pp. 209-219
    • Sugawara, N.1    Wang, X.2    Haber, J.E.3
  • 38
    • 0042626553 scopus 로고    scopus 로고
    • Recruitment of the recombinational repair machinery to a DNA double-strand break in yeast
    • Wolner B., van Komen S., Sung P., Peterson C.L. Recruitment of the recombinational repair machinery to a DNA double-strand break in yeast. Mol. Cell. 12:2003;221-232
    • (2003) Mol. Cell , vol.12 , pp. 221-232
    • Wolner, B.1    Van Komen, S.2    Sung, P.3    Peterson, C.L.4
  • 39
    • 0037451243 scopus 로고    scopus 로고
    • Pathway utilization in response to a site-specific DNA double-strand break in fission yeast
    • Prudden J., Evans J.S., Hussey S.P., Deans B., O'Neill P., Thacker J., Humphrey T. Pathway utilization in response to a site-specific DNA double-strand break in fission yeast. EMBO J. 22:2003;1419-1430
    • (2003) EMBO J. , vol.22 , pp. 1419-1430
    • Prudden, J.1    Evans, J.S.2    Hussey, S.P.3    Deans, B.4    O'Neill, P.5    Thacker, J.6    Humphrey, T.7
  • 40
    • 0035874894 scopus 로고    scopus 로고
    • Homology-directed dna repair, mitomycin-c resistance, and chromosome stability is restored with correction of a Brca1 mutation
    • Moynahan M.E., Cui T.Y., Jasin M. Homology-directed dna repair, mitomycin-c resistance, and chromosome stability is restored with correction of a Brca1 mutation. Cancer Res. 61:2001;4842-4850
    • (2001) Cancer Res. , vol.61 , pp. 4842-4850
    • Moynahan, M.E.1    Cui, T.Y.2    Jasin, M.3
  • 41
    • 0036671755 scopus 로고    scopus 로고
    • XRCC3 controls the fidelity of homologous recombination: Roles for XRCC3 in late stages of recombination
    • Brenneman M.A., Wagener B.M., Miller C.A., Allen C., Nickoloff J.A. XRCC3 controls the fidelity of homologous recombination: roles for XRCC3 in late stages of recombination. Mol. Cell. 10:2002;387-395
    • (2002) Mol. Cell , vol.10 , pp. 387-395
    • Brenneman, M.A.1    Wagener, B.M.2    Miller, C.A.3    Allen, C.4    Nickoloff, J.A.5
  • 42
    • 0028247038 scopus 로고
    • Chromosome pairing via multiple interstitial interactions before and during meiosis in yeast
    • Weiner B.M., Kleckner N. Chromosome pairing via multiple interstitial interactions before and during meiosis in yeast. Cell. 77:1994;977-991
    • (1994) Cell , vol.77 , pp. 977-991
    • Weiner, B.M.1    Kleckner, N.2
  • 43
    • 0034613170 scopus 로고    scopus 로고
    • The relationship between homology length and crossing over during the repair of a broken chromosome
    • Inbar O., Liefshitz B., Bitan G., Kupiec M. The relationship between homology length and crossing over during the repair of a broken chromosome. J. Biol. Chem. 275:2000;30833-30838
    • (2000) J. Biol. Chem. , vol.275 , pp. 30833-30838
    • Inbar, O.1    Liefshitz, B.2    Bitan, G.3    Kupiec, M.4
  • 44
    • 0242605613 scopus 로고    scopus 로고
    • Equal sister chromatid exchange is a major mechanism of double-strand break repair in yeast
    • Gonzalez-Barrera S., Cortes-Ledesma F., Wellinger R.E., Aguilera A. Equal sister chromatid exchange is a major mechanism of double-strand break repair in yeast. Mol. Cell. 11:2003;1661-1671
    • (2003) Mol. Cell , vol.11 , pp. 1661-1671
    • Gonzalez-Barrera, S.1    Cortes-Ledesma, F.2    Wellinger, R.E.3    Aguilera, A.4
  • 45
    • 0037440659 scopus 로고    scopus 로고
    • Gene conversion tracts in Saccharomyces cerevisiae can be extremely short and highly directional
    • Palmer S., Schildkraut E., Lazarin R., Nguyen J., Nickoloff J.A. Gene conversion tracts in Saccharomyces cerevisiae can be extremely short and highly directional. Nucleic Acids Res. 31:2003;1164-1173
    • (2003) Nucleic Acids Res. , vol.31 , pp. 1164-1173
    • Palmer, S.1    Schildkraut, E.2    Lazarin, R.3    Nguyen, J.4    Nickoloff, J.A.5
  • 46
    • 0025941532 scopus 로고
    • Heteroduplex formation and mismatch repair of the "stuck" mutation during mating-type switching in Saccharomyces cerevisiae
    • Ray B.L., White C.I., Haber J.E. Heteroduplex formation and mismatch repair of the "stuck" mutation during mating-type switching in Saccharomyces cerevisiae. Mol. Cell Biol. 11:1991;5372-5380
    • (1991) Mol. Cell Biol. , vol.11 , pp. 5372-5380
    • Ray, B.L.1    White, C.I.2    Haber, J.E.3
  • 47
    • 0029927124 scopus 로고    scopus 로고
    • Recombinational repair of gaps in DNA is asymmetric in Ustilago maydis and can be explained by a migrating D-loop model
    • Ferguson D.O., Holloman W.K. Recombinational repair of gaps in DNA is asymmetric in Ustilago maydis and can be explained by a migrating D-loop model. Proc. Natl. Acad. Sci. U.S.A. 93:1996;5419-5424
    • (1996) Proc. Natl. Acad. Sci. U.S.A. , vol.93 , pp. 5419-5424
    • Ferguson, D.O.1    Holloman, W.K.2
  • 48
    • 0141707817 scopus 로고    scopus 로고
    • Generating crossovers by resolution of nicked Holliday Junctions: A role for Mus81-Eme1 in meiosis
    • Osman F., Dixon J., Doe C.L., Whitby M.C. Generating crossovers by resolution of nicked Holliday Junctions: a role for Mus81-Eme1 in meiosis. Mol. Cell. 12:2003;761-774
    • (2003) Mol. Cell , vol.12 , pp. 761-774
    • Osman, F.1    Dixon, J.2    Doe, C.L.3    Whitby, M.C.4
  • 49
    • 0016274036 scopus 로고
    • A genetic study of X-ray sensitive mutants in yeast
    • Game J.C., Mortimer R.K. A genetic study of X-ray sensitive mutants in yeast. Mutat. Res. 24:1974;281-292
    • (1974) Mutat. Res. , vol.24 , pp. 281-292
    • Game, J.C.1    Mortimer, R.K.2
  • 50
    • 0029119967 scopus 로고
    • Complex formation in yeast double-strand break repair: Participation of Rad51, Rad52, Rad55, and Rad57 proteins
    • Hays S.L., Firmenich A.A., Berg P. Complex formation in yeast double-strand break repair: participation of Rad51, Rad52, Rad55, and Rad57 proteins. Proc. Natl. Acad. Sci. U.S.A. 92:1995;6925-6929
    • (1995) Proc. Natl. Acad. Sci. U.S.A. , vol.92 , pp. 6925-6929
    • Hays, S.L.1    Firmenich, A.A.2    Berg, P.3
  • 51
    • 0035137927 scopus 로고    scopus 로고
    • Molecular dissection of interactions between Rad51 and members of the recombination-repair group
    • Krejci L., Damborsky J., Thomsen B., Duno M., Bendixen C. Molecular dissection of interactions between Rad51 and members of the recombination-repair group. Mol. Cell Biol. 21:2001;966-976
    • (2001) Mol. Cell Biol. , vol.21 , pp. 966-976
    • Krejci, L.1    Damborsky, J.2    Thomsen, B.3    Duno, M.4    Bendixen, C.5
  • 52
    • 0029164962 scopus 로고
    • Functional differences and interactions among the putative RecA homologs Rad51, Rad55, and Rad57
    • Johnson R.D., Symington L.S. Functional differences and interactions among the putative RecA homologs Rad51, Rad55, and Rad57. Mol. Cell Biol. 15:1995;4843-4850
    • (1995) Mol. Cell Biol. , vol.15 , pp. 4843-4850
    • Johnson, R.D.1    Symington, L.S.2
  • 53
    • 0037093318 scopus 로고    scopus 로고
    • Cdc2-cyclin B kinase activity links Crb2 and Rqh1-topoisomerase III
    • Caspari T., Murray J.M., Carr A.M. Cdc2-cyclin B kinase activity links Crb2 and Rqh1-topoisomerase III. Genes Dev. 16:2002;1195-1208
    • (2002) Genes Dev. , vol.16 , pp. 1195-1208
    • Caspari, T.1    Murray, J.M.2    Carr, A.M.3
  • 56
    • 0026583875 scopus 로고
    • Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated
    • Fishman-Lobell J., Rudin N., Haber J.E. Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. Mol. Cell Biol. 12:1992;1292-1303
    • (1992) Mol. Cell Biol. , vol.12 , pp. 1292-1303
    • Fishman-Lobell, J.1    Rudin, N.2    Haber, J.E.3
  • 57
    • 0035692142 scopus 로고    scopus 로고
    • Overlapping functions of the Saccharomyces cerevisiae Mre11, Exo1 and Rad27 nucleases in DNA metabolism
    • Moreau S., Morgan E.A., Symington L.S. Overlapping functions of the Saccharomyces cerevisiae Mre11, Exo1 and Rad27 nucleases in DNA metabolism. Genetics. 159:2001;1423-1433
    • (2001) Genetics , vol.159 , pp. 1423-1433
    • Moreau, S.1    Morgan, E.A.2    Symington, L.S.3
  • 58
    • 0027212371 scopus 로고
    • A 5′-3′ exonuclease from Saccharomyces cerevisiae is required for in vitro recombination between linear DNA molecules with overlapping homology
    • Huang K.N., Symington L.S. A 5′-3′ exonuclease from Saccharomyces cerevisiae is required for in vitro recombination between linear DNA molecules with overlapping homology. Mol. Cell Biol. 13:1993;3125-3134
    • (1993) Mol. Cell Biol. , vol.13 , pp. 3125-3134
    • Huang, K.N.1    Symington, L.S.2
  • 59
    • 0035022013 scopus 로고    scopus 로고
    • Fidelity of mitotic double-strand-break repair in Saccharomyces cerevisiae: A role for SAE2/COM1
    • Rattray A.J., McGill C.B., Shafer B.K., Strathern J.N. Fidelity of mitotic double-strand-break repair in Saccharomyces cerevisiae: a role for SAE2/COM1. Genetics. 158:2001;109-122
    • (2001) Genetics , vol.158 , pp. 109-122
    • Rattray, A.J.1    McGill, C.B.2    Shafer, B.K.3    Strathern, J.N.4
  • 60
    • 0032567041 scopus 로고    scopus 로고
    • The many interfaces of Mre11
    • Haber J.E. The many interfaces of Mre11. Cell. 95:1998;583-586
    • (1998) Cell , vol.95 , pp. 583-586
    • Haber, J.E.1
  • 61
    • 0028212415 scopus 로고
    • Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae
    • Ivanov E.L., Sugawara N., White C.I., Fabre F., Haber J.E. Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae. Mol. Cell Biol. 14:1994;3414-3425
    • (1994) Mol. Cell Biol. , vol.14 , pp. 3414-3425
    • Ivanov, E.L.1    Sugawara, N.2    White, C.I.3    Fabre, F.4    Haber, J.E.5
  • 62
    • 0030666945 scopus 로고    scopus 로고
    • Function of yeast Rad52 protein as a mediator between replication protein a and the Rad51 recombinase
    • Sung P. Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J. Biol. Chem. 272:1997;28194-28197
    • (1997) J. Biol. Chem. , vol.272 , pp. 28194-28197
    • Sung, P.1
  • 63
    • 19344366752 scopus 로고    scopus 로고
    • Role of Saccharomyces single-stranded DNA-binding protein RPA in the strand invasion step of double-strand break repair
    • Wang X., Haber J.E. Role of Saccharomyces single-stranded DNA-binding protein RPA in the strand invasion step of double-strand break repair. PLoS Biol. 2:2004;E21
    • (2004) PLoS Biol. , vol.2 , pp. 21
    • Wang, X.1    Haber, J.E.2
  • 64
