메뉴 건너뛰기




Volumn 4, Issue 12, 2003, Pages 948-959

Getting to the end: Telomerase access in yeast and humans

Author keywords

[No Author keywords available]

Indexed keywords

DOUBLE STRANDED DNA; TELOMERASE;

EID: 0345169051     PISSN: 14710072     EISSN: None     Source Type: Journal    
DOI: 10.1038/nrm1256     Document Type: Review
Times cited : (101)

References (159)
  • 2
    • 0031810967 scopus 로고    scopus 로고
    • Sir proteins, Rif proteins and Cdc13p bind Saccharomyces telomeres in vivo
    • Bourns, B. D., Alexander, M. K., Smith, A. M. & Zakian, V. A. Sir proteins, Rif proteins and Cdc13p bind Saccharomyces telomeres in vivo. Mol. Cell. Biol. 18, 5600-5608 (1998).
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 5600-5608
    • Bourns, B.D.1    Alexander, M.K.2    Smith, A.M.3    Zakian, V.A.4
  • 3
    • 0037047643 scopus 로고    scopus 로고
    • Est1p as a cell-cycle-regulated activator of telomere-bound telomerase
    • Taggart, A. K. P., Teng, S.-C. & Zakian, V. A. Est1p as a cell-cycle-regulated activator of telomere-bound telomerase. Science 297, 1023-1026 (2002). Shows that Est2 is telomere associated throughout most of the cell cycle, whereas Est1 is associated only when telomerase is active.
    • (2002) Science , vol.297 , pp. 1023-1026
    • Taggart, A.K.P.1    Teng, S.-C.2    Zakian, V.A.3
  • 4
    • 0030982721 scopus 로고    scopus 로고
    • The terminal DNA structure of mammalian chromosomes
    • McElligott, R. & Wellinger, R. J. The terminal DNA structure of mammalian chromosomes. EMBO J. 16, 3705-3714 (1997).
    • (1997) EMBO J. , vol.16 , pp. 3705-3714
    • McElligott, R.1    Wellinger, R.J.2
  • 5
    • 0030731928 scopus 로고    scopus 로고
    • Normal human chromosomes have long G-rich telomeric overhangs at one end
    • Wright, W. E., Tesmer, V. M., Huffman, K. E., Levene, S. D. & Shay, J. W. Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev. 11, 2801-2809 (1997).
    • (1997) Genes Dev. , vol.11 , pp. 2801-2809
    • Wright, W.E.1    Tesmer, V.M.2    Huffman, K.E.3    Levene, S.D.4    Shay, J.W.5
  • 6
    • 0031000884 scopus 로고    scopus 로고
    • Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening
    • Makarov, V. L., Hirose, Y. & Langmore, J. P. Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 88, 657-666 (1997).
    • (1997) Cell , vol.88 , pp. 657-666
    • Makarov, V.L.1    Hirose, Y.2    Langmore, J.P.3
  • 7
    • 0024973811 scopus 로고
    • A mutant with a defect in telomere elongation leads to senescence in yeast
    • Lundblad, V. & Szostak, J. W. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57, 633-643 (1989).
    • (1989) Cell , vol.57 , pp. 633-643
    • Lundblad, V.1    Szostak, J.W.2
  • 8
    • 0028822203 scopus 로고
    • Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint
    • Garvik, B., Carson, M. & Hartwell, L. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol. Cell. Biol. 15, 6128-6138 (1995).
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 6128-6138
    • Garvik, B.1    Carson, M.2    Hartwell, L.3
  • 9
    • 0035282781 scopus 로고    scopus 로고
    • Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13
    • Grandin, N., Damon, C. & Charbonneau, M. Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13. EMBO J. 20, 1173-1183 (2001).
    • (2001) EMBO J. , vol.20 , pp. 1173-1183
    • Grandin, N.1    Damon, C.2    Charbonneau, M.3
  • 10
    • 0031029001 scopus 로고    scopus 로고
    • Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13
    • Grandin, N., Reed, S. I. & Charbonneau, M. Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes Dev. 11, 512-527 (1997).
    • (1997) Genes Dev. , vol.11 , pp. 512-527
    • Grandin, N.1    Reed, S.I.2    Charbonneau, M.3
  • 11
    • 0032489012 scopus 로고    scopus 로고
    • TRF2 protects human telomeres from end-to-end fusions
    • van Steensel, B., Smogorzewska, A. & de Lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell 92, 401-413 (1998). Shows that telomeric fusions occur when G-tails are lost in human cells, despite the presence of duplex telomeric DNA.
    • (1998) Cell , vol.92 , pp. 401-413
    • Van Steensel, B.1    Smogorzewska, A.2    De Lange, T.3
  • 12
    • 0029953557 scopus 로고    scopus 로고
    • Evidence for a new step in telomere maintenance
    • Wellinger, R.J., Ethier, K., Labrecque, P. & Zakian, V. A. Evidence for a new step in telomere maintenance. Cell 85, 423-433 (1996).
    • (1996) Cell , vol.85 , pp. 423-433
    • Wellinger, R.J.1    Ethier, K.2    Labrecque, P.3    Zakian, V.A.4
  • 13
    • 0030460748 scopus 로고    scopus 로고
    • Cell-cycle-regulated generation of single-stranded G-rich DNA in the absence of telomerase
    • Dionne, I. & Wellinger, R. J. Cell-cycle-regulated generation of single-stranded G-rich DNA in the absence of telomerase. Proc, Natl Acad. Sci. USA 93, 13902-13907 (1996).
    • (1996) Proc, Natl Acad. Sci. USA , vol.93 , pp. 13902-13907
    • Dionne, I.1    Wellinger, R.J.2
  • 14
    • 0033569847 scopus 로고    scopus 로고
    • G-strand overhangs on telomeres in telomerase-deficient mouse cells
    • Hemann, M. & Greider, C. G-strand overhangs on telomeres in telomerase-deficient mouse cells. Nucl. Acids Res. 27, 3964-3969 (1999).
    • (1999) Nucl. Acids Res. , vol.27 , pp. 3964-3969
    • Hemann, M.1    Greider, C.2
  • 15
    • 0035964864 scopus 로고    scopus 로고
    • Strand-specific postreplicative processing of mammalian telomeres
    • Bailey, S., Comforth, M., Kurimasa, A., Chen, D. & Goodwin, E. Strand-specific postreplicative processing of mammalian telomeres. Science 293, 2462-2465 (2001).
    • (2001) Science , vol.293 , pp. 2462-2465
    • Bailey, S.1    Comforth, M.2    Kurimasa, A.3    Chen, D.4    Goodwin, E.5
  • 16
    • 0032974345 scopus 로고    scopus 로고
    • Accumulation of single-stranded DNA and destabilization of telomeric repeats in yeast mutant strains carrying a deletion of RAD27
    • Parenteau, J. & Wellinger, R. J. Accumulation of single-stranded DNA and destabilization of telomeric repeats in yeast mutant strains carrying a deletion of RAD27. Mol. Cell. Biol. 19, 4143-4152 (1999). References 15 and 16 show that telomeres that are replicated by lagging-strand versus leading-strand polymerases are processed differently.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 4143-4152
    • Parenteau, J.1    Wellinger, R.J.2
  • 18
    • 0030938901 scopus 로고    scopus 로고
    • Reverse transcriptase motifs in the catalytic subunit of telomerase
    • Lingner, J. et al. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276, 561-567 (1997).
    • (1997) Science , vol.276 , pp. 561-567
    • Lingner, J.1
  • 19
    • 0030819894 scopus 로고    scopus 로고
    • Telomerase catalytic subunit homologs from fission yeast and human
    • Nakamura, T. M. et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 277, 955-959 (1997).
    • (1997) Science , vol.277 , pp. 955-959
    • Nakamura, T.M.1
  • 20
    • 0030745448 scopus 로고    scopus 로고
    • hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization
    • Meyerson, M. et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90, 785-795 (1997).
    • (1997) Cell , vol.90 , pp. 785-795
    • Meyerson, M.1
  • 21
    • 0027944347 scopus 로고
    • TLC1, the template RNA component of the Saccharomyces cerevisiae telomerase
    • Singer, M. S. & Gottschling, D. E. TLC1, the template RNA component of the Saccharomyces cerevisiae telomerase. Science 266,404-409 (1994).