    • 0036900120 scopus 로고    scopus 로고
    • Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair
    • (table of contents)
    • Symington L.S. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol. Mol. Biol. Rev. 66:2002;630-670. (table of contents)
    • (2002) Microbiol. Mol. Biol. Rev. , vol.66 , pp. 630-670
    • Symington, L.S.1
  • 65
    • 0034717199 scopus 로고    scopus 로고
    • Functional interactions among yeast Rad51 recombinase, Rad52 mediator, and replication protein a in DNA strand exchange
    • Song B., Sung P. Functional interactions among yeast Rad51 recombinase, Rad52 mediator, and replication protein A in DNA strand exchange. J. Biol. Chem. 275:2000;15895-15904
    • (2000) J. Biol. Chem. , vol.275 , pp. 15895-15904
    • Song, B.1    Sung, P.2
  • 66
    • 0032527973 scopus 로고    scopus 로고
    • Rad52 associates with RPA and functions with rad55 and rad57 to assemble meiotic recombination complexes
    • Gasior S.L., Wong A.K., Kora Y., Shinohara A., Bishop D.K. Rad52 associates with RPA and functions with rad55 and rad57 to assemble meiotic recombination complexes. Genes Dev. 12:1998;2208-2221
    • (1998) Genes Dev. , vol.12 , pp. 2208-2221
    • Gasior, S.L.1    Wong, A.K.2    Kora, Y.3    Shinohara, A.4    Bishop, D.K.5
  • 68
    • 0029858775 scopus 로고    scopus 로고
    • A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae
    • Bai Y., Symington L.S. A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes Dev. 10:1996;2025-2037
    • (1996) Genes Dev. , vol.10 , pp. 2025-2037
    • Bai, Y.1    Symington, L.S.2
  • 69
    • 0034759324 scopus 로고    scopus 로고
    • The yeast recombinational repair protein Rad59 interacts with Rad52 and stimulates single-strand annealing
    • Davis A.P., Symington L.S. The yeast recombinational repair protein Rad59 interacts with Rad52 and stimulates single-strand annealing. Genetics. 159:2001;515-525
    • (2001) Genetics , vol.159 , pp. 515-525
    • Davis, A.P.1    Symington, L.S.2
  • 70
    • 2542422284 scopus 로고    scopus 로고
    • The Rad52-Rad59 complex interacts with Rad51 and replication protein a
    • Davis A.P., Symington L.S. The Rad52-Rad59 complex interacts with Rad51 and replication protein A. DNA Rep. (Amst.). 2:2003;1127-1134
    • (2003) DNA Rep. (Amst.) , vol.2 , pp. 1127-1134
    • Davis, A.P.1    Symington, L.S.2
  • 71
    • 0030995362 scopus 로고    scopus 로고
    • Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein a to promote DNA strand exchange by Rad51 recombinase
    • Sung P. Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev. 11:1997;1111-1121
    • (1997) Genes Dev. , vol.11 , pp. 1111-1121
    • Sung, P.1
  • 72
    • 0032492853 scopus 로고    scopus 로고
    • Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins
    • Petukhova G., Stratton S., Sung P. Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins. Nature. 393:1998;91-94
    • (1998) Nature , vol.393 , pp. 91-94
    • Petukhova, G.1    Stratton, S.2    Sung, P.3
  • 73
    • 0032832810 scopus 로고    scopus 로고
    • Yeast Rad54 promotes Rad51-dependent homologous DNA pairing via ATP hydrolysis-driven change in DNA double helix conformation
    • Petukhova G., Van Komen S., Vergano S., Klein H., Sung P. Yeast Rad54 promotes Rad51-dependent homologous DNA pairing via ATP hydrolysis-driven change in DNA double helix conformation. J. Biol. Chem. 274:1999;29453-29462
    • (1999) J. Biol. Chem. , vol.274 , pp. 29453-29462
    • Petukhova, G.1    Van Komen, S.2    Vergano, S.3    Klein, H.4    Sung, P.5
  • 74
    • 0037334946 scopus 로고    scopus 로고
    • Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament
    • Alexeev A., Mazin A., Kowalczykowski S.C. Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament. Nat. Struct. Biol. 10:2003;182-186
    • (2003) Nat. Struct. Biol. , vol.10 , pp. 182-186
    • Alexeev, A.1    Mazin, A.2    Kowalczykowski, S.C.3
  • 75
    • 0036829783 scopus 로고    scopus 로고
    • Strand pairing by Rad54 and Rad51 is enhanced by chromatin
    • Alexiadis V., Kadonaga J.T. Strand pairing by Rad54 and Rad51 is enhanced by chromatin. Genes Dev. 16:2002;2767-2771
    • (2002) Genes Dev. , vol.16 , pp. 2767-2771
    • Alexiadis, V.1    Kadonaga, J.T.2
  • 76
    • 0038100136 scopus 로고    scopus 로고
    • Rad54p is a chromatin remodeling enzyme required for heteroduplex DNA joint formation with chromatin
    • Jaskelioff M., Van Komen S., Krebs J.E., Sung P., Peterson C.L. Rad54p is a chromatin remodeling enzyme required for heteroduplex DNA joint formation with chromatin. J. Biol. Chem. 278:2003;9212-9218
    • (2003) J. Biol. Chem. , vol.278 , pp. 9212-9218
    • Jaskelioff, M.1    Van Komen, S.2    Krebs, J.E.3    Sung, P.4    Peterson, C.L.5
  • 77
    • 0037195934 scopus 로고    scopus 로고
    • Rad54 protein exerts diverse modes of ATPase activity on duplex DNA partially and fully covered with Rad51 protein
    • Kiianitsa K., Solinger J.A., Heyer W.D. Rad54 protein exerts diverse modes of ATPase activity on duplex DNA partially and fully covered with Rad51 protein. J. Biol. Chem. 277:2002;46205-46215
    • (2002) J. Biol. Chem. , vol.277 , pp. 46205-46215
    • Kiianitsa, K.1    Solinger, J.A.2    Heyer, W.D.3
  • 78
    • 0035902510 scopus 로고    scopus 로고
    • Rad54 protein stimulates the postsynaptic phase of Rad51 protein-mediated DNA strand exchange
    • Solinger J.A., Heyer W.D. Rad54 protein stimulates the postsynaptic phase of Rad51 protein-mediated DNA strand exchange. Proc. Natl. Acad. Sci. U.S.A. 98:2001;8447-8453
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 8447-8453
    • Solinger, J.A.1    Heyer, W.D.2
  • 79
    • 0035853277 scopus 로고    scopus 로고
    • Rad54 protein stimulates heteroduplex DNA formation in the synaptic phase of DNA strand exchange via specific interactions with the presynaptic Rad51 nucleoprotein filament
    • Solinger J.A., Lutz G., Sugiyama T., Kowalczykowski S.C., Heyer W.D. Rad54 protein stimulates heteroduplex DNA formation in the synaptic phase of DNA strand exchange via specific interactions with the presynaptic Rad51 nucleoprotein filament. J. Mol. Biol. 307:2001;1207-1221
    • (2001) J. Mol. Biol. , vol.307 , pp. 1207-1221
    • Solinger, J.A.1    Lutz, G.2    Sugiyama, T.3    Kowalczykowski, S.C.4    Heyer, W.D.5
  • 80
    • 0038095217 scopus 로고    scopus 로고
    • Rad54, a Jack of all trades in homologous recombination
    • Tan T.L., Kanaar R., Wyman C. Rad54, a Jack of all trades in homologous recombination. DNA Rep. (Amst.). 2:2003;787-794
    • (2003) DNA Rep. (Amst.) , vol.2 , pp. 787-794
    • Tan, T.L.1    Kanaar, R.2    Wyman, C.3
  • 81
    • 0033635247 scopus 로고    scopus 로고
    • Superhelicity-driven homologous DNA pairing by yeast recombination factors Rad51 and Rad54
    • Van Komen S., Petukhova G., Sigurdsson S., Stratton S., Sung P. Superhelicity-driven homologous DNA pairing by yeast recombination factors Rad51 and Rad54. Mol. Cell. 6:2000;563-572
    • (2000) Mol. Cell , vol.6 , pp. 563-572
    • Van Komen, S.1    Petukhova, G.2    Sigurdsson, S.3    Stratton, S.4    Sung, P.5
  • 82
    • 0037113947 scopus 로고    scopus 로고
    • Functional cross-talk among Rad51, Rad54, and replication protein a in heteroduplex DNA joint formation
    • Van Komen S., Petukhova G., Sigurdsson S., Sung P. Functional cross-talk among Rad51, Rad54, and replication protein A in heteroduplex DNA joint formation. J. Biol. Chem. 277:2002;43578-43587
    • (2002) J. Biol. Chem. , vol.277 , pp. 43578-43587
    • Van Komen, S.1    Petukhova, G.2    Sigurdsson, S.3    Sung, P.4
  • 83
    • 0033858055 scopus 로고    scopus 로고
    • Rfc5, in cooperation with rad24, controls DNA damage checkpoints throughout the cell cycle in Saccharomyces cerevisiae
    • Naiki T., Shimomura T., Kondo T., Matsumoto K., Sugimoto K. Rfc5, in cooperation with rad24, controls DNA damage checkpoints throughout the cell cycle in Saccharomyces cerevisiae. Mol. Cell Biol. 20:2000;5888-5896
    • (2000) Mol. Cell Biol. , vol.20 , pp. 5888-5896
    • Naiki, T.1    Shimomura, T.2    Kondo, T.3    Matsumoto, K.4    Sugimoto, K.5
  • 84
    • 0034235463 scopus 로고    scopus 로고
    • Structure-based predictions of Rad1, Rad9, Hus1 and Rad17 participation in sliding clamp and clamp-loading complexes
    • Venclovas C., Thelen M.P. Structure-based predictions of Rad1, Rad9, Hus1 and Rad17 participation in sliding clamp and clamp-loading complexes. Nucleic Acids Res. 28:2000;2481-2493
    • (2000) Nucleic Acids Res. , vol.28 , pp. 2481-2493
    • Venclovas, C.1    Thelen, M.P.2
  • 85
    • 0036786470 scopus 로고    scopus 로고
    • Molecular modeling-based analysis of interactions in the RFC-dependent clamp-loading process
    • Venclovas C., Colvin M.E., Thelen M.P. Molecular modeling-based analysis of interactions in the RFC-dependent clamp-loading process. Protein Sci. 11:2002;2403-2416
    • (2002) Protein Sci. , vol.11 , pp. 2403-2416
    • Venclovas, C.1    Colvin, M.E.2    Thelen, M.P.3
  • 86
    • 0033965418 scopus 로고    scopus 로고
    • A novel Rad24 checkpoint protein complex closely related to replication factor C
    • Green C.M., Erdjument-Bromage H., Tempst P., Lowndes N.F. A novel Rad24 checkpoint protein complex closely related to replication factor C. Curr. Biol. 10:2000;39-42
    • (2000) Curr. Biol. , vol.10 , pp. 39-42
    • Green, C.M.1    Erdjument-Bromage, H.2    Tempst, P.3    Lowndes, N.F.4
  • 87
    • 4243156107 scopus 로고    scopus 로고
    • Biochemical characterization of DNA damage checkpoint complexes: Clamp-loader and clamp complexes with specificity for 5′ recessed DNA
    • Ellison V., Stillman B. Biochemical characterization of DNA damage checkpoint complexes: clamp-loader and clamp complexes with specificity for 5′ recessed DNA. PLoS Biol. 1:2003;E33
    • (2003) PLoS Biol. , vol.1 , pp. 33
    • Ellison, V.1    Stillman, B.2
  • 89
    • 0034677809 scopus 로고    scopus 로고
    • Human DNA damage checkpoint protein hRAD9 is a 3′ to 5′ exonuclease
    • Bessho T., Sancar A. Human DNA damage checkpoint protein hRAD9 is a 3′ to 5′ exonuclease. J. Biol. Chem. 275:2000;7451-7454
    • (2000) J. Biol. Chem. , vol.275 , pp. 7451-7454
    • Bessho, T.1    Sancar, A.2
  • 90
    • 1242351988 scopus 로고    scopus 로고
    • A domain of Rad9 specifically required for activation of Chk1 in budding yeast
    • Blankley R.T., Lydall D. A domain of Rad9 specifically required for activation of Chk1 in budding yeast. J. Cell. Sci. 117:2004;601-608
    • (2004) J. Cell. Sci. , vol.117 , pp. 601-608
    • Blankley, R.T.1    Lydall, D.2
  • 91
    • 0036281710 scopus 로고    scopus 로고
    • Rad9 phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint
    • Schwartz M.F., Duong J.K., Sun Z., Morrow J.S., Pradhan D., Stern D.F. Rad9 phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint. Mol. Cell. 9:2002;1055-1065
    • (2002) Mol. Cell , vol.9 , pp. 1055-1065
    • Schwartz, M.F.1    Duong, J.K.2    Sun, Z.3    Morrow, J.S.4    Pradhan, D.5    Stern, D.F.6
  • 92
    • 0034881760 scopus 로고    scopus 로고
    • Budding yeast Rad9 is an ATP-dependent Rad53 activating machine
    • Gilbert C.S., Green C.M., Lowndes N.F. Budding yeast Rad9 is an ATP-dependent Rad53 activating machine. Mol. Cell. 8:2001;129-136
    • (2001) Mol. Cell , vol.8 , pp. 129-136
    • Gilbert, C.S.1    Green, C.M.2    Lowndes, N.F.3
  • 94
    • 0036682516 scopus 로고    scopus 로고
    • EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants
    • Maringele L., Lydall D. EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants. Genes Dev. 16:2002;1919-1933
    • (2002) Genes Dev. , vol.16 , pp. 1919-1933
    • Maringele, L.1    Lydall, D.2
  • 95
    • 0028827312 scopus 로고
    • The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species
    • Savitsky K., Sfez S., Tagle D.A., Ziv Y., Sartiel A., Collins F.S., Shiloh Y., Rotman G. The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species. Hum. Mol. Genet. 4:1995;2025-2032
    • (1995) Hum. Mol. Genet. , vol.4 , pp. 2025-2032
    • Savitsky, K.1    Sfez, S.2    Tagle, D.A.3    Ziv, Y.4    Sartiel, A.5    Collins, F.S.6    Shiloh, Y.7    Rotman, G.8
  • 96
    • 0037365789 scopus 로고    scopus 로고
    • ATM and related protein kinases: Safeguarding genome integrity
    • Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat. Rev. Cancer. 3:2003;155-168
    • (2003) Nat. Rev. Cancer , vol.3 , pp. 155-168
    • Shiloh, Y.1
  • 97
    • 0034102337 scopus 로고    scopus 로고
    • ATR disruption leads to chromosomal fragmentation and early embryonic lethality
    • Brown E.J., Baltimore D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 14:2000;397-402
    • (2000) Genes Dev. , vol.14 , pp. 397-402
    • Brown, E.J.1    Baltimore, D.2
  • 99
    • 0036531901 scopus 로고    scopus 로고
    • A unified view of the DNA-damage checkpoint
    • Melo J., Toczyski D. A unified view of the DNA-damage checkpoint. Curr. Opin. Cell Biol. 14:2002;237-245
    • (2002) Curr. Opin. Cell Biol. , vol.14 , pp. 237-245
    • Melo, J.1    Toczyski, D.2
  • 100
    • 0036241880 scopus 로고    scopus 로고
    • Lcd1p recruits Mec1p to DNA lesions in vitro and in vivo
    • Rouse J., Jackson S.P. Lcd1p recruits Mec1p to DNA lesions in vitro and in vivo. Mol. Cell. 9:2002;857-869
    • (2002) Mol. Cell , vol.9 , pp. 857-869
    • Rouse, J.1    Jackson, S.P.2
  • 101
    • 0035019655 scopus 로고    scopus 로고
    • Characterization of mec1 kinase-deficient mutants and of new hypomorphic mec1 alleles impairing subsets of the DNA damage response pathway
    • Paciotti V., Clerici M., Scotti M., Lucchini G., Longhese M.P. Characterization of mec1 kinase-deficient mutants and of new hypomorphic mec1 alleles impairing subsets of the DNA damage response pathway. Mol. Cell Biol. 21:2001;3913-3925
    • (2001) Mol. Cell Biol. , vol.21 , pp. 3913-3925
    • Paciotti, V.1    Clerici, M.2    Scotti, M.3    Lucchini, G.4    Longhese, M.P.5
  • 102
    • 0035955398 scopus 로고    scopus 로고
    • Recruitment of Mec1 and Ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms
    • Kondo T., Wakayama T., Naiki T., Matsumoto K., Sugimoto K. Recruitment of Mec1 and Ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms. Science. 294:2001;867-870
    • (2001) Science , vol.294 , pp. 867-870
    • Kondo, T.1    Wakayama, T.2    Naiki, T.3    Matsumoto, K.4    Sugimoto, K.5
  • 103
    • 0037080675 scopus 로고    scopus 로고
    • Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin
    • Zou L., Cortez D., Elledge S.J. Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dev. 16:2002;198-208
    • (2002) Genes Dev. , vol.16 , pp. 198-208
    • Zou, L.1    Cortez, D.2    Elledge, S.J.3
  • 104
    • 0000393532 scopus 로고
    • Identification of yeast mutants with altered telomere structure
    • Lustig A.J., Petes T.D. Identification of yeast mutants with altered telomere structure. Proc. Natl. Acad. Sci. U.S.A. 83:1986;1398-1402
    • (1986) Proc. Natl. Acad. Sci. U.S.A. , vol.83 , pp. 1398-1402
    • Lustig, A.J.1    Petes, T.D.2
  • 105
    • 0029150855 scopus 로고
    • TEL1, an S. cerevisiae homolog of the human gene mutated in ataxia telangiectasia, is functionally related to the yeast checkpoint gene MEC1
    • Morrow D.M., Tagle D.A., Shiloh Y., Collins F.S., Hieter P. TEL1, an S. cerevisiae homolog of the human gene mutated in ataxia telangiectasia, is functionally related to the yeast checkpoint gene MEC1. Cell. 82:1995;831-840
    • (1995) Cell , vol.82 , pp. 831-840
    • Morrow, D.M.1    Tagle, D.A.2    Shiloh, Y.3    Collins, F.S.4    Hieter, P.5
  • 106
    • 0030593033 scopus 로고    scopus 로고
    • Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways
    • Sanchez Y., Desany B.A., Jones W.J., Liu Q., Wang B., Elledge S.J. Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science. 271:1996;357-360
    • (1996) Science , vol.271 , pp. 357-360
    • Sanchez, Y.1    Desany, B.A.2    Jones, W.J.3    Liu, Q.4    Wang, B.5    Elledge, S.J.6
  • 107
    • 0037443879 scopus 로고    scopus 로고
    • The ATM-related Tel1 protein of Saccharomyces cerevisiae controls a checkpoint response following phleomycin treatment
    • Nakada D., Shimomura T., Matsumoto K., Sugimoto K. The ATM-related Tel1 protein of Saccharomyces cerevisiae controls a checkpoint response following phleomycin treatment. Nucleic Acids Res. 31:2003;1715-1724
    • (2003) Nucleic Acids Res. , vol.31 , pp. 1715-1724
    • Nakada, D.1    Shimomura, T.2    Matsumoto, K.3    Sugimoto, K.4
  • 108
    • 0037716757 scopus 로고    scopus 로고
    • Telomerase and ATM/Tel1p protect telomeres from nonhomologous end joining
    • Chan S.W., Blackburn E.H. Telomerase and ATM/Tel1p protect telomeres from nonhomologous end joining. Mol. Cell. 11:2003;1379-1387
    • (2003) Mol. Cell , vol.11 , pp. 1379-1387
    • Chan, S.W.1    Blackburn, E.H.2
  • 110
    • 0344413637 scopus 로고    scopus 로고
    • Role of the error-free damage bypass postreplication repair pathway in the maintenance of genomic stability
    • Smirnova M., Klein H.L. Role of the error-free damage bypass postreplication repair pathway in the maintenance of genomic stability. Mutat. Res. 532:2003;117-135
    • (2003) Mutat. Res. , vol.532 , pp. 117-135
    • Smirnova, M.1    Klein, H.L.2
  • 111
    • 0027465864 scopus 로고
    • Purification and characterization of the SRS2 DNA helicase of the yeast Saccharomyces cerevisiae
    • Rong L., Klein H.L. Purification and characterization of the SRS2 DNA helicase of the yeast Saccharomyces cerevisiae. J. Biol. Chem. 268:1993;1252-1259
    • (1993) J. Biol. Chem. , vol.268 , pp. 1252-1259
    • Rong, L.1    Klein, H.L.2
  • 112
    • 0032540283 scopus 로고    scopus 로고
    • Purification and characterization of the Sgs1 DNA helicase activity of Saccharomyces cerevisiae
    • Bennett R.J., Sharp J.A., Wang J.C. Purification and characterization of the Sgs1 DNA helicase activity of Saccharomyces cerevisiae. J. Biol. Chem. 273:1998;9644-9650
    • (1998) J. Biol. Chem. , vol.273 , pp. 9644-9650
    • Bennett, R.J.1    Sharp, J.A.2    Wang, J.C.3
  • 113
    • 0035949560 scopus 로고    scopus 로고
    • Association of yeast DNA topoisomerase III and Sgs1 DNA helicase: Studies of fusion proteins
    • Bennett R.J., Wang J.C. Association of yeast DNA topoisomerase III and Sgs1 DNA helicase: studies of fusion proteins. Proc. Natl. Acad. Sci. U.S.A. 98:2001;11108-11113
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 11108-11113
    • Bennett, R.J.1    Wang, J.C.2
  • 114
    • 0033523001 scopus 로고    scopus 로고
    • Binding specificity determines polarity of DNA unwinding by the Sgs1 protein of S. cerevisiae
    • Bennett R.J., Keck J.L., Wang J.C. Binding specificity determines polarity of DNA unwinding by the Sgs1 protein of S. cerevisiae. J. Mol. Biol. 289:1999;235-248
    • (1999) J. Mol. Biol. , vol.289 , pp. 235-248
    • Bennett, R.J.1    Keck, J.L.2    Wang, J.C.3
  • 115
    • 0242666387 scopus 로고    scopus 로고
    • ATPase and DNA helicase activities of the Saccharomyces cerevisiae anti-recombinase Srs2
    • Van Komen S., Reddy M.S., Krejci L., Klein H., Sung P. ATPase and DNA helicase activities of the Saccharomyces cerevisiae anti-recombinase Srs2. J. Biol. Chem. 278:2003;44331-44337
    • (2003) J. Biol. Chem. , vol.278 , pp. 44331-44337
    • Van Komen, S.1    Reddy, M.S.2    Krejci, L.3    Klein, H.4    Sung, P.5
  • 116
    • 0344835671 scopus 로고    scopus 로고
    • The yeast Sgs1 helicase is differentially required for genomic and ribosomal DNA replication
    • Versini G., Comet I., Wu M., Hoopes L., Schwob E., Pasero P. The yeast Sgs1 helicase is differentially required for genomic and ribosomal DNA replication. EMBO J. 22:2003;1939-1949
    • (2003) EMBO J. , vol.22 , pp. 1939-1949
    • Versini, G.1    Comet, I.2    Wu, M.3    Hoopes, L.4    Schwob, E.5    Pasero, P.6
  • 117
    • 0037168658 scopus 로고    scopus 로고
    • Alternate pathways involving Sgs1/Top3, Mus81/ Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication
    • Fabre F., Chan A., Heyer W.D., Gangloff S. Alternate pathways involving Sgs1/Top3, Mus81/ Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication. Proc. Natl. Acad. Sci. U.S.A. 99:2002;16887-16892
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 16887-16892
    • Fabre, F.1    Chan, A.2    Heyer, W.D.3    Gangloff, S.4
  • 118
    • 0034119866 scopus 로고    scopus 로고
    • Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases
    • www.taf/DynaPage.taf?file=/ng/journal/v0625/n0602/abs/ng0600_0192.html.