    • (1994) Science , vol.266 , pp. 404-409
    • Singer, M.S.1    Gottschling, D.E.2
  • 22
    • 0029096515 scopus 로고
    • The RNA component of human telomerase
    • Feng, J. et al. The RNA component of human telomerase. Science 269, 1236-1241 (1995).
    • (1995) Science , vol.269 , pp. 1236-1241
    • Feng, J.1
  • 23
    • 0041704526 scopus 로고    scopus 로고
    • Telomere maintenance and DNA replication: How closely are these two connected?
    • Chakhparonian, M. & Wellinger, R. J. Telomere maintenance and DNA replication: how closely are these two connected? Trends Genet. 19, 439-446 (2003).
    • (2003) Trends Genet. , vol.19 , pp. 439-446
    • Chakhparonian, M.1    Wellinger, R.J.2
  • 24
    • 0025222442 scopus 로고
    • RAP1 protein interacts with yeast telomeres in vivo: Overproduction alters telomere structure and decreases chromosome stability
    • Conrad, M. N., Wright, J. H., Wolf, A. J. & Zakian, V. A. RAP1 protein interacts with yeast telomeres in vivo: overproduction alters telomere structure and decreases chromosome stability. Cell 63, 739-750 (1990).
    • (1990) Cell , vol.63 , pp. 739-750
    • Conrad, M.N.1    Wright, J.H.2    Wolf, A.J.3    Zakian, V.A.4
  • 25
    • 0029586089 scopus 로고
    • A human telomeric protein
    • , Chong, L. et al. A human telomeric protein. Science 270, 1663-1667 (1995).
    • (1995) Science , vol.270 , pp. 1663-1667
    • Chong, L.1
  • 26
    • 84984775429 scopus 로고    scopus 로고
    • Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2
    • Broccoli, D., Smogorzewska, A., Chong, L. & de Lange, T. Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nature Genet. 17, 231-235 (1997).
    • (1997) Nature Genet. , vol.17 , pp. 231-235
    • Broccoli, D.1    Smogorzewska, A.2    Chong, L.3    De Lange, T.4
  • 27
    • 0035806977 scopus 로고    scopus 로고
    • The role of the Mre11-Rad50-Xrs2 complex in telomerase-mediated lengthening of Saccharomyces cerevisiae telomeres
    • Tsukamoto, Y., Taggart, A. K. P. & Zakian, V. A. The role of the Mre11-Rad50-Xrs2 complex in telomerase-mediated lengthening of Saccharomyces cerevisiae telomeres. Curr. Biol. 11, 1328-1335 (2001).
    • (2001) Curr. Biol. , vol.11 , pp. 1328-1335
    • Tsukamoto, Y.1    Taggart, A.K.P.2    Zakian, V.A.3
  • 28
    • 0035844082 scopus 로고    scopus 로고
    • Pot1, the putative telomere end-binding protein in fission yeast and humans
    • Baumann, P. & Cech, T. R. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292, 1171-1175 (2001).
    • (2001) Science , vol.292 , pp. 1171-1175
    • Baumann, P.1    Cech, T.R.2
  • 29
    • 0036840361 scopus 로고    scopus 로고
    • Human Pot1 (protection of telomeres) protein: Cytolocalization, gene structure, and alternative splicing
    • Baumann, P., Podell, E. & Cech, T. R. Human Pot1 (protection of telomeres) protein: cytolocalization, gene structure, and alternative splicing. Mol. Cell. Biol. 22, 8079-8087 (2002).
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 8079-8087
    • Baumann, P.1    Podell, E.2    Cech, T.R.3
  • 30
    • 0033553536 scopus 로고    scopus 로고
    • Mammalian telomeres end in a large duplex loop
    • Griffith, J.D. et al. Mammalian telomeres end in a large duplex loop. Cell 97, 503-514 (1999). Shows that mammalian telomeres form t-loops.
    • (1999) Cell , vol.97 , pp. 503-514
    • Griffith, J.D.1
  • 31
    • 0031027431 scopus 로고    scopus 로고
    • SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast
    • Strahl-Bolsinger, S., Hecht, A., Luo, K. & Grunstein, M. SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev. 11, 83-93 (1997).
    • (1997) Genes Dev. , vol.11 , pp. 83-93
    • Strahl-Bolsinger, S.1    Hecht, A.2    Luo, K.3    Grunstein, M.4
  • 32
    • 0035804267 scopus 로고    scopus 로고
    • Telomere looping permits gene activation by a downstream UAS in yeast
    • de Bruin, D., Zaman, Z., Liberatore, R. A. & Ptashne, M. Telomere looping permits gene activation by a downstream UAS in yeast. Nature 409, 109-113 (2001).
    • (2001) Nature , vol.409 , pp. 109-113
    • De Bruin, D.1    Zaman, Z.2    Liberatore, R.A.3    Ptashne, M.4
  • 33
    • 0034604503 scopus 로고    scopus 로고
    • The Pif1p helicase, a catalytic inhibitor of telomerase lengthening of yeast telomeres
    • Zhou, J.-Q., Monson, E. M., Teng, S.-C., Schulz, V. P. & Zakian, V. A. The Pif1p helicase, a catalytic inhibitor of telomerase lengthening of yeast telomeres. Science 289, 771-774 (2000). Shows that the yeast Pif1 DNA helicase is a catalytic inhibitor of telomerase and describes a human homologue of Pif1.
    • (2000) Science , vol.289 , pp. 771-774
    • Zhou, J.-Q.1    Monson, E.M.2    Teng, S.-C.3    Schulz, V.P.4    Zakian, V.A.5
  • 34
    • 0035963338 scopus 로고    scopus 로고
    • Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae
    • Myung, K., Chen, C. & Kolodner, R. D. Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411, 1073-1076 (2001). Shows that the Pif1 DNA helicase suppresses gross chromosomal rearrangements by suppressing telomere addition.
    • (2001) Nature , vol.411 , pp. 1073-1076
    • Myung, K.1    Chen, C.2    Kolodner, R.D.3
  • 35
    • 0037148327 scopus 로고    scopus 로고
    • Complex regulatory mechanisms of telomerase activity in normal and cancer cells: How can we apply them for cancer therapy?
    • Kyo, S. & Inoue, M. Complex regulatory mechanisms of telomerase activity in normal and cancer cells: how can we apply them for cancer therapy? Oncogene 21, 688-697 (2002).
    • (2002) Oncogene , vol.21 , pp. 688-697
    • Kyo, S.1    Inoue, M.2
  • 37
    • 0029155795 scopus 로고
    • Telomerase in yeast
    • Cohn, M. & Blackburn, E. H. Telomerase in yeast. Science 269, 396-400 (1995).
    • (1995) Science , vol.269 , pp. 396-400
    • Cohn, M.1    Blackburn, E.H.2
  • 38
    • 0030881688 scopus 로고    scopus 로고
    • Three Ever Shorter Telomere (EST) genes are dispensable for in vitro yeast telomerase activity
    • Lingner, J., Cech, T. R., Hughes, T. R. & Lundblad, V. Three Ever Shorter Telomere (EST) genes are dispensable for in vitro yeast telomerase activity. Proc. Natl. Acad. Sci. USA 94, 11190-11195 (1997).
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 11190-11195
    • Lingner, J.1    Cech, T.R.2    Hughes, T.R.3    Lundblad, V.4
  • 39
  • 40
    • 0032699279 scopus 로고    scopus 로고
    • Essential functions of amino-terminal domains in the yeast telomerase catalytic subunit revealed by selection for viable mutants
    • Friedman, K. L. & Cech, T. R. Essential functions of amino-terminal domains in the yeast telomerase catalytic subunit revealed by selection for viable mutants. Genes Dev. 13, 2863-2874 (1999).
    • (1999) Genes Dev. , vol.13 , pp. 2863-2874
    • Friedman, K.L.1    Cech, T.R.2
  • 41
    • 0034775749 scopus 로고    scopus 로고
    • N-terminal domains of the human telomerase catalytic subunit required for enzyme activity in vivo
    • Armbruster, B. N., Banik, S. S., Guo, C., Smith, A. C. & Counter, C. M. N-terminal domains of the human telomerase catalytic subunit required for enzyme activity in vivo. Mol. Cell. Biol. 21, 7775-7786 (2001).
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 7775-7786
    • Armbruster, B.N.1    Banik, S.S.2    Guo, C.3    Smith, A.C.4    Counter, C.M.5
  • 42
    • 0032440891 scopus 로고    scopus 로고
    • Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization
    • Counter, C. M. et al. Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization. Proc. Natl Acad. Sci. USA 95,14723-14728 (1998).