    • S. Gangloff, C. Soustelle, F. Fabre, Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases, Nat. Genet. 25 (2000) 192-194, available at: www.taf/DynaPage.taf?file=/ng/journal/ v125/n192/full/ng0600_0192.html and www.taf/DynaPage.taf?file=/ng/journal/v0625/ n0602/abs/ng0600_0192.html.
    • (2000) Nat. Genet. , vol.25 , pp. 192-194
    • Gangloff, S.1    Soustelle, C.2    Fabre, F.3
  • 119
    • 0036493247 scopus 로고    scopus 로고
    • SGS1 is a multicopy suppressor of srs2: Functional overlap between DNA helicases
    • Mankouri H.W., Craig T.J., Morgan A. SGS1 is a multicopy suppressor of srs2: functional overlap between DNA helicases. Nucleic Acids Res. 30:2002;1103-1113
    • (2002) Nucleic Acids Res. , vol.30 , pp. 1103-1113
    • Mankouri, H.W.1    Craig, T.J.2    Morgan, A.3
  • 120
    • 0035108094 scopus 로고    scopus 로고
    • Mutations in recombinational repair and in checkpoint control genes suppress the lethal combination of srs2Delta with other DNA repair genes in Saccharomyces cerevisiae
    • Klein H.L. Mutations in recombinational repair and in checkpoint control genes suppress the lethal combination of srs2Delta with other DNA repair genes in Saccharomyces cerevisiae. Genetics. 157:2001;557-565
    • (2001) Genetics , vol.157 , pp. 557-565
    • Klein, H.L.1
  • 121
    • 0024058351 scopus 로고
    • Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations
    • Aguilera A., Klein H.L. Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations. Genetics. 119:1988;779-790
    • (1988) Genetics , vol.119 , pp. 779-790
    • Aguilera, A.1    Klein, H.L.2
  • 122
    • 0024445751 scopus 로고
    • RADH, a gene of Saccharomyces cerevisiae encoding a putative DNA helicase involved in DNA repair. Characteristics of radH mutants and sequence of the gene
    • Aboussekhra A., Chanet R., Zgaga Z., Cassier-Chauvat C., Heude M., Fabre F. RADH, a gene of Saccharomyces cerevisiae encoding a putative DNA helicase involved in DNA repair. Characteristics of radH mutants and sequence of the gene. Nucleic Acids Res. 17:1989;7211-7219
    • (1989) Nucleic Acids Res. , vol.17 , pp. 7211-7219
    • Aboussekhra, A.1    Chanet, R.2    Zgaga, Z.3    Cassier-Chauvat, C.4    Heude, M.5    Fabre, F.6
  • 123
    • 0029772319 scopus 로고    scopus 로고
    • Semidominant mutations in the yeast Rad51 protein and their relationships with the Srs2 helicase
    • Chanet R., Heude M., Adjiri A., Maloisel L., Fabre F. Semidominant mutations in the yeast Rad51 protein and their relationships with the Srs2 helicase. Mol. Cell Biol. 16:1996;4782-4789
    • (1996) Mol. Cell Biol. , vol.16 , pp. 4782-4789
    • Chanet, R.1    Heude, M.2    Adjiri, A.3    Maloisel, L.4    Fabre, F.5
  • 124
    • 0029348565 scopus 로고
    • The complexity of the interaction between RAD52 and SRS2
    • Kaytor M.D., Nguyen M., Livingston D.M. The complexity of the interaction between RAD52 and SRS2. Genetics. 140:1995;1441-1442
    • (1995) Genetics , vol.140 , pp. 1441-1442
    • Kaytor, M.D.1    Nguyen, M.2    Livingston, D.M.3
  • 125
    • 0028948126 scopus 로고
    • Modulation of Saccharomyces cerevisiae DNA double-strand break repair by SRS2 and RAD51
    • Milne G.T., Ho T., Weaver D.T. Modulation of Saccharomyces cerevisiae DNA double-strand break repair by SRS2 and RAD51. Genetics. 139:1995;1189-1199
    • (1995) Genetics , vol.139 , pp. 1189-1199
    • Milne, G.T.1    Ho, T.2    Weaver, D.T.3
  • 126
    • 0028946208 scopus 로고
    • Suppression of a new allele of the yeast RAD52 gene by overexpression of RAD51, mutations in srs2 and ccr4, or mating-type heterozygosity
    • Schild D. Suppression of a new allele of the yeast RAD52 gene by overexpression of RAD51, mutations in srs2 and ccr4, or mating-type heterozygosity. Genetics. 140:1995;115-127
    • (1995) Genetics , vol.140 , pp. 115-127
    • Schild, D.1
  • 127
    • 0037673943 scopus 로고    scopus 로고
    • The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments
    • Veaute X., Jeusset J., Soustelle C., Kowalczykowski S.C., Le Cam E., Fabre F. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature. 423:2003;309-312
    • (2003) Nature , vol.423 , pp. 309-312
    • Veaute, X.1    Jeusset, J.2    Soustelle, C.3    Kowalczykowski, S.C.4    Le Cam, E.5    Fabre, F.6
  • 129
    • 0029144279 scopus 로고
    • Regulation of the Saccharomyces cerevisiae Srs2 helicase during the mitotic cell cycle, meiosis and after irradiation
    • Heude M., Chanet R., Fabre F. Regulation of the Saccharomyces cerevisiae Srs2 helicase during the mitotic cell cycle, meiosis and after irradiation. Mol. Gen. Genet. 248:1995;59-68
    • (1995) Mol. Gen. Genet. , vol.248 , pp. 59-68
    • Heude, M.1    Chanet, R.2    Fabre, F.3
  • 130
    • 0037090484 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae MGS1 is essential in strains deficient in the RAD6-dependent DNA damage tolerance pathway
    • Hishida T., Ohno T., Iwasaki H., Shinagawa H. Saccharomyces cerevisiae MGS1 is essential in strains deficient in the RAD6-dependent DNA damage tolerance pathway. EMBO J. 21:2002;2019-2029
    • (2002) EMBO J. , vol.21 , pp. 2019-2029
    • Hishida, T.1    Ohno, T.2    Iwasaki, H.3    Shinagawa, H.4
  • 131
    • 0035902479 scopus 로고    scopus 로고
    • A yeast gene, MGS1, encoding a DNA-dependent AAA(+) ATPase is required to maintain genome stability
    • Hishida T., Iwasaki H., Ohno T., Morishita T., Shinagawa H. A yeast gene, MGS1, encoding a DNA-dependent AAA(+) ATPase is required to maintain genome stability. Proc. Natl. Acad. Sci. U.S.A. 98:2001;8283-8289
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 8283-8289
    • Hishida, T.1    Iwasaki, H.2    Ohno, T.3    Morishita, T.4    Shinagawa, H.5
  • 132
    • 0036435686 scopus 로고    scopus 로고
    • The product of Saccharomyces cerevisiae WHIP/MGS1, a gene related to replication factor C genes, interacts functionally with DNA polymerase delta
    • Branzei D., Seki M., Onoda F., Enomoto T. The product of Saccharomyces cerevisiae WHIP/MGS1, a gene related to replication factor C genes, interacts functionally with DNA polymerase delta. Mol. Genet. Genom. 268:2002;371-386
    • (2002) Mol. Genet. Genom. , vol.268 , pp. 371-386
    • Branzei, D.1    Seki, M.2    Onoda, F.3    Enomoto, T.4
  • 133
    • 0037031212 scopus 로고    scopus 로고
    • Characterization of the slow-growth phenotype of S. cerevisiae Whip/Mgs1 Sgs1 double deletion mutants
    • Branzei D., Seki M., Onoda F., Yagi H., Kawabe Y., Enomoto T. Characterization of the slow-growth phenotype of S. cerevisiae Whip/Mgs1 Sgs1 double deletion mutants. DNA Rep. (Amst.). 1:2002;671-682
    • (2002) DNA Rep. (Amst.) , vol.1 , pp. 671-682
    • Branzei, D.1    Seki, M.2    Onoda, F.3    Yagi, H.4    Kawabe, Y.5    Enomoto, T.6
  • 134
    • 0038700698 scopus 로고    scopus 로고
    • Molecular views of recombination proteins and their control
    • West S.C. Molecular views of recombination proteins and their control. Nat. Rev. Mol. Cell Biol. 4:2003;435-445
    • (2003) Nat. Rev. Mol. Cell Biol. , vol.4 , pp. 435-445
    • West, S.C.1
  • 135
    • 0035148955 scopus 로고    scopus 로고
    • Requirement for three novel protein complexes in the absence of the Sgs1 DNA helicase in Saccharomyces cerevisiae
    • Mullen J.R., Kaliraman V., Ibrahim S.S., Brill S.J. Requirement for three novel protein complexes in the absence of the Sgs1 DNA helicase in Saccharomyces cerevisiae. Genetics. 157:2001;103-118
    • (2001) Genetics , vol.157 , pp. 103-118
    • Mullen, J.R.1    Kaliraman, V.2    Ibrahim, S.S.3    Brill, S.J.4
  • 136
    • 0034733497 scopus 로고    scopus 로고
    • Tying up loose ends: Nonhomologous end-joining in Saccharomyces cerevisiae
    • Lewis L.K., Resnick M.A. Tying up loose ends: nonhomologous end-joining in Saccharomyces cerevisiae. Mutat. Res. 451:2000;71-89
    • (2000) Mutat. Res. , vol.451 , pp. 71-89
    • Lewis, L.K.1    Resnick, M.A.2
  • 137
    • 0141868298 scopus 로고    scopus 로고
    • The Ku heterodimer performs separable activities at double-strand breaks and chromosome termini
    • Bertuch A.A., Lundblad V. The Ku heterodimer performs separable activities at double-strand breaks and chromosome termini. Mol. Cell Biol. 23:2003;8202-8215
    • (2003) Mol. Cell Biol. , vol.23 , pp. 8202-8215
    • Bertuch, A.A.1    Lundblad, V.2
  • 138
    • 0029954821 scopus 로고    scopus 로고
    • Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae
    • Milne G.T., Jin S., Shannon K.B., Weaver D.T. Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Mol. Cell Biol. 16:1996;4189-4198
    • (1996) Mol. Cell Biol. , vol.16 , pp. 4189-4198
    • Milne, G.T.1    Jin, S.2    Shannon, K.B.3    Weaver, D.T.4
  • 139
    • 0032536861 scopus 로고    scopus 로고
    • Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing
    • Boulton S.J., Jackson S.P. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17:1998;1819-1828