    • (1998) Proc. Natl Acad. Sci. USA , vol.95 , pp. 14723-14728
    • Counter, C.M.1
  • 43
    • 0033948026 scopus 로고    scopus 로고
    • Identification of functionally important domains in the N-terminal region of telomerase reverse transcriptase
    • Xia, J., Peng, Y., Mian, I. S. & Lue, N. F. Identification of functionally important domains in the N-terminal region of telomerase reverse transcriptase. Mol. Cell. Biol. 20, 5196-5207 (2000).
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 5196-5207
    • Xia, J.1    Peng, Y.2    Mian, I.S.3    Lue, N.F.4
  • 44
    • 0041562482 scopus 로고    scopus 로고
    • Catalytically active human telomerase mutants with allele-specific biological properties
    • Kim, M., Xu, L. & Blackburn, E. H. Catalytically active human telomerase mutants with allele-specific biological properties. Exp. Cell Res. 288, 277-287 (2003).
    • (2003) Exp. Cell Res. , vol.288 , pp. 277-287
    • Kim, M.1    Xu, L.2    Blackburn, E.H.3
  • 45
    • 0033214013 scopus 로고    scopus 로고
    • Est1 and Cdc13 as comediators of telomerase access
    • Evans, S. K. & Lundblad,V. Est1 and Cdc13 as comediators of telomerase access. Science 286, 117-120 (1999).
    • (1999) Science , vol.286 , pp. 117-120
    • Evans, S.K.1    Lundblad, V.2
  • 47
    • 0037404425 scopus 로고    scopus 로고
    • Putative telomere-recruiting domain in the catalytic subunit of human telomerase
    • Armbruster, B. N., Etheridge, K. T., Broccoli, D. & Counter, C. M. Putative telomere-recruiting domain in the catalytic subunit of human telomerase. Mol. Cell. Biol. 23, 3237-3246 (2003).
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 3237-3246
    • Armbruster, B.N.1    Etheridge, K.T.2    Broccoli, D.3    Counter, C.M.4
  • 48
    • 0029020783 scopus 로고
    • Protein-DNA interactions in soluble telosomes from Saccharomyces cerevisiae
    • Wright, J. H. & Zakian, V. A. Protein-DNA interactions in soluble telosomes from Saccharomyces cerevisiae. Nucl. Acids Res. 23, 1454-1460 (1995).
    • (1995) Nucl. Acids Res. , vol.23 , pp. 1454-1460
    • Wright, J.H.1    Zakian, V.A.2
  • 49
    • 0027298713 scopus 로고
    • Distortion of the DNA double helix by RAP1 at silencers and multiple telomeric binding sites
    • Gilson, E., Roberge, M., Giraldo, R., Rhodes, D. & Gasser, S. M. Distortion of the DNA double helix by RAP1 at silencers and multiple telomeric binding sites. J. Mol. Biol. 281, 293-310 (1993).
    • (1993) J. Mol. Biol. , vol.281 , pp. 293-310
    • Gilson, E.1    Roberge, M.2    Giraldo, R.3    Rhodes, D.4    Gasser, S.M.5
  • 50
    • 0029963828 scopus 로고    scopus 로고
    • The crystal structure of the DNA-binding domain of yeast RAP 1 in complex with telomeric DNA
    • Konig, P., Giraldo, R., Chapman, L. & Rhodes, D. The crystal structure of the DNA-binding domain of yeast RAP1 in complex with telomeric DNA. Cell 85, 125-136 (1996).
    • (1996) Cell , vol.85 , pp. 125-136
    • Konig, P.1    Giraldo, R.2    Chapman, L.3    Rhodes, D.4
  • 51
    • 0025881033 scopus 로고
    • Separation of transcriptional activation and silencing functions of the RAP1-encoded repressor/activator protein 1: Isolation of viable mutants affecting both silencing and telomere length
    • Sussel, L. & Shore, D. Separation of transcriptional activation and silencing functions of the RAP1-encoded repressor/activator protein 1: isolation of viable mutants affecting both silencing and telomere length. Proc. Natl Acad. Sci. USA 88, 7749-7753 (1991).
    • (1991) Proc. Natl Acad. Sci. USA , vol.88 , pp. 7749-7753
    • Sussel, L.1    Shore, D.2
  • 52
    • 0026657008 scopus 로고
    • C-terminal truncation of RAP1 results in the deregulation of telomere size, stability, and function in Saccharomyces cerevisiae
    • Kyrion, G., Boakye, K. A. & Lustig, A. J. C-terminal truncation of RAP1 results in the deregulation of telomere size, stability, and function in Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 5159-5173 (1992).
    • (1992) Mol. Cell. Biol. , vol.12 , pp. 5159-5173
    • Kyrion, G.1    Boakye, K.A.2    Lustig, A.J.3
  • 53
    • 0031036351 scopus 로고    scopus 로고
    • A protein-counting mechanism for telomere length regulation in yeast
    • Marcand, S., Gilson, E. & Shore, D. A protein-counting mechanism for telomere length regulation in yeast. Science 275, 986-990 (1997).
    • (1997) Science , vol.275 , pp. 986-990
    • Marcand, S.1    Gilson, E.2    Shore, D.3
  • 54
    • 0032913466 scopus 로고    scopus 로고
    • The yeast telomere length counting machinery is sensitive to sequences at the telomere-nontelomere junction
    • Ray, A. & Runge, K. The yeast telomere length counting machinery is sensitive to sequences at the telomere-nontelomere junction. Mol. Cell. Biol. 19, 31-45 (1999).
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 31-45
    • Ray, A.1    Runge, K.2
  • 55
    • 0031910824 scopus 로고    scopus 로고
    • The C terminus of the major yeast telomere binding protein Rap 1p enhances telomere formation
    • Ray, A. & Runge, K. W. The C terminus of the major yeast telomere binding protein Rap1p enhances telomere formation. Mol. Cell. Biol. 1284-1295 (1998).
    • (1998) Mol. Cell. Biol. , pp. 1284-1295
    • Ray, A.1    Runge, K.W.2
  • 57
    • 0033570177 scopus 로고    scopus 로고
    • TRF1 binds a bipartite telomeric site with extreme spatial flexibility
    • Bianchi, A. et al. TRF1 binds a bipartite telomeric site with extreme spatial flexibility. EMBO J. 18, 5735-5744 (1999).
    • (1999) EMBO J , vol.18 , pp. 5735-5744
    • Bianchi, A.1
  • 58
    • 0036241994 scopus 로고    scopus 로고
    • Targeting assay to study the cis functions of human telomeric proteins: Evidence for inhibition of telomerase by TRF 1 and for activation of telomere degradation by TRF2
    • Ancelin, K. et al. Targeting assay to study the cis functions of human telomeric proteins: evidence for inhibition of telomerase by TRF1 and for activation of telomere degradation by TRF2. Mol. Cell. Biol. 22, 3474-3487 (2002).
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 3474-3487
    • Ancelin, K.1
  • 59
    • 0031027618 scopus 로고    scopus 로고
    • Control of telomere length by the human telomeric protein TRF1
    • van Steensel, B. & de Lange, T. Control of telomere length by the human telomeric protein TRF1. Nature 385, 740-743 (1997).
    • (1997) Nature , vol.385 , pp. 740-743
    • Van Steensel, B.1    De Lange, T.2
  • 60
    • 0033961281 scopus 로고    scopus 로고
    • Control of human telomere length by TRF1 and TRF2
    • Smogorzewska, A. et al. Control of human telomere length by TRF1 and TRF2. Mol. Cell. Biol. 20, 1659-1668 (2000).
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 1659-1668
    • Smogorzewska, A.1
  • 61
    • 0037427086 scopus 로고    scopus 로고
    • hTERT associates with human telomeres and enhances genomic stability and DNA repair
    • Sharma, G. G. et al. hTERT associates with human telomeres and enhances genomic stability and DNA repair. Oncogene 22, 131-146 (2003).
    • (2003) Oncogene , vol.22 , pp. 131-146
    • Sharma, G.G.1
  • 62
    • 0033781559 scopus 로고    scopus 로고
    • Telomere folding is required for the stable maintenance of telomere position effects in yeast
    • de Bruin, D., Kantrow, S. M., Liberatore, R. A. & Zakian, V. A. Telomere folding is required for the stable maintenance of telomere position effects in yeast. Mol. Cell. Biol. 20, 7991-8000 (2000).
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 7991-8000
    • De Bruin, D.1    Kantrow, S.M.2    Liberatore, R.A.3    Zakian, V.A.4
  • 63
    • 0026623241 scopus 로고
    • ARAP1-interacting protein involved in transcriptional silencing and telomere length regulation
    • Hardy, C. F., Susset, L. & Shore, D. ARAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev. 6, 801-814 (1992).
    • (1992) Genes Dev. , vol.6 , pp. 801-814
    • Hardy, C.F.1    Susset, L.2    Shore, D.3
  • 64
    • 0030995534 scopus 로고    scopus 로고
    • A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae
    • Wotton, D. & Shore, D. A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae, Genes Dev. 11, 748-760 (1997).
    • (1997) Genes Dev. , vol.11 , pp. 748-760
    • Wotton, D.1    Shore, D.2
  • 65
    • 0037388687 scopus 로고    scopus 로고
    • Rap1p telomere association is not required for mitotic stability of a C(3)TA(2) telomere in yeast
    • Alexander, M. K. & Zakian, V. A. Rap1p telomere association is not required for mitotic stability of a C(3)TA(2) telomere in yeast. EMBO J. 22, 1688-1696 (2003).
    • (2003) EMBO J. , vol.22 , pp. 1688-1696
    • Alexander, M.K.1    Zakian, V.A.2
  • 66
    • 0037326054 scopus 로고    scopus 로고
    • Telomeric protein distributions and remodeling through the cell cycle in Saccharomyces cerevisiae
    • Smith, C. D., Smith, D. L., DeRisi, J. L. & Blackburn, E. H. Telomeric protein distributions and remodeling through the cell cycle in Saccharomyces cerevisiae. Mol. Biol. Cell. 14, 556-570 (2003).
    • (2003) Mol. Biol. Cell. , vol.14 , pp. 556-570
    • Smith, C.D.1    Smith, D.L.2    DeRisi, J.L.3    Blackburn, E.H.4
  • 67
    • 0028836005 scopus 로고
    • Extra telomeres, but not internal tracts of telomeric DNA, reduce transcriptional repression at Saccharomyces telomeres
    • Wiley, E. & Zakian, V. A. Extra telomeres, but not internal tracts of telomeric DNA, reduce transcriptional repression at Saccharomyces telomeres. Genetics 139, 67-79 (1995).
    • (1995) Genetics , vol.139 , pp. 67-79
    • Wiley, E.1    Zakian, V.A.2
  • 68
    • 0033636907 scopus 로고    scopus 로고
    • Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process
    • Teng, S.-C., Chang, J., McCowan, B. & Zakian, V. A. Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process. Mol. Cell 6, 947-952 (2000).
    • (2000) Mol. Cell , vol.6 , pp. 947-952
    • Teng, S.-C.1    Chang, J.2    McCowan, B.3    Zakian, V.A.4
  • 69
    • 0035798379 scopus 로고    scopus 로고
    • The Pin2/TRF1-interacting protein PinX1 is a potent telomerase inhibitor
    • Zhou, X. Z. & Lu, K. P. The Pin2/TRF1-interacting protein PinX1 is a potent telomerase inhibitor. Cell 107, 347-359 (2001).
    • (2001) Cell , vol.107 , pp. 347-359
    • Zhou, X.Z.1    Lu, K.P.2
  • 70
    • 0032727616 scopus 로고    scopus 로고
    • TIN2, a new regulator of telomere length in human cells
    • Kim, S. H., Kaminker, P. & Campisi, J. TIN2, a new regulator of telomere length in human cells. Nature Genet. 23, 405-412 (1999).
    • (1999) Nature Genet. , vol.23 , pp. 405-412
    • Kim, S.H.1    Kaminker, P.2    Campisi, J.3
  • 71
    • 0032553473 scopus 로고    scopus 로고
    • Tankyrase, a poly(ADP-ribose) polymerase at human telomeres
    • Smith, S., Giriat, I., Schmitt, A. & de Lange, T. Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 282, 1484-1487 (1998). Shows that tankyrase might affect TRF1 and telomeres in humans through its PARP activity.
    • (1998) Science , vol.282 , pp. 1484-1487
    • Smith, S.1    Giriat, I.2    Schmitt, A.3    De Lange, T.4
  • 72
    • 0034669104 scopus 로고    scopus 로고
    • Ku acts in a unique way at the mammalian telomere to prevent end joining
    • Hsu, H. L. et al. Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev. 14, 2807-2812 (2000).
    • (2000) Genes Dev. , vol.14 , pp. 2807-2812
    • Hsu, H.L.1
  • 73
    • 0037144620 scopus 로고    scopus 로고
    • The yeast homolog of human PinX1 is involved in rRNA and small nucleolar RNA maturation, not in telomere elongation inhibition
    • Guglielmi, B. & Werner, M. The yeast homolog of human PinX1 is involved in rRNA and small nucleolar RNA maturation, not in telomere elongation inhibition. J. Biol. Chem. 277, 35712-35719 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 35712-35719
    • Guglielmi, B.1    Werner, M.2
  • 74
    • 0034687248 scopus 로고    scopus 로고
    • Tankyrase promotes telomere elongation in human cells
    • Smith, S. & de Lange, T. Tankyrase promotes telomere elongation in human cells. Curr. Biol 10, 1299-1302 (2000).
    • (2000) Curr. Biol , vol.10 , pp. 1299-1302
    • Smith, S.1    De Lange, T.2
  • 75
    • 0037610123 scopus 로고    scopus 로고
    • TRF1 is degraded by ubiquitin-mediated proteolysis after release from telomeres
    • Chang, W., Dynek, J. N. & Smith, S. TRF1 is degraded by ubiquitin-mediated proteolysis after release from telomeres. Genes Dev. 17, 1328-1333 (2003). Shows that tankyrase 1 induces degradation of TRF1 by the proteasome.
    • (2003) Genes Dev. , vol.17 , pp. 1328-1333
    • Chang, W.1    Dynek, J.N.2    Smith, S.3
  • 76
    • 0035929591 scopus 로고    scopus 로고
    • TANK2, a new TRF1-associated poly(ADP-ribose) polymerase, causes rapid induction of cell death upon overexpression
    • Kaminker, P. G. et al. TANK2, a new TRF1-associated poly(ADP-ribose) polymerase, causes rapid induction of cell death upon overexpression. J. Biol. Chem. 276, 35891-35899 (2001).
    • (2001) J. Biol. Chem. , vol.276 , pp. 35891-35899
    • Kaminker, P.G.1
  • 77
    • 0036132673 scopus 로고    scopus 로고
    • Role for the related poly(ADP-ribose) polymerases tankyrase 1 and 2 at human telomeres
    • Cook, B. D., Dynek, J. N., Chang, W., Shostak, G. & Smith, S. Role for the related poly(ADP-ribose) polymerases tankyrase 1 and 2 at human telomeres. Mol. Cell. Biol 22, 332-342 (2002).
    • (2002) Mol. Cell. Biol , vol.22 , pp. 332-342
    • Cook, B.D.1    Dynek, J.N.2    Chang, W.3    Shostak, G.4    Smith, S.5
  • 78
    • 0034716904 scopus 로고    scopus 로고
    • Identification of human Rap1: Implications for telomere evolution
    • Li, B., Oestreich, S. & de Lange, T. Identification of human Rap1: implications for telomere evolution. Cell 101, 471-483 (2000).
    • (2000) Cell , vol.101 , pp. 471-483
    • Li, B.1    Oestreich, S.2    De Lange, T.3
  • 79
    • 0037175018 scopus 로고    scopus 로고
    • Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases
    • Opresko, P. L. et al. Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases. J. Biol. Chem. 277, 41110-41119 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 41110-41119
    • Opresko, P.L.1
  • 80
    • 0342561644 scopus 로고    scopus 로고
    • Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres
    • Zhu, X. D., Kuster, B., Mann, M., Petrini, J. H. & de Lange, T. Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres, Nature Genet. 25, 347-352 (2000).
    • (2000) Nature Genet. , vol.25 , pp. 347-352
    • Zhu, X.D.1    Kuster, B.2    Mann, M.3    Petrini, J.H.4    De Lange, T.5
  • 81
    • 0033563229 scopus 로고    scopus 로고
    • Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex
    • Paull, T. T. & Gellert, M. Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. Genes Dev 13, 1276-1288 (1999).