    • (1998) EMBO J. , vol.17 , pp. 1819-1828
    • Boulton, S.J.1    Jackson, S.P.2
  • 140
    • 0032076127 scopus 로고    scopus 로고
    • Yeast Ku as a regulator of chromosomal DNA end structure
    • Gravel S., Larrivee M., Labrecque P., Wellinger R.J. Yeast Ku as a regulator of chromosomal DNA end structure. Science. 280:1998;741-744
    • (1998) Science , vol.280 , pp. 741-744
    • Gravel, S.1    Larrivee, M.2    Labrecque, P.3    Wellinger, R.J.4
  • 141
    • 0033612287 scopus 로고    scopus 로고
    • Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast
    • Martin S.G., Laroche T., Suka N., Grunstein M., Gasser S.M. Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell. 97:1999;621-633
    • (1999) Cell , vol.97 , pp. 621-633
    • Martin, S.G.1    Laroche, T.2    Suka, N.3    Grunstein, M.4    Gasser, S.M.5
  • 142
    • 0035833552 scopus 로고    scopus 로고
    • Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair
    • Walker J.R., Corpina R.A., Goldberg J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature. 412:2001;607-614
    • (2001) Nature , vol.412 , pp. 607-614
    • Walker, J.R.1    Corpina, R.A.2    Goldberg, J.3
  • 143
    • 0030907318 scopus 로고    scopus 로고
    • Ku proteins join DNA fragments as shown by atomic force microscopy
    • Pang D., Yoo S., Dynan W.S., Jung M., Dritschilo A. Ku proteins join DNA fragments as shown by atomic force microscopy. Cancer Res. 57:1997;1412-1415
    • (1997) Cancer Res. , vol.57 , pp. 1412-1415
    • Pang, D.1    Yoo, S.2    Dynan, W.S.3    Jung, M.4    Dritschilo, A.5
  • 144
    • 0034234487 scopus 로고    scopus 로고
    • DNA double-strand break repair in cell-free extracts from Ku80-deficient cells: Implications for Ku serving as an alignment factor in non-homologous DNA end joining
    • Feldmann E., Schmiemann V., Goedecke W., Reichenberger S., Pfeiffer P. DNA double-strand break repair in cell-free extracts from Ku80-deficient cells: implications for Ku serving as an alignment factor in non-homologous DNA end joining. Nucleic Acids Res. 28:2000;2585-2596
    • (2000) Nucleic Acids Res. , vol.28 , pp. 2585-2596
    • Feldmann, E.1    Schmiemann, V.2    Goedecke, W.3    Reichenberger, S.4    Pfeiffer, P.5
  • 146
    • 0035930342 scopus 로고    scopus 로고
    • Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes
    • Chen L., Trujillo K., Ramos W., Sung P., Tomkinson A.E. Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes. Mol. Cell. 8:2001;1105-1115
    • (2001) Mol. Cell , vol.8 , pp. 1105-1115
    • Chen, L.1    Trujillo, K.2    Ramos, W.3    Sung, P.4    Tomkinson, A.E.5
  • 149
    • 0031939411 scopus 로고    scopus 로고
    • The XRCC4 gene product is a target for and interacts with the DNA-dependent protein kinase
    • Leber R., Wise T.W., Mizuta R., Meek K. The XRCC4 gene product is a target for and interacts with the DNA-dependent protein kinase. J. Biol. Chem. 273:1998;1794-1801
    • (1998) J. Biol. Chem. , vol.273 , pp. 1794-1801
    • Leber, R.1    Wise, T.W.2    Mizuta, R.3    Meek, K.4
  • 150
    • 0035577796 scopus 로고    scopus 로고
    • Replication protein A2 phosphorylation after DNA damage by the coordinated action of ataxia telangiectasia-mutated and DNA-dependent protein kinase
    • Wang H., Guan J., Perrault A.R., Wang Y., Iliakis G. Replication protein A2 phosphorylation after DNA damage by the coordinated action of ataxia telangiectasia-mutated and DNA-dependent protein kinase. Cancer Res. 61:2001;8554-8563
    • (2001) Cancer Res. , vol.61 , pp. 8554-8563
    • Wang, H.1    Guan, J.2    Perrault, A.R.3    Wang, Y.4    Iliakis, G.5
  • 151
    • 0034711476 scopus 로고    scopus 로고
    • DUN1 defines one branch downstream of RAD53 for transcription and DNA damage repair in Saccharomyces cerevisiae
    • de la Torre Ruiz M.A., Lowndes N.F. DUN1 defines one branch downstream of RAD53 for transcription and DNA damage repair in Saccharomyces cerevisiae. FEBS Lett. 485:2000;205-206
    • (2000) FEBS Lett. , vol.485 , pp. 205-206
    • De La Torre Ruiz, M.A.1    Lowndes, N.F.2
  • 153
    • 0029585872 scopus 로고
    • The XRCC4 gene encodes a novel protein involved in DNA double-strand break repair and V(D)J recombination
    • Li Z., Otevrel T., Gao Y., Cheng H.L., Seed B., Stamato T.D., Taccioli G.E., Alt F.W. The XRCC4 gene encodes a novel protein involved in DNA double-strand break repair and V(D)J recombination. Cell. 83:1995;1079-1089
    • (1995) Cell , vol.83 , pp. 1079-1089
    • Li, Z.1    Otevrel, T.2    Gao, Y.3    Cheng, H.L.4    Seed, B.5    Stamato, T.D.6    Taccioli, G.E.7    Alt, F.W.8
  • 154
    • 0030743386 scopus 로고    scopus 로고
    • Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells
    • Grawunder U., Wilm M., Wu X., Kulesza P., Wilson T.E., Mann M., Lieber M.R. Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature. 388:1997;492-495
    • (1997) Nature , vol.388 , pp. 492-495
    • Grawunder, U.1    Wilm, M.2    Wu, X.3    Kulesza, P.4    Wilson, T.E.5    Mann, M.6    Lieber, M.R.7
  • 155
    • 0032528066 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae LIF1: A function involved in DNA double-strand break repair related to mammalian XRCC4
    • Herrmann G., Lindahl T., Schar P. Saccharomyces cerevisiae LIF1: a function involved in DNA double-strand break repair related to mammalian XRCC4. EMBO J. 17:1998;4188-4198
    • (1998) EMBO J. , vol.17 , pp. 4188-4198
    • Herrmann, G.1    Lindahl, T.2    Schar, P.3
  • 156
    • 0034628617 scopus 로고    scopus 로고
    • Lif1p targets the DNA ligase Lig4p to sites of DNA double-strand breaks
    • Teo S.H., Jackson S.P. Lif1p targets the DNA ligase Lig4p to sites of DNA double-strand breaks. Curr. Biol. 10:2000;165-168
    • (2000) Curr. Biol. , vol.10 , pp. 165-168
    • Teo, S.H.1    Jackson, S.P.2
  • 157
    • 0038054459 scopus 로고    scopus 로고
    • NEJ1 prevents NHEJ-dependent telomere fusions in yeast without telomerase
    • Liti G., Louis E.J. NEJ1 prevents NHEJ-dependent telomere fusions in yeast without telomerase. Mol. Cell. 11:2003;1373-1378
    • (2003) Mol. Cell , vol.11 , pp. 1373-1378
    • Liti, G.1    Louis, E.J.2
  • 158
    • 0036682830 scopus 로고    scopus 로고
    • Tethering on the brink: The evolutionarily conserved Mre11-Rad50 complex
    • Connelly J.C., Leach D.R. Tethering on the brink: the evolutionarily conserved Mre11-Rad50 complex. Trends Biochem. Sci. 27:2002;410-418
    • (2002) Trends Biochem. Sci. , vol.27 , pp. 410-418
    • Connelly, J.C.1    Leach, D.R.2
  • 159
    • 0032721091 scopus 로고    scopus 로고
    • The Mre11-Rad50-Xrs2 protein complex facilitates homologous recombination-based double-strand break repair in Saccharomyces cerevisiae
    • Bressan D.A., Baxter B.K., Petrini J.H. The Mre11-Rad50-Xrs2 protein complex facilitates homologous recombination-based double-strand break repair in Saccharomyces cerevisiae. Mol. Cell Biol. 19:1999;7681-7687
    • (1999) Mol. Cell Biol. , vol.19 , pp. 7681-7687
    • Bressan, D.A.1    Baxter, B.K.2    Petrini, J.H.3
  • 160
    • 0021347481 scopus 로고
    • Cloning and mapping of the RAD50 gene of Saccharomyces cerevisiae
    • Kupiec M., Simchen G. Cloning and mapping of the RAD50 gene of Saccharomyces cerevisiae. Mol. Gen. Genet. 193:1984;525-531
    • (1984) Mol. Gen. Genet. , vol.193 , pp. 525-531
    • Kupiec, M.1    Simchen, G.2
  • 161
    • 0032076248 scopus 로고    scopus 로고
    • The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: Linkage of double-strand break repair to the cellular DNA damage response
    • Carney J.P., Maser R.S., Olivares H., Davis E.M., Le Beau M., Yates J.R. III, Hays L., Morgan W.F., Petrini J.H. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell. 93:1998;477-486
    • (1998) Cell , vol.93 , pp. 477-486
    • Carney, J.P.1    Maser, R.S.2    Olivares, H.3    Davis, E.M.4    Le Beau, M.5    Yates III, J.R.6    Hays, L.7    Morgan, W.F.8    Petrini, J.H.9
  • 163
    • 0033759543 scopus 로고    scopus 로고
    • Mre11 and Rad50 from Pyrococcus furiosus: Cloning and biochemical characterization reveal an evolutionarily conserved multiprotein machine
    • Hopfner K.P., Karcher A., Shin D., Fairley C., Tainer J.A., Carney J.P. Mre11 and Rad50 from Pyrococcus furiosus: cloning and biochemical characterization reveal an evolutionarily conserved multiprotein machine. J. Bacteriol. 182:2000;6036-6041
    • (2000) J. Bacteriol. , vol.182 , pp. 6036-6041
    • Hopfner, K.P.1    Karcher, A.2    Shin, D.3    Fairley, C.4    Tainer, J.A.5    Carney, J.P.6
  • 164
    • 0035929667 scopus 로고    scopus 로고
    • DNA structure-specific nuclease activities in the Saccharomyces cerevisiae Rad50*Mre11 complex
    • Trujillo K.M., Sung P. DNA structure-specific nuclease activities in the Saccharomyces cerevisiae Rad50*Mre11 complex. J. Biol. Chem. 276:2001;35458-35464
    • (2001) J. Biol. Chem. , vol.276 , pp. 35458-35464
    • Trujillo, K.M.1    Sung, P.2
  • 165