    • (1999) Genes Dev. , vol.13 , pp. 1276-1288
    • Paull, T.T.1    Gellert, M.2
  • 82
    • 0033617316 scopus 로고    scopus 로고
    • Human Werner syndrome DNA helicase unwinds tetrahelical structures of the fragile X syndrome repeat sequence d(CGG)n
    • Fry, M. & Loeb, L. A. Human Werner syndrome DNA helicase unwinds tetrahelical structures of the fragile X syndrome repeat sequence d(CGG)n. J. Biol. Chem. 274, 12797-12802 (1999).
    • (1999) J. Biol. Chem. , vol.274 , pp. 12797-12802
    • Fry, M.1    Loeb, L.A.2
  • 83
    • 0028909019 scopus 로고
    • DNA damage and repair in telomeres: Relation to aging
    • Kruk, P. A., Rampino, N. J. & Bohr, V. A. DNA damage and repair in telomeres: relation to aging. Proc. Natl Acad. Sci. USA 92, 258-262 (1995).
    • (1995) Proc. Natl Acad. Sci. USA , vol.92 , pp. 258-262
    • Kruk, P.A.1    Rampino, N.J.2    Bohr, V.A.3
  • 84
    • 0029971241 scopus 로고    scopus 로고
    • Accelerated loss of telomeric repeats may not explain accelerated replicative decline of Werner syndrome cells
    • Schulz, V. P. et al. Accelerated loss of telomeric repeats may not explain accelerated replicative decline of Werner syndrome cells. Hum. Genet. 97, 750-754 (1996).
    • (1996) Hum. Genet. , vol.97 , pp. 750-754
    • Schulz, V.P.1
  • 85
    • 0035936559 scopus 로고    scopus 로고
    • SGS1 is required for telomere elongation in the absence of telomerase
    • Huang, P. et al. SGS1 is required for telomere elongation in the absence of telomerase. Curr. Biol. 11, 125-129 (2001).
    • (2001) Curr. Biol. , vol.11 , pp. 125-129
    • Huang, P.1
  • 86
    • 0035865143 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae WRN homolog Sgs1p participates in telomere maintenance in cells lacking telomerase
    • Johnson, F. et al. The Saccharomyces cerevisiae WRN homolog Sgs1p participates in telomere maintenance in cells lacking telomerase. EMBO J. 20, 905-913 (2001).
    • (2001) EMBO J. , vol.20 , pp. 905-913
    • Johnson, F.1
  • 87
    • 0035853104 scopus 로고    scopus 로고
    • Recombination-mediated lengthening of terminal telomeric repeats requires the Sgs1 DNA helicase
    • Cohen, H. & Sinclair, D. Recombination-mediated lengthening of terminal telomeric repeats requires the Sgs1 DNA helicase. Proc. Natl Acad. Sci. USA 98, 3174-3179 (2001).
    • (2001) Proc. Natl Acad. Sci. USA , vol.98 , pp. 3174-3179
    • Cohen, H.1    Sinclair, D.2
  • 88
    • 0030447657 scopus 로고    scopus 로고
    • 1-3 telomeric DNA binding protein in vitro that affects telomere behavior in vivo
    • 1-3 telomeric DNA binding protein in vitro that affects telomere behavior in vivo. Proc. Natl Acad. Sci. USA 93, 13760-13765 (1996).
    • (1996) Proc. Natl Acad. Sci. USA , vol.93 , pp. 13760-13765
    • Lin, J.J.1    Zakian, V.A.2
  • 89
    • 0029845892 scopus 로고    scopus 로고
    • Cdc13p: A single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenanee
    • Nugent, C. I., Hughes, T. R., Lue, N. F. & Lundblad, V. Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenanee. Science 274, 249-252 (1996).
    • (1996) Science , vol.274 , pp. 249-252
    • Nugent, C.I.1    Hughes, T.R.2    Lue, N.F.3    Lundblad, V.4
  • 90
    • 0035830494 scopus 로고    scopus 로고
    • Cdc13 delivers separate complexes to the telomere for end protection and replication
    • Pennock, E., Buckley, K. & Lundblad, V. Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell 104, 387-396 (2001).
    • (2001) Cell , vol.104 , pp. 387-396
    • Pennock, E.1    Buckley, K.2    Lundblad, V.3
  • 91
    • 0034661246 scopus 로고    scopus 로고
    • The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase α and the telomerase-associated Est1 protein
    • Qi, H. & Zakian, V. A. The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase α and the telomerase-associated Est1 protein. Genes Dev. 14, 1777 (2000).
    • (2000) Genes Dev. , vol.14 , pp. 1777-1778
    • Qi, H.1    Zakian, V.A.2
  • 92
    • 0029033695 scopus 로고
    • An in vitro assay for Saccharomyces telomerase requires EST1
    • Lin, J.-J. & Zakian, V. A. An in vitro assay for Saccharomyces telomerase requires EST1. Cell 81, 1127-1135 (1995).
    • (1995) Cell , vol.81 , pp. 1127-1135
    • Lin, J.-J.1    Zakian, V.A.2
  • 93
    • 0036118479 scopus 로고    scopus 로고
    • Essential regions of Saccharomyces cerevisiae telomerase RNA: Separate elements for Est 1p and Est2p interaction
    • Livengood, A. J., Zaug, A. J. & Cech, T. R. Essential regions of Saccharomyces cerevisiae telomerase RNA: separate elements for Est1p and Est2p interaction. Mol. Cell. Biol. 22, 2366-2374 (2002).
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 2366-2374
    • Livengood, A.J.1    Zaug, A.J.2    Cech, T.R.3
  • 94
    • 0033994222 scopus 로고    scopus 로고
    • The Est1 subunit of yeast telomerase binds the Tic1 telomerase RNA
    • Zhou, J., Hidaka, K. & Futcher, B. The Est1 subunit of yeast telomerase binds the Tic1 telomerase RNA. Mol. Cell. Biol. 20, 1947-1955 (2000).
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 1947-1955
    • Zhou, J.1    Hidaka, K.2    Futcher, B.3
  • 95
    • 0030462146 scopus 로고    scopus 로고
    • Est1 has the properties of a single-stranded telomere end-binding protein
    • Virta-Pearlman, V., Morris, D. K. & Lundblad, V. Est1 has the properties of a single-stranded telomere end-binding protein. Genes Dev. 10, 3094-3104 (1996).
    • (1996) Genes Dev. , vol.10 , pp. 3094-3104
    • Virta-Pearlman, V.1    Morris, D.K.2    Lundblad, V.3
  • 96
    • 0034175814 scopus 로고    scopus 로고
    • Cell cycle restriction of telomere elongation
    • Marcand, S., Brevet, V., Mann, C. & Gilson, E. Cell cycle restriction of telomere elongation. Curr. Biol. 10, 487-490 (2000).
    • (2000) Curr. Biol. , vol.10 , pp. 487-490
    • Marcand, S.1    Brevet, V.2    Mann, C.3    Gilson, E.4
  • 97
    • 0038360921 scopus 로고    scopus 로고
    • Telomerase: What are the Est proteins doing?
    • Taggart, A. K. P. & Zakian, V. A. Telomerase: what are the Est proteins doing? Curr. Opin. Cell Biol. 3, 275-280 (2003).
    • (2003) Curr. Opin. Cell Biol. , vol.3 , pp. 275-280
    • Taggart, A.K.P.1    Zakian, V.A.2
  • 98
    • 0141525391 scopus 로고    scopus 로고
    • Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends
    • Stellwagen, A. E., Haimberger, Z. W., Veatch, J. R. & Gottschling, D. E. Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes Dev. 17, 2384-2395 (2003). Shows a physical interaction between yeast Ku and the telomerase RNA.
    • (2003) Genes Dev. , vol.17 , pp. 2384-2395
    • Stellwagen, A.E.1    Haimberger, Z.W.2    Veatch, J.R.3    Gottschling, D.E.4
  • 99
    • 0035115859 scopus 로고    scopus 로고
    • Cdc13 both positively and negatively regulates telomere replication
    • Chandra, A., Hughes, T. R., Nugent, C. I. & Lundblad, V. Cdc13 both positively and negatively regulates telomere replication. Genes Dev 15, 404-414 (2001).
    • (2001) Genes Dev , vol.15 , pp. 404-414
    • Chandra, A.1    Hughes, T.R.2    Nugent, C.I.3    Lundblad, V.4
  • 100
    • 0037381155 scopus 로고    scopus 로고
    • A human homolog of yeast est1 associates with telomerase and uncaps chromosome ends when overexpressed
    • Reichenbach, P. et al. A human homolog of yeast est1 associates with telomerase and uncaps chromosome ends when overexpressed. Curr. Biol. 13, 568-574 (2003).