    • 0035813227 scopus 로고    scopus 로고
    • Structure of the Rad50 × Mre11 DNA repair complex from Saccharomyces cerevisiae by electron microscopy
    • Anderson D.E., Trujillo K.M., Sung P., Erickson H.P. Structure of the Rad50 × Mre11 DNA repair complex from Saccharomyces cerevisiae by electron microscopy. J. Biol. Chem. 276:2001;37027-37033
    • (2001) J. Biol. Chem. , vol.276 , pp. 37027-37033
    • Anderson, D.E.1    Trujillo, K.M.2    Sung, P.3    Erickson, H.P.4
  • 167
    • 0034612307 scopus 로고    scopus 로고
    • A mechanistic basis for Mre11-directed DNA joining at microhomologies
    • Paull T.T., Gellert M. A mechanistic basis for Mre11-directed DNA joining at microhomologies. Proc. Natl. Acad. Sci. U.S.A. 97:2000;6409-6414
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 6409-6414
    • Paull, T.T.1    Gellert, M.2
  • 168
    • 0032085295 scopus 로고    scopus 로고
    • The 3′ to 5′ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks
    • Paull T.T., Gellert M. The 3′ to 5′ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol. Cell. 1:1998;969-979
    • (1998) Mol. Cell , vol.1 , pp. 969-979
    • Paull, T.T.1    Gellert, M.2
  • 170
    • 0029976325 scopus 로고    scopus 로고
    • Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae
    • Moore J.K., Haber J.E. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell Biol. 16:1996;2164-2173
    • (1996) Mol. Cell Biol. , vol.16 , pp. 2164-2173
    • Moore, J.K.1    Haber, J.E.2
  • 171
    • 0033551662 scopus 로고    scopus 로고
    • Efficient processing of DNA ends during yeast nonhomologous end joining. Evidence for a DNA polymerase beta (Pol4)-dependent pathway
    • Wilson T.E., Lieber M.R. Efficient processing of DNA ends during yeast nonhomologous end joining. Evidence for a DNA polymerase beta (Pol4)-dependent pathway. J. Biol. Chem. 274:1999;23599-23609
    • (1999) J. Biol. Chem. , vol.274 , pp. 23599-23609
    • Wilson, T.E.1    Lieber, M.R.2
  • 172
    • 0033574004 scopus 로고    scopus 로고
    • A role for FEN-1 in nonhomologous DNA end joining: The order of strand annealing and nucleolytic processing events
    • Wu X., Wilson T.E., Lieber M.R. A role for FEN-1 in nonhomologous DNA end joining: the order of strand annealing and nucleolytic processing events. Proc. Natl. Acad. Sci. U.S.A. 96:1999;1303-1308
    • (1999) Proc. Natl. Acad. Sci. U.S.A. , vol.96 , pp. 1303-1308
    • Wu, X.1    Wilson, T.E.2    Lieber, M.R.3
  • 173
    • 0032493889 scopus 로고    scopus 로고
    • Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage
    • Lee S.E., Moore J.K., Holmes A., Umezu K., Kolodner R.D., Haber J.E. Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell. 94:1998;399-409
    • (1998) Cell , vol.94 , pp. 399-409
    • Lee, S.E.1    Moore, J.K.2    Holmes, A.3    Umezu, K.4    Kolodner, R.D.5    Haber, J.E.6
  • 174
    • 0036864626 scopus 로고    scopus 로고
    • Transient stability of DNA ends allows nonhomologous end joining to precede homologous recombination
    • Frank-Vaillant M., Marcand S. Transient stability of DNA ends allows nonhomologous end joining to precede homologous recombination. Mol. Cell. 10:2002;1189-1199
    • (2002) Mol. Cell , vol.10 , pp. 1189-1199
    • Frank-Vaillant, M.1    Marcand, S.2
  • 175
    • 0032859119 scopus 로고    scopus 로고
    • Mre11 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis
    • Goedecke W., Eijpe M., Offenberg H.H., van Aalderen M., Heyting C. Mre11 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis. Nat. Genet. 23:1999;194-198
    • (1999) Nat. Genet. , vol.23 , pp. 194-198
    • Goedecke, W.1    Eijpe, M.2    Offenberg, H.H.3    Van Aalderen, M.4    Heyting, C.5
  • 176
    • 0027325816 scopus 로고
    • Cloning of human, mouse and fission yeast recombination genes homologous to RAD51 and recA
    • Shinohara A., Ogawa H., Matsuda Y., Ushio N., Ikeo K., Ogawa T. Cloning of human, mouse and fission yeast recombination genes homologous to RAD51 and recA. Nat. Genet. 4:1993;239-243
    • (1993) Nat. Genet. , vol.4 , pp. 239-243
    • Shinohara, A.1    Ogawa, H.2    Matsuda, Y.3    Ushio, N.4    Ikeo, K.5    Ogawa, T.6
  • 177
    • 0035893363 scopus 로고    scopus 로고
    • Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells
    • Pierce A.J., Hu P., Han M., Ellis N., Jasin M. Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev. 15:2001;3237-3242
    • (2001) Genes Dev. , vol.15 , pp. 3237-3242
    • Pierce, A.J.1    Hu, P.2    Han, M.3    Ellis, N.4    Jasin, M.5
  • 178
    • 0034763064 scopus 로고    scopus 로고
    • Visualization of recombination intermediates produced by RAD52-mediated single-strand annealing
    • Van Dyck E., Stasiak A.Z., Stasiak A., West S.C. Visualization of recombination intermediates produced by RAD52-mediated single-strand annealing. EMBO Rep. 2:2001;905-909
    • (2001) EMBO Rep. , vol.2 , pp. 905-909
    • Van Dyck, E.1    Stasiak, A.Z.2    Stasiak, A.3    West, S.C.4
  • 179
    • 0034951142 scopus 로고    scopus 로고
    • Double-strand-break-induced homologous recombination in mammalian cells
    • Johnson R.D., Jasin M. Double-strand-break-induced homologous recombination in mammalian cells. Biochem. Soc. Trans. 29:2001;196-201
    • (2001) Biochem. Soc. Trans. , vol.29 , pp. 196-201
    • Johnson, R.D.1    Jasin, M.2
  • 180
    • 0029077798 scopus 로고
    • Expression of human RAD52 confers resistance to ionizing radiation in mammalian cells
    • Park M.S. Expression of human RAD52 confers resistance to ionizing radiation in mammalian cells. J. Biol. Chem. 270:1995;15467-15470
    • (1995) J. Biol. Chem. , vol.270 , pp. 15467-15470
    • Park, M.S.1
  • 181
    • 0142025259 scopus 로고    scopus 로고
    • Interactive competition between homologous recombination and non-homologous end joining
    • Allen C., Halbrook J., Nickoloff J.A. Interactive competition between homologous recombination and non-homologous end joining. Mol. Cancer Res. 1:2003;913-920
    • (2003) Mol. Cancer Res. , vol.1 , pp. 913-920
    • Allen, C.1    Halbrook, J.2    Nickoloff, J.A.3
  • 182
    • 0036021357 scopus 로고    scopus 로고
    • Enhancement of Saccharomyces cerevisiae end-joining efficiency by cell growth stage but not by impairment of recombination
    • Karathanasis E., Wilson T.E. Enhancement of Saccharomyces cerevisiae end-joining efficiency by cell growth stage but not by impairment of recombination. Genetics. 161:2002;1015-1027
    • (2002) Genetics , vol.161 , pp. 1015-1027
    • Karathanasis, E.1    Wilson, T.E.2
  • 183
    • 0344012209 scopus 로고    scopus 로고
    • Rad52 and Ku bind to different DNA structures produced early in double-strand break repair
    • Ristic D., Modesti M., Kanaar R., Wyman C. Rad52 and Ku bind to different DNA structures produced early in double-strand break repair. Nucleic Acids Res. 31:2003;5229-5237
    • (2003) Nucleic Acids Res. , vol.31 , pp. 5229-5237
    • Ristic, D.1    Modesti, M.2    Kanaar, R.3    Wyman, C.4
  • 184
    • 0032574750 scopus 로고    scopus 로고
    • Homology-directed repair is a major double-strand break repair pathway in mammalian cells
    • Liang F., Han M., Romanienko P.J., Jasin M. Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 95:1998;5172-5177
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 5172-5177
    • Liang, F.1    Han, M.2    Romanienko, P.J.3    Jasin, M.4
  • 185
    • 0027510457 scopus 로고
    • A/alpha-control of DNA repair in the yeast Saccharomyces cerevisiae: Genetic and physiological aspects
    • Heude M., Fabre F. a/alpha-control of DNA repair in the yeast Saccharomyces cerevisiae: genetic and physiological aspects. Genetics. 133:1993;489-498
    • (1993) Genetics , vol.133 , pp. 489-498
    • Heude, M.1    Fabre, F.2
  • 186
    • 0033046872 scopus 로고    scopus 로고
    • Expression of Saccharomyces cerevisiae MATa and MAT alpha enhances the HO endonuclease-stimulation of chromosomal rearrangements directed by his3 recombinational substrates
    • Fasullo M., Bennett T., Dave P. Expression of Saccharomyces cerevisiae MATa and MAT alpha enhances the HO endonuclease-stimulation of chromosomal rearrangements directed by his3 recombinational substrates. Mutat. Res. 433:1999;33-44
    • (1999) Mutat. Res. , vol.433 , pp. 33-44
    • Fasullo, M.1    Bennett, T.2    Dave, P.3
  • 187
    • 0029076818 scopus 로고
    • Mating-type suppression of the DNA-repair defect of the yeast rad6 delta mutation requires the activity of genes in the RAD52 epistasis group
    • Yan Y.X., Schiestl R.H., Prakash L. Mating-type suppression of the DNA-repair defect of the yeast rad6 delta mutation requires the activity of genes in the RAD52 epistasis group. Curr. Genet. 28:1995;12-18
    • (1995) Curr. Genet. , vol.28 , pp. 12-18
    • Yan, Y.X.1    Schiestl, R.H.2    Prakash, L.3
  • 188
    • 0033565609 scopus 로고    scopus 로고
    • Role of yeast SIR genes and mating type in directing DNA double-strand breaks to homologous and non-homologous repair paths
    • Lee S.E., Paques F., Sylvan J., Haber J.E. Role of yeast SIR genes and mating type in directing DNA double-strand breaks to homologous and non-homologous repair paths. Curr. Biol. 9:1999;767-770
    • (1999) Curr. Biol. , vol.9 , pp. 767-770
    • Lee, S.E.1    Paques, F.2    Sylvan, J.3    Haber, J.E.4
  • 189
    • 0023390512 scopus 로고
    • Characterization of null mutants of the RAD55 gene of Saccharomyces cerevisiae: Effects of temperature, osmotic strength and mating type
    • Lovett S.T., Mortimer R.K. Characterization of null mutants of the RAD55 gene of Saccharomyces cerevisiae: effects of temperature, osmotic strength and mating type. Genetics. 116:1987;547-553
    • (1987) Genetics , vol.116 , pp. 547-553
    • Lovett, S.T.1    Mortimer, R.K.2
  • 190
    • 0043210729 scopus 로고    scopus 로고
    • Telomerase-independent proliferation is influenced by cell type in Saccharomyces cerevisiae
    • Lowell J.E., Roughton A.I., Lundblad V., Pillus L. Telomerase-independent proliferation is influenced by cell type in Saccharomyces cerevisiae. Genetics. 164:2003;909-921
    • (2003) Genetics , vol.164 , pp. 909-921
    • Lowell, J.E.1    Roughton, A.I.2    Lundblad, V.3    Pillus, L.4
  • 191
    • 0035105722 scopus 로고    scopus 로고
    • Homologous recombinational repair of double-strand breaks in yeast is enhanced by MAT heterozygosity through yKU-dependent and -independent mechanisms
    • Clikeman J.A., Khalsa G.J., Barton S.L., Nickoloff J.A. Homologous recombinational repair of double-strand breaks in yeast is enhanced by MAT heterozygosity through yKU-dependent and -independent mechanisms. Genetics. 157:2001;579-589
    • (2001) Genetics , vol.157 , pp. 579-589
    • Clikeman, J.A.1    Khalsa, G.J.2    Barton, S.L.3    Nickoloff, J.A.4
  • 194
    • 0035889233 scopus 로고    scopus 로고
    • NHEJ regulation by mating type is exercised through a novel protein, Lif2p, essential to the ligase IV pathway
    • Frank-Vaillant M., Marcand S. NHEJ regulation by mating type is exercised through a novel protein, Lif2p, essential to the ligase IV pathway. Genes Dev. 15:2001;3005-3012
    • (2001) Genes Dev. , vol.15 , pp. 3005-3012
    • Frank-Vaillant, M.1    Marcand, S.2
  • 195
    • 0035899933 scopus 로고    scopus 로고
    • Nej1p, a cell type-specific regulator of nonhomologous end joining in yeast
    • Kegel A., Sjostrand J.O., Astrom S.U. Nej1p, a cell type-specific regulator of nonhomologous end joining in yeast. Curr. Biol. 11:2001;1611-1617
    • (2001) Curr. Biol. , vol.11 , pp. 1611-1617
    • Kegel, A.1    Sjostrand, J.O.2    Astrom, S.U.3
  • 197
    • 0035930651 scopus 로고    scopus 로고
    • A DNA microarray-based genetic screen for nonhomologous end-joining mutants in Saccharomyces cerevisiae
    • Ooi S.L., Shoemaker D.D., Boeke J.D. A DNA microarray-based genetic screen for nonhomologous end-joining mutants in Saccharomyces cerevisiae. Science. 294:2001;2552-2556
    • (2001) Science , vol.294 , pp. 2552-2556
    • Ooi, S.L.1    Shoemaker, D.D.2    Boeke, J.D.3
  • 198
    • 0037124355 scopus 로고    scopus 로고
    • Mutations in yeast Rad51 that partially bypass the requirement for Rad55 and Rad57 in DNA repair by increasing the stability of Rad51-DNA complexes
    • Fortin G.S., Symington L.S. Mutations in yeast Rad51 that partially bypass the requirement for Rad55 and Rad57 in DNA repair by increasing the stability of Rad51-DNA complexes. EMBO J. 21:2002;3160-3170
    • (2002) EMBO J. , vol.21 , pp. 3160-3170
    • Fortin, G.S.1    Symington, L.S.2
  • 199
    • 0032822543 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae checkpoint genes MEC1, RAD17 and RAD24 are required for normal meiotic recombination partner choice
    • Grushcow J.M., Holzen T.M., Park K.J., Weinert T., Lichten M., Bishop D.K. Saccharomyces cerevisiae checkpoint genes MEC1, RAD17 and RAD24 are required for normal meiotic recombination partner choice. Genetics. 153:1999;607-620
    • (1999) Genetics , vol.153 , pp. 607-620
    • Grushcow, J.M.1    Holzen, T.M.2    Park, K.J.3    Weinert, T.4    Lichten, M.5    Bishop, D.K.6
  • 200
    • 0032820031 scopus 로고    scopus 로고
    • Genetic control of recombination partner preference in yeast meiosis. Isolation and characterization of mutants elevated for meiotic unequal sister-chromatid recombination
    • Thompson D.A., Stahl F.W. Genetic control of recombination partner preference in yeast meiosis. Isolation and characterization of mutants elevated for meiotic unequal sister-chromatid recombination. Genetics. 153:1999;621-641
    • (1999) Genetics , vol.153 , pp. 621-641
    • Thompson, D.A.1    Stahl, F.W.2
  • 201
    • 0026751086 scopus 로고
    • Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins
    • Aboussekhra A., Chanet R., Adjiri A., Fabre F. Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins. Mol. Cell Biol. 12:1992;3224-3234
    • (1992) Mol. Cell Biol. , vol.12 , pp. 3224-3234
    • Aboussekhra, A.1    Chanet, R.2    Adjiri, A.3    Fabre, F.4
  • 202
    • 0027525970 scopus 로고
    • Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 "tail" to DNA
    • Hong L., Schroth G.P., Matthews H.R., Yau P., Bradbury E.M. Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 "tail" to DNA. J. Biol. Chem. 268:1993;305-314
    • (1993) J. Biol. Chem. , vol.268 , pp. 305-314
    • Hong, L.1    Schroth, G.P.2    Matthews, H.R.3    Yau, P.4    Bradbury, E.M.5
  • 204
    • 0036888874 scopus 로고    scopus 로고
    • Histone H3 and the histone acetyltransferase Hat1p contribute to DNA double-strand break repair
    • Qin S., Parthun M.R. Histone H3 and the histone acetyltransferase Hat1p contribute to DNA double-strand break repair. Mol. Cell Biol. 22:2002;8353-8365
    • (2002) Mol. Cell Biol. , vol.22 , pp. 8353-8365
    • Qin, S.1    Parthun, M.R.2
  • 205
    • 1242342224 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Sin3p facilitates DNA double-strand break repair
    • Jazayeri A., McAinsh A.D., Jackson S.P. Saccharomyces cerevisiae Sin3p facilitates DNA double-strand break repair. Proc. Natl. Acad. Sci. U.S.A. 101:2004;1644-1649
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 1644-1649
    • Jazayeri, A.1    McAinsh, A.D.2    Jackson, S.P.3
  • 206
    • 0038383032 scopus 로고    scopus 로고
    • Loss of Sin3/Rpd3 histone deacetylase restores the DNA damage response in checkpoint-deficient strains of Saccharomyces cerevisiae
    • Scott K.L., Plon S.E. Loss of Sin3/Rpd3 histone deacetylase restores the DNA damage response in checkpoint-deficient strains of Saccharomyces cerevisiae. Mol. Cell Biol. 23:2003;4522-4531
    • (2003) Mol. Cell Biol. , vol.23 , pp. 4522-4531
    • Scott, K.L.1    Plon, S.E.2
  • 207
    • 0034700511 scopus 로고    scopus 로고
    • A role for Saccharomyces cerevisiae histone H2A in DNA repair
    • Downs J.A., Lowndes N.F., Jackson S.P. A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature. 408:2000;1001-1004
    • (2000) Nature , vol.408 , pp. 1001-1004
    • Downs, J.A.1    Lowndes, N.F.2    Jackson, S.P.3
  • 208
    • 0035101733 scopus 로고    scopus 로고
    • Dynamic interaction of DNA damage checkpoint protein Rad53 with chromatin assembly factor Asf1
    • Emili A., Schieltz D.M., Yates J.R. III, Hartwell L.H. Dynamic interaction of DNA damage checkpoint protein Rad53 with chromatin assembly factor Asf1. Mol. Cell. 7:2001;13-20
    • (2001) Mol. Cell , vol.7 , pp. 13-20
    • Emili, A.1    Schieltz, D.M.2    Yates III, J.R.3    Hartwell, L.H.4
  • 209
    • 0035336971 scopus 로고    scopus 로고
    • Asf1 links Rad53 to control of chromatin assembly
    • Hu F., Alcasabas A.A., Elledge S.J. Asf1 links Rad53 to control of chromatin assembly. Genes Dev. 15:2001;1061-1066
    • (2001) Genes Dev. , vol.15 , pp. 1061-1066
    • Hu, F.1    Alcasabas, A.A.2    Elledge, S.J.3
  • 210
    • 0035498938 scopus 로고    scopus 로고
    • Two checkpoint complexes are independently recruited to sites of DNA damage in vivo
    • Melo J.A., Cohen J., Toczyski D.P. Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev. 15:2001;2809-2821
    • (2001) Genes Dev. , vol.15 , pp. 2809-2821
    • Melo, J.A.1    Cohen, J.2    Toczyski, D.P.3
  • 211
    • 0035989352 scopus 로고    scopus 로고
    • Overlapping roles of the spindle assembly and DNA damage checkpoints in the cell-cycle response to altered chromosomes in Saccharomyces cerevisiae
    • Garber P.M., Rine J. Overlapping roles of the spindle assembly and DNA damage checkpoints in the cell-cycle response to altered chromosomes in Saccharomyces cerevisiae. Genetics. 161:2002;521-534
    • (2002) Genetics , vol.161 , pp. 521-534
    • Garber, P.M.1    Rine, J.2
  • 212
    • 0037195281 scopus 로고    scopus 로고
    • DNA damage during mitosis in human cells delays the metaphase/anaphase transition via the spindle-assembly checkpoint