    • (2003) Curr. Biol. , vol.13 , pp. 568-574
    • Reichenbach, P.1
  • 101
    • 0037447232 scopus 로고    scopus 로고
    • Functional conservation of the telomerase protein est 1p in humans
    • Snow, B. E. et al. Functional conservation of the telomerase protein est1p in humans. Curr. Biol. 13, 698-704 (2003).
    • (2003) Curr. Biol. , vol.13 , pp. 698-704
    • Snow, B.E.1
  • 102
    • 0013040064 scopus 로고    scopus 로고
    • Analysis of telomerase in Candida albicans: Potential role in telomere end protection
    • Singh, S. M., Steinberg-Neifach, O., Mian, I. S. & Lue, N. F. Analysis of telomerase in Candida albicans: potential role in telomere end protection. Eukaryot Cell 1, 967-977 (2002). References 100-102, as well as reference 39, describe Est1 homologues in humans and in other yeasts.
    • (2002) Eukaryot Cell , vol.1 , pp. 967-977
    • Singh, S.M.1    Steinberg-Neifach, O.2    Mian, I.S.3    Lue, N.F.4
  • 103
    • 0023037564 scopus 로고
    • Telomere proteins: Specific recognition and protection of the natural termini of Oxytrieha Oxytricha macronuclear DNA
    • Gottschling, D. E. & Zakian, V. A. Telomere proteins: specific recognition and protection of the natural termini of Oxytrieha Oxytricha macronuclear DNA. Cell 47, 195-205 (1986).
    • (1986) Cell , vol.47 , pp. 195-205
    • Gottschling, D.E.1    Zakian, V.A.2
  • 105
    • 0032431057 scopus 로고    scopus 로고
    • Crystal structure of the Oxytricha nova telomere end binding protein complexed Wth single strand DNA
    • Horvath, M., Schweiker, V., Bevilacqua, J., Ruggles, J. & Schultz, S. Crystal structure of the Oxytricha nova telomere end binding protein complexed Wth single strand DNA. Cell 95, 963-974 (1998).
    • (1998) Cell , vol.95 , pp. 963-974
    • Horvath, M.1    Schweiker, V.2    Bevilacqua, J.3    Ruggles, J.4    Schultz, S.5
  • 106
    • 0038451396 scopus 로고    scopus 로고
    • POT1 as a terminal transducer of TRF1 telomere length control
    • Loayza, D. & de Lange, T. POT1 as a terminal transducer of TRF1 telomere length control. Nature 424, 1013-1018 (2003).
    • (2003) Nature , vol.424 , pp. 1013-1018
    • Loayza, D.1    De Lange, T.2
  • 107
    • 0038413786 scopus 로고    scopus 로고
    • Human POT1 facilitates telomere elongation by telomerase
    • Colgin, L. M. Human POT1 facilitates telomere elongation by telomerase. Curr. Biol. 13, 942-946 (2003). References 106 and 107 examine the effects of POT1 on human telomeres,
    • (2003) Curr. Biol. , vol.13 , pp. 942-946
    • Colgin, L.M.1
  • 108
    • 0027421043 scopus 로고
    • Loss of a yeast telomere: Arrest, recovery and chromosome loss
    • Sandel. L. L. & Zakian, V. A. Loss of a yeast telomere: arrest, recovery and chromosome loss. Cell 75, 729-739 (1993).
    • (1993) Cell , vol.75 , pp. 729-739
    • Sandel, L.L.1    Zakian, V.A.2
  • 109
    • 0033605145 scopus 로고    scopus 로고
    • p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2
    • Karlseder, J., Broccoli, D., Dai, Y., Hardy, S. & de Lange, T. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283, 1321-1325 (1999).
    • (1999) Science , vol.283 , pp. 1321-1325
    • Karlseder, J.1    Broccoli, D.2    Dai, Y.3    Hardy, S.4    De Lange, T.5
  • 110
    • 0038054459 scopus 로고    scopus 로고
    • NEJ1 prevents NHEJ-dependent telomere fusions in yeast without telomerase
    • Liti, G. & Louis, E. NEJ1 prevents NHEJ-dependent telomere fusions in yeast without telomerase. Mol. Cell 11, 1373-1378 (2003). Shows that Nej1, in contrast to its role in promoting double-strand DNA break repair, protects telomeres from end fusions in telomerase-negative cells.
    • (2003) Mol. Cell , vol.11 , pp. 1373-1378
    • Liti, G.1    Louis, E.2
  • 111
    • 0034793039 scopus 로고    scopus 로고
    • A Ku bridge over broken DNA
    • Jones, J. M., Gellert, M. & Yang, W. A Ku bridge over broken DNA. Structure 9, 881-884 (2001).
    • (2001) Structure , vol.9 , pp. 881-884
    • Jones, J.M.1    Gellert, M.2    Yang, W.3
  • 112
    • 0032076127 scopus 로고    scopus 로고
    • Yeast Ku as a regulator of chromosomal DNA end structure
    • Gravel, S., Larrivee. M., Labrecque, P. & Wellinger, R. J. Yeast Ku as a regulator of chromosomal DNA end structure. Science 280, 741-744 (1998).
    • (1998) Science , vol.280 , pp. 741-744
    • Gravel, S.1    Larrivee, M.2    Labrecque, P.3    Wellinger, R.J.4
  • 113
    • 0029919650 scopus 로고    scopus 로고
    • The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae
    • Porter, S. E., Greenwell, P. W., Ritchie, K. B. & Petes, T. D. The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucl. Acids Res. 24, 582-585 (1996).
    • (1996) Nucl. Acids Res. , vol.24 , pp. 582-585
    • Porter, S.E.1    Greenwell, P.W.2    Ritchie, K.B.3    Petes, T.D.4
  • 114
    • 0032474732 scopus 로고    scopus 로고
    • The yeast Ku heterodimer is essential for protection of the telomere against nucleolytic and recombinational activities
    • Polotnianka, R. M., Li, J. & Lustig, A. J. The yeast Ku heterodimer is essential for protection of the telomere against nucleolytic and recombinational activities. Curr. Biol. 8, 831-834 (1998).
    • (1998) Curr. Biol. , vol.8 , pp. 831-834
    • Polotnianka, R.M.1    Li, J.2    Lustig, A.J.3
  • 115
    • 0029843408 scopus 로고    scopus 로고
    • Identification of a Saccharomyces cerevisiae Ku8O homologue: Roles in DNA double strand break rejoining and in telomeric maintenance
    • Boulton, S. J. & Jackson, S. P. Identification of a Saccharomyces cerevisiae Ku8O homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucl. Acids Res. 24, 4639-4648 (1996).
    • (1996) Nucl. Acids Res. , vol.24 , pp. 4639-4648
    • Boulton, S.J.1    Jackson, S.P.2
  • 116
    • 0032554793 scopus 로고    scopus 로고
    • Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres
    • Laroche, T. et al. Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Curr. Biol. 8, 653-656 (1998).
    • (1998) Curr. Biol. , vol.8 , pp. 653-656
    • Laroche, T.1
  • 117
    • 0032554797 scopus 로고    scopus 로고
    • Telomere maintenance is dependent on activities required for end repair of double-strand breaks
    • Nugent, C. I. et al. Telomere maintenance is dependent on activities required for end repair of double-strand breaks. Curr. Biol. 8. 657-660 (1998).
    • (1998) Curr. Biol. , vol.8 , pp. 657-660
    • Nugent, C.I.1
  • 118
    • 0035158605 scopus 로고    scopus 로고
    • The function of a stem-loop in telomerase RNA is linked to the DNA repair protein Ku
    • Peterson, S. E. et al. The function of a stem-loop in telomerase RNA is linked to the DNA repair protein Ku. Nature Genet. 27, 64-67 (2001).
    • (2001) Nature Genet. , vol.27 , pp. 64-67
    • Peterson, S.E.1
  • 119
    • 0033766666 scopus 로고    scopus 로고
    • Cdc13 cooperates with the yeast Ku proteins and Stn1 to regulate telomerase recruitment
    • Grandin, N., Damon, C. & Charbonneau, M. Cdc13 cooperates with the yeast Ku proteins and Stn1 to regulate telomerase recruitment. Mol. Cell. Biol. 22, 8397-8408 (2000).