    • Mikhailov A., Cole R.W., Rieder C.L. DNA damage during mitosis in human cells delays the metaphase/anaphase transition via the spindle-assembly checkpoint. Curr. Biol. 12:2002;1797-1806
    • (2002) Curr. Biol. , vol.12 , pp. 1797-1806
    • Mikhailov, A.1    Cole, R.W.2    Rieder, C.L.3
  • 214
    • 0030964526 scopus 로고    scopus 로고
    • Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae
    • Tsukamoto Y., Kato J., Ikeda H. Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature. 388:1997;900-903
    • (1997) Nature , vol.388 , pp. 900-903
    • Tsukamoto, Y.1    Kato, J.2    Ikeda, H.3
  • 215
    • 0033539095 scopus 로고    scopus 로고
    • DNA damage triggers disruption of telomeric silencing and Mec1p-dependent relocation of Sir3p
    • McAinsh A.D., Scott-Drew S., Murray J.A., Jackson S.P. DNA damage triggers disruption of telomeric silencing and Mec1p-dependent relocation of Sir3p. Curr. Biol. 9:1999;963-966
    • (1999) Curr. Biol. , vol.9 , pp. 963-966
    • McAinsh, A.D.1    Scott-Drew, S.2    Murray, J.A.3    Jackson, S.P.4
  • 216
    • 0033612189 scopus 로고    scopus 로고
    • MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks
    • Mills K.D., Sinclair D.A., Guarente L. MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell. 97:1999;609-620
    • (1999) Cell , vol.97 , pp. 609-620
    • Mills, K.D.1    Sinclair, D.A.2    Guarente, L.3
  • 217
    • 0031589513 scopus 로고    scopus 로고
    • Genomic stability. Silencing and DNA repair connect
    • Jackson S.P. Genomic stability. Silencing and DNA repair connect. Nature. 388:1997;829-830
    • (1997) Nature , vol.388 , pp. 829-830
    • Jackson, S.P.1
  • 218
    • 0034941123 scopus 로고    scopus 로고
    • SIR functions are required for the toleration of an unrepaired double-strand break in a dispensable yeast chromosome
    • Bennett C.B., Snipe J.R., Westmoreland J.W., Resnick M.A. SIR functions are required for the toleration of an unrepaired double-strand break in a dispensable yeast chromosome. Mol. Cell Biol. 21:2001;5359-5373
    • (2001) Mol. Cell Biol. , vol.21 , pp. 5359-5373
    • Bennett, C.B.1    Snipe, J.R.2    Westmoreland, J.W.3    Resnick, M.A.4
  • 219
    • 0033611465 scopus 로고    scopus 로고
    • Yeast cell-type regulation of DNA repair
    • Astrom S.U., Okamura S.M., Rine J. Yeast cell-type regulation of DNA repair. Nature. 397:1999;310
    • (1999) Nature , vol.397 , pp. 310
    • Astrom, S.U.1    Okamura, S.M.2    Rine, J.3
  • 220
  • 221
    • 0034978554 scopus 로고    scopus 로고
    • Yeast spt6-140 mutation, affecting chromatin and transcription, preferentially increases recombination in which Rad51p-mediated strand exchange is dispensable
    • Malagon F., Aguilera A. Yeast spt6-140 mutation, affecting chromatin and transcription, preferentially increases recombination in which Rad51p-mediated strand exchange is dispensable. Genetics. 158:2001;597-611
    • (2001) Genetics , vol.158 , pp. 597-611
    • Malagon, F.1    Aguilera, A.2
  • 222
    • 0029770436 scopus 로고    scopus 로고
    • Differential intrachromosomal hyper-recombination phenotype of spt4 and spt6 mutants of S. cerevisiae
    • Malagon F., Aguilera A. Differential intrachromosomal hyper-recombination phenotype of spt4 and spt6 mutants of S. cerevisiae. Curr. Genet. 30:1996;101-106
    • (1996) Curr. Genet. , vol.30 , pp. 101-106
    • Malagon, F.1    Aguilera, A.2
  • 223
    • 0033940472 scopus 로고    scopus 로고
    • Recombination between divergent sequences leads to cell death in a mismatch-repair-independent manner
    • Inbar O., Kupiec M. Recombination between divergent sequences leads to cell death in a mismatch-repair-independent manner. Curr. Genet. 38:2000;23-32
    • (2000) Curr. Genet. , vol.38 , pp. 23-32
    • Inbar, O.1    Kupiec, M.2
  • 224
    • 0015868981 scopus 로고
    • Induction of dominant lethality by X-rays in radiosensitive strain of yeast
    • Ho K.S., Mortimer R.K. Induction of dominant lethality by X-rays in radiosensitive strain of yeast. Mutat. Res. 20:1973;45-51
    • (1973) Mutat. Res. , vol.20 , pp. 45-51
    • Ho, K.S.1    Mortimer, R.K.2
  • 225
    • 0029945097 scopus 로고    scopus 로고
    • A double-strand break within a yeast artificial chromosome (YAC) containing human DNA can result in YAC loss, deletion or cell lethality
    • Bennett C.B., Westmoreland T.J., Snipe J.R., Resnick M.A. A double-strand break within a yeast artificial chromosome (YAC) containing human DNA can result in YAC loss, deletion or cell lethality. Mol. Cell Biol. 16:1996;4414-4425
    • (1996) Mol. Cell Biol. , vol.16 , pp. 4414-4425
    • Bennett, C.B.1    Westmoreland, T.J.2    Snipe, J.R.3    Resnick, M.A.4
  • 226
    • 0027421043 scopus 로고
    • Loss of a yeast telomere: Arrest, recovery, and chromosome loss
    • Sandell L.L., Zakian V.A. Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell. 75:1993;729-739
    • (1993) Cell , vol.75 , pp. 729-739
    • Sandell, L.L.1    Zakian, V.A.2
  • 227
    • 0035253615 scopus 로고    scopus 로고
    • ATM and ATR: Networking cellular responses to DNA damage
    • Shiloh Y. ATM and ATR: networking cellular responses to DNA damage. Curr. Opin. Genet. Dev. 11:2001;71-77
    • (2001) Curr. Opin. Genet. Dev. , vol.11 , pp. 71-77
    • Shiloh, Y.1
  • 229
    • 0030910037 scopus 로고    scopus 로고
    • P53 and ATM: Cell cycle, cell death, and cancer
    • Morgan S.E., Kastan M.B. p53 and ATM: cell cycle, cell death, and cancer. Adv. Cancer Res. 71:1997;1-25
    • (1997) Adv. Cancer Res. , vol.71 , pp. 1-25
    • Morgan, S.E.1    Kastan, M.B.2
  • 231
    • 0347917233 scopus 로고    scopus 로고
    • The S. cerevisiae HtrA-like protein Nma111p is a nuclear serine protease that mediates yeast apoptosis
    • Fahrenkrog B., Sauder U., Aebi U. The S. cerevisiae HtrA-like protein Nma111p is a nuclear serine protease that mediates yeast apoptosis. J. Cell. Sci. 117:2004;115-126
    • (2004) J. Cell. Sci. , vol.117 , pp. 115-126
    • Fahrenkrog, B.1    Sauder, U.2    Aebi, U.3
  • 234
    • 0033619207 scopus 로고    scopus 로고
    • A selection system for human apoptosis inhibitors using yeast
    • Greenhalf W., Lee J., Chaudhuri B. A selection system for human apoptosis inhibitors using yeast. Yeast. 15:1999;1307-1321
    • (1999) Yeast , vol.15 , pp. 1307-1321
    • Greenhalf, W.1    Lee, J.2    Chaudhuri, B.3
  • 236
    • 0033911935 scopus 로고    scopus 로고
    • Assays for studying Bax-induced lethality in the yeast Saccharomyces cerevisiae
    • Xu Q., Ke N., Matsuyama S., Reed J.C. Assays for studying Bax-induced lethality in the yeast Saccharomyces cerevisiae. Methods Enzymol. 322:2000;283-296
    • (2000) Methods Enzymol. , vol.322 , pp. 283-296
    • Xu, Q.1    Ke, N.2    Matsuyama, S.3    Reed, J.C.4
  • 240
    • 0031037649 scopus 로고    scopus 로고
    • DNA double-strand-break sensitivity, DNA replication, and cell cycle arrest phenotypes of Ku-deficient Saccharomyces cerevisiae
    • Barnes G., Rio D. DNA double-strand-break sensitivity, DNA replication, and cell cycle arrest phenotypes of Ku-deficient Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 94:1997;867-872
    • (1997) Proc. Natl. Acad. Sci. U.S.A. , vol.94 , pp. 867-872
    • Barnes, G.1    Rio, D.2
  • 242
    • 0028914077 scopus 로고
    • Interaction of Mre11 and Rad50: Two proteins required for DNA repair and meiosis-specific double-strand break formation in Saccharomyces cerevisiae
    • Johzuka K., Ogawa H. Interaction of Mre11 and Rad50: two proteins required for DNA repair and meiosis-specific double-strand break formation in Saccharomyces cerevisiae. Genetics. 139:1995;1521-1532
    • (1995) Genetics , vol.139 , pp. 1521-1532
    • Johzuka, K.1    Ogawa, H.2
  • 243
    • 0030047343 scopus 로고    scopus 로고
    • Specific interactions between the human RAD51 and RAD52 proteins
    • Shen Z., Cloud K.G., Chen D.J., Park M.S. Specific interactions between the human RAD51 and RAD52 proteins. J. Biol. Chem. 271:1996;148-152
    • (1996) J. Biol. Chem. , vol.271 , pp. 148-152
    • Shen, Z.1    Cloud, K.G.2    Chen, D.J.3    Park, M.S.4
  • 244
    • 0030910889 scopus 로고    scopus 로고
    • Recombinational repair in yeast: Functional interactions between Rad51 and Rad54 proteins
    • Clever B., Interthal H., Schmuckli-Maurer J., King J., Sigrist M., Heyer W.D. Recombinational repair in yeast: functional interactions between Rad51 and Rad54 proteins. EMBO J. 16:1997;2535-2544
    • (1997) EMBO J. , vol.16 , pp. 2535-2544
    • Clever, B.1    Interthal, H.2    Schmuckli-Maurer, J.3    King, J.4    Sigrist, M.5    Heyer, W.D.6
  • 246
    • 0030808615 scopus 로고    scopus 로고
    • Cell-cycle regulation of mammalian DNA double-strand-break repair
    • Hendrickson E.A. Cell-cycle regulation of mammalian DNA double-strand-break repair. Am. J. Hum. Genet. 61:1997;795-800
    • (1997) Am. J. Hum. Genet. , vol.61 , pp. 795-800
    • Hendrickson, E.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.