    • (2000) Mol. Cell. Biol. , vol.22 , pp. 8397-8408
    • Grandin, N.1    Damon, C.2    Charbonneau, M.3
  • 121
    • 0035822641 scopus 로고    scopus 로고
    • Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells
    • d'Adda di Fagagna, F. et al. Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells. Curr. Biol. 11, 1192-1196 (2001).
    • (2001) Curr. Biol. , vol.11 , pp. 1192-1196
    • D'Adda Di Fagagna, F.1
  • 122
    • 0037033062 scopus 로고    scopus 로고
    • Human Ku70/80 associates physically with telomerase through interaction with hTERT
    • Chai, W., Ford, L. P., Lenertz, L., Wright, W. E. & Shay, J. W. Human Ku70/80 associates physically with telomerase through interaction with hTERT. J. Biol. Chem. 277, 7242-47247 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 7242-47247
    • Chai, W.1    Ford, L.P.2    Lenertz, L.3    Wright, W.E.4    Shay, J.W.5
  • 123
    • 0033592950 scopus 로고    scopus 로고
    • DNA double-strand break repair proteins are required to cap the ends of mammalian chromosomes
    • Bailey, S. M. et al. DNA double-strand break repair proteins are required to cap the ends of mammalian chromosomes. Proc. Natl Acad. Sci. USA 96, 14899-14904 (1999).
    • (1999) Proc. Natl Acad. Sci. USA , vol.96 , pp. 14899-14904
    • Bailey, S.M.1
  • 124
    • 0034280093 scopus 로고    scopus 로고
    • Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang
    • Samper, E., Goytisolo, F. A., Slijepcevic, P., van Buul, P. P. & Blasco, M. A. Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang. EMBO Rep. 1, 244-252 (2000).
    • (2000) EMBO Rep. , vol.1 , pp. 244-252
    • Samper, E.1    Goytisolo, F.A.2    Slijepcevic, P.3    Van Buul, P.P.4    Blasco, M.A.5
  • 125
    • 0036566036 scopus 로고    scopus 로고
    • Mammalian Ku86 mediates chromosomal fusions and apoptosis caused by critically short telomeres
    • Espejel, S. et al. Mammalian Ku86 mediates chromosomal fusions and apoptosis caused by critically short telomeres. EMBO J. 21, 2207-2219 (2002).
    • (2002) EMBO J. , vol.21 , pp. 2207-2219
    • Espejel, S.1
  • 126
    • 0036276388 scopus 로고    scopus 로고
    • The mre11 complex: At the crossroads of DNA repair and checkpoint signalling
    • D'Amours, D. & Jackson, S. P. The mre11 complex: at the crossroads of DNA repair and checkpoint signalling. Nature Rev. Mol Cell Biol. 3, 317-327 (2002).
    • (2002) Nature Rev. Mol Cell Biol. , vol.3 , pp. 317-327
    • D'Amours, D.1    Jackson, S.P.2
  • 127
    • 0034892653 scopus 로고    scopus 로고
    • Mre11 protein complex prevents double-strand break accumulation during chromosomal DNA replication
    • Costanzo, V. et al. Mre11 protein complex prevents double-strand break accumulation during chromosomal DNA replication. Mol Cell 8, 137-147 (2001).
    • (2001) Mol Cell , vol.8 , pp. 137-147
    • Costanzo, V.1
  • 128
    • 0031180154 scopus 로고    scopus 로고
    • Alteration of telomeric sequences and senescence caused by mutations in RAD50 of Saccharomyces cerevisiae
    • Kironmai, K. M. & Muniyappa, K. Alteration of telomeric sequences and senescence caused by mutations in RAD50 of Saccharomyces cerevisiae. Genes Cells 2, 443-455 (1997).
    • (1997) Genes Cells , vol.2 , pp. 443-455
    • Kironmai, K.M.1    Muniyappa, K.2
  • 129
    • 0032536861 scopus 로고    scopus 로고
    • Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing
    • Boulton, S. J. & Jackson, S. P. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17, 1819-1828 (1998).
    • (1998) EMBO J. , vol.17 , pp. 1819-1828
    • Boulton, S.J.1    Jackson, S.P.2
  • 130
    • 0034013797 scopus 로고    scopus 로고
    • The Mre11p/Rad50p/Xrs2p complex and the Tel1p function in a single pathway for telomere maintenance in yeast
    • Ritchie, K. B. & Petes, T. D. The Mre11p/Rad50p/Xrs2p complex and the Tel1p function in a single pathway for telomere maintenance in yeast. Genetics 155, 475-479 (2000).
    • (2000) Genetics , vol.155 , pp. 475-479
    • Ritchie, K.B.1    Petes, T.D.2
  • 131
    • 0035806955 scopus 로고    scopus 로고
    • Exonuclease activity is required for sequence addition and Cdc13p loading at a de novo telomere
    • Diede, S. J. & Gottschling, D. E. Exonuclease activity is required for sequence addition and Cdc13p loading at a de novo telomere. Curr. Biol. 11, 1336-1340 (2001).
    • (2001) Curr. Biol. , vol.11 , pp. 1336-1340
    • Diede, S.J.1    Gottschling, D.E.2
  • 132
    • 0032931844 scopus 로고    scopus 로고
    • The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance
    • Moreau, S., Ferguson, J. R. & Symington, L. S. The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Mol. Cell. Biol. 19, 556-566 (1999).
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 556-566
    • Moreau, S.1    Ferguson, J.R.2    Symington, L.S.3
  • 133
    • 0032076248 scopus 로고    scopus 로고
    • The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: Linkage of double-strand break repair to the cellular DNA damage response
    • Carney, J. P. et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93, 477-486 (1998).
    • (1998) Cell , vol.93 , pp. 477-486
    • Carney, J.P.1
  • 134
    • 0032076190 scopus 로고    scopus 로고
    • Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome
    • Varon, R. et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93, 467-476 (1998).
    • (1998) Cell , vol.93 , pp. 467-476
    • Varon, R.1
  • 135
    • 0028013486 scopus 로고
    • Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events
    • Kramer, K. M., Brock, J., Bloom, K. & Moore, K. Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events. Mol. Cell. Biol. 14, 1293-1301 (1994).
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 1293-1301
    • Kramer, K.M.1    Brock, J.2    Bloom, K.3    Moore, K.4
  • 136
  • 137
    • 0028178792 scopus 로고
    • The Saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation
    • Schulz, V. P. & Zakian, V. A. The Saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 76, 145-155 (1994).
    • (1994) Cell , vol.76 , pp. 145-155
    • Schulz, V.P.1    Zakian, V.A.2
  • 138
    • 0032961170 scopus 로고    scopus 로고
    • A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3′ end
    • Mitchell, J. R., Cheng, J. & Collins, K. A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3′ end. Mol. Cell. Biol. 19, 567-576 (1999).
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 567-576
    • Mitchell, J.R.1    Cheng, J.2    Collins, K.3
  • 139
    • 0035670851 scopus 로고    scopus 로고
    • The snoRNA domain of vertebrate telomerase RNA functions to localize the RNA within the nucleus
    • Lukowiak, A. A., Narayanan, A., Li, Z. H., Terns, R. M. & Terns, M. P. The snoRNA domain of vertebrate telomerase RNA functions to localize the RNA within the nucleus. RNA 7, 1833-1844 (2001).
    • (2001) RNA , vol.7 , pp. 1833-1844
    • Lukowiak, A.A.1    Narayanan, A.2    Li, Z.H.3    Terns, R.M.4    Terns, M.P.5
  • 140
    • 0037025334 scopus 로고    scopus 로고
    • The nucleolar localization domain of the catalytic subunit of human telomerase
    • Etheridge, K. T. et al. The nucleolar localization domain of the catalytic subunit of human telomerase. J. Biol Chem. 277, 24764-24770 (2002).
    • (2002) J. Biol Chem. , vol.277 , pp. 24764-24770
    • Etheridge, K.T.1
  • 141
    • 0036311278 scopus 로고    scopus 로고
    • Nucleolar localization of hTERT protein is associated with telomerase function
    • Yang, Y., Chen, Y., Zhang, C., Huang, H. & Weissman, S. M. Nucleolar localization of hTERT protein is associated with telomerase function. Exp. Cell Res. 277, 201-209 (2002).
    • (2002) Exp. Cell Res. , vol.277 , pp. 201-209
    • Yang, Y.1    Chen, Y.2    Zhang, C.3    Huang, H.4    Weissman, S.M.5
  • 142
    • 0033518188 scopus 로고    scopus 로고
    • A telomerase component is defective in the human disease dyskeratosis congenita
    • Mitchell, J. R., Wood, E. & Collins, K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402, 551-555 (1999). Shows that dyskerin is associated with human telomerase RNA and that dyskeratosis congenita cells have lower levels of telomerase RNA and activity.
    • (1999) Nature , vol.402 , pp. 551-555
    • Mitchell, J.R.1    Wood, E.2    Collins, K.3
  • 143
    • 0343183144 scopus 로고    scopus 로고
    • In vitro assembly of human H/ACA small nueleolar RNPs reveals unique features of U17 and telomerase RNAs
    • Dragon, F., Pogacic, V. & Filipowicz, W. In vitro assembly of human H/ACA small nueleolar RNPs reveals unique features of U17 and telomerase RNAs. Mol. Cell. Biol. 20, 3037-3048 (2000).
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 3037-3048
    • Dragon, F.1    Pogacic, V.2    Filipowicz, W.3
  • 144
    • 0034459569 scopus 로고    scopus 로고
    • Human H/ACA small nucleolar RNPs and telomerase share evolutionarily conserved proteins NHP2 and NOP10
    • Pogacic, V., Dragon, F. & Filipowicz, W. Human H/ACA small nucleolar RNPs and telomerase share evolutionarily conserved proteins NHP2 and NOP10. Mol. Cell. Biol. 20, 9028-9040 (2000).
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 9028-9040
    • Pogacic, V.1    Dragon, F.2    Filipowicz, W.3
  • 145
    • 0035253526 scopus 로고    scopus 로고
    • Stable expression in yeast of the mature form of human telomerase RNA depends on its association with the box H/ACA small nueleolar RNP proteins Cbf5p, Nhp2p and Nop10p
    • Dez, C. et al. Stable expression in yeast of the mature form of human telomerase RNA depends on its association with the box H/ACA small nueleolar RNP proteins Cbf5p, Nhp2p and Nop10p. Nucl. Acids Res 29, 598-603 (2001).
    • (2001) Nucl. Acids Res. , vol.29 , pp. 598-603
    • Dez, C.1
  • 146
    • 0033539171 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae telomerase is an Sm small nuclear ribonucleoprotein particle
    • Seto, A. G., Zaug, A. J., Sobel, S. G., Wolin, S. L. & Cech, T. R. Saccharomyces cerevisiae telomerase is an Sm small nuclear ribonucleoprotein particle. Nature 401, 177-180 (1999). Shows that the yeast telomerase RNA has structural features in common with small nuclear ribonucleoprotein particles.
    • (1999) Nature , vol.401 , pp. 177-180
    • Seto, A.G.1    Zaug, A.J.2    Sobel, S.G.3    Wolin, S.L.4    Cech, T.R.5
  • 147
    • 0036023953 scopus 로고    scopus 로고
    • Intracellular trafficking of yeast telomerase components
    • Teixeira, M. T., Forstemann, K., Gasser, S. M. & Lingner, J. Intracellular trafficking of yeast telomerase components. EMBO Rep. 3, 652-659 (2002).
    • (2002) EMBO Rep. , vol.3 , pp. 652-659
    • Teixeira, M.T.1    Forstemann, K.2    Gasser, S.M.3    Lingner, J.4
  • 148
    • 0036711651 scopus 로고    scopus 로고
    • Subnuclear shuttling of human telomerase induced by transformation and DNA damage
    • Wong, J. M., Kusdra, L. & Collins, K. Subnuclear shuttling of human telomerase induced by transformation and DNA damage. Nature Cell Biol. 4, 731-736 (2002). Shows that the intranuclear localization of active human telomerase depends on cell-cycle stage, transformation and DNA damage.
    • (2002) Nature Cell Biol. , vol.4 , pp. 731-736
    • Wong, J.M.1    Kusdra, L.2    Collins, K.3
  • 149
    • 0029066169 scopus 로고
    • Telomerase activity in normal and malignant hematopoietic cells
    • Broccoli, D., Young, J. W. & de Lange, T. Telomerase activity in normal and malignant hematopoietic cells. Proc. Natl Acad. Sci. USA 92, 9082-9086 (1995).
    • (1995) Proc. Natl Acad. Sci. USA , vol.92 , pp. 9082-9086
    • Broccoli, D.1    Young, J.W.2    De Lange, T.3
  • 150
    • 0029091386 scopus 로고
    • Activation of telomerase in human lymphocytes and hematopoietic progenitor cells
    • Hiyama, K. et al. Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. J. Immunol. 155, 3711-3715 (1995).
    • (1995) J. Immunol. , vol.155 , pp. 3711-3715
    • Hiyama, K.1
  • 151
    • 0033609046 scopus 로고    scopus 로고
    • Constitutive and regulated expression of telomerase reverse transcriptase (hTERT) in human lymphocytes
    • Liu, K. et al. Constitutive and regulated expression of telomerase reverse transcriptase (hTERT) in human lymphocytes. Proc. Natl Acad. Sci. USA 96, 5147-5152 (1999).
    • (1999) Proc. Natl Acad. Sci. USA , vol.96 , pp. 5147-5152
    • Liu, K.1
  • 152
    • 0035871710 scopus 로고    scopus 로고
    • Cutting edge: Telomerase activation in human T lymphocytes does not require increase in telomerase reverse transcriptase (hTERT) protein but is associated with hTERT phosphorylation and nuclear translocation
    • Liu, K., Hodes, R. J. & Weng, N. Cutting edge: telomerase activation in human T lymphocytes does not require increase in telomerase reverse transcriptase (hTERT) protein but is associated with hTERT phosphorylation and nuclear translocation. J. Immunol. 166, 4826-4830 (2001).
    • (2001) J. Immunol. , vol.166 , pp. 4826-4830
    • Liu, K.1    Hodes, R.J.2    Weng, N.3
  • 153
    • 0037207872 scopus 로고    scopus 로고
    • Nuclear factor-κB p65 mediates tumor necrosis factor α-induced nuclear translocation of telomerase reverse transcriptase protein
    • Akiyama, M. et al. Nuclear factor-κB p65 mediates tumor necrosis factor α-induced nuclear translocation of telomerase reverse transcriptase protein. Cancer Res. 63, 18-21 (2003).
    • (2003) Cancer Res. , vol.63 , pp. 18-21
    • Akiyama, M.1
  • 154
    • 0038721199 scopus 로고    scopus 로고
    • Hydrogen peroxide triggers nuclear export of telomerase reverse transcriptase via Src kinase family-dependent phosphorylation of tyrosine 707
    • Haendeler, J., Hoffmann, J., Brandes, R. P., Zeiher, A. M. & Dimmeler, S. Hydrogen peroxide triggers nuclear export of telomerase reverse transcriptase via Src kinase family-dependent phosphorylation of tyrosine 707. Mol. Cell. Biol. 23, 4598-4610 (2003).
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 4598-4610
    • Haendeler, J.1    Hoffmann, J.2    Brandes, R.P.3    Zeiher, A.M.4    Dimmeler, S.5
  • 155
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • Spellman, P. T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273-3297 (1998).
    • (1998) Mol. Biol. Cell , vol.9 , pp. 3273-3297
    • Spellman, P.T.1
  • 157
    • 0033564210 scopus 로고    scopus 로고
    • Progressive cis-inhibition of telomerase upon telomere elongation
    • Marcand, S., Brevet, V. & Gilson, E. Progressive cis-inhibition of telomerase upon telomere elongation. EMBO J. 18, 3509-3519 (1999).
    • (1999) EMBO J. , vol.18 , pp. 3509-3519
    • Marcand, S.1    Brevet, V.2    Gilson, E.3
  • 158
    • 0037390305 scopus 로고    scopus 로고
    • The number of vertebrate repeats can be regulated at yeast telomeres by Rap1-independent mechanisms
    • Brevet, V. et al. The number of vertebrate repeats can be regulated at yeast telomeres by Rap1-independent mechanisms. EMBO 22, 1697-1706 (2003).
    • (2003) EMBO , vol.22 , pp. 1697-1706
    • Brevet, V.1
  • 159
    • 0027298574 scopus 로고
    • 1-3 tails occur sequentially in late S phase on a yeast linear plasmid
    • 1-3 tails occur sequentially in late S phase on a yeast linear plasmid. Mol. Cell. Biol. 13, 4057-4065 (1993).
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 4057-4065
    • Wellinger, R.J.1    Wolf, A.J.2    Zakian, V.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.