메뉴 건너뛰기




Volumn 16, Issue 10, 2003, Pages 1181-1195

Protein-Protein Interactions Involving DNA Glycosylases

Author keywords

[No Author keywords available]

Indexed keywords

CYCLINE; DNA; DNA GLYCOSYLTRANSFERASE; ENDONUCLEASE;

EID: 0142139294     PISSN: 0893228X     EISSN: None     Source Type: Journal    
DOI: 10.1021/tx030020p     Document Type: Review
Times cited : (22)

References (224)
  • 4
    • 0034011261 scopus 로고    scopus 로고
    • Oxyradicals and DNA damage
    • Marnett, L. J. (2000) Oxyradicals and DNA damage. Carcinogenesis 21, 361-370.
    • (2000) Carcinogenesis , vol.21 , pp. 361-370
    • Marnett, L.J.1
  • 5
    • 0035313218 scopus 로고    scopus 로고
    • Endogenous DNA damage and mutation
    • Marnett, L. J., and Plastaras, J. P. (2001) Endogenous DNA damage and mutation. Trends Genet. 17, 214-221.
    • (2001) Trends Genet. , vol.17 , pp. 214-221
    • Marnett, L.J.1    Plastaras, J.P.2
  • 6
    • 0035796023 scopus 로고    scopus 로고
    • The contribution of endogenous sources of DNA damage to the multiple mutations in cancer
    • Jackson, A. L., and Loeb, L. A. (2001) The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat. Res. 477, 7-21.
    • (2001) Mutat Res. , vol.477 , pp. 7-21
    • Jackson, A.L.1    Loeb, L.A.2
  • 7
    • 0015504248 scopus 로고
    • Rate of depurination of native deoxyribonucleic acid
    • Lindahl, T., and Nyberg, B. (1972) Rate of depurination of native deoxyribonucleic acid. Biochemistry 11, 3610-3618.
    • (1972) Biochemistry , vol.11 , pp. 3610-3618
    • Lindahl, T.1    Nyberg, B.2
  • 8
    • 0033152195 scopus 로고    scopus 로고
    • Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues
    • Nakamura, J., and Swenberg, J. A. (1999) Endogenous apurinic/ apyrimidinic sites in genomic DNA of mammalian tissues. Cancer Res. 59, 2522-2526.
    • (1999) Cancer Res. , vol.59 , pp. 2522-2526
    • Nakamura, J.1    Swenberg, J.A.2
  • 9
    • 0032565568 scopus 로고    scopus 로고
    • The influence of DNA glycosylases on spontaneous mutation
    • Glassner, B. J., Posnick, L. M., and Samson, L. D. (1998). The influence of DNA glycosylases on spontaneous mutation. Mutat. Res. 400, 33-44.
    • (1998) Mutat Res. , vol.400 , pp. 33-44
    • Glassner, B.J.1    Posnick, L.M.2    Samson, L.D.3
  • 11
    • 0034192265 scopus 로고    scopus 로고
    • The human OGG1 gene: Structure, functions, and its implication in the process of carcinogenesis
    • Boiteux, S., and Radicella, J. P. (2000) The human OGG1 gene: structure, functions, and its implication in the process of carcinogenesis. Arch. Biochem. Biophys. 377, 1-8.
    • (2000) Arch. Biochem. Biophys. , vol.377 , pp. 1-8
    • Boiteux, S.1    Radicella, J.P.2
  • 12
    • 0034930217 scopus 로고    scopus 로고
    • Base excision repair in a network of defence and tolerance
    • Nilsen, H., and Krokan, H. E. (2001) Base excision repair in a network of defence and tolerance. Carcinogenesis 22, 987-998.
    • (2001) Carcinogenesis , vol.22 , pp. 987-998
    • Nilsen, H.1    Krokan, H.E.2
  • 13
    • 0028151464 scopus 로고
    • DNA damage processed by base excision repair: Biological consequences
    • Wallace, S. S. (1994) DNA damage processed by base excision repair: Biological consequences. Int. J. Radiat. Biol. 66, 579-589.
    • (1994) Int. J. Radiat. Biol. , vol.66 , pp. 579-589
    • Wallace, S.S.1
  • 14
    • 0030861915 scopus 로고    scopus 로고
    • DNA glycosylases in the base excision repair of DNA
    • Krokan, H. E., Standal, R., and Slupphaug G. (1997) DNA glycosylases in the base excision repair of DNA. Biochem. J. 325, 1-16.
    • (1997) Biochem. J. , vol.325 , pp. 1-16
    • Krokan, H.E.1    Standal, R.2    Slupphaug, G.3
  • 15
    • 0030787013 scopus 로고    scopus 로고
    • What structural features determine repair enzyme specificity and mechanism in chemically modified DNA?
    • Singer, B., and Hang, B. (1997) What structural features determine repair enzyme specificity and mechanism in chemically modified DNA? Chem. Res. Toxicol. 10, 713-732.
    • (1997) Chem. Res. Toxicol. , vol.10 , pp. 713-732
    • Singer, B.1    Hang, B.2
  • 16
    • 0001473891 scopus 로고    scopus 로고
    • Chemistry of glycosylases and endonucleases involved in base-excision repair
    • David, S. S., and Williams, S. D. (1998) Chemistry of glycosylases and endonucleases involved in base-excision repair. Chem. Rev. 98, 1221-1261.
    • (1998) Chem. Rev. , vol.98 , pp. 1221-1261
    • David, S.S.1    Williams, S.D.2
  • 17
    • 0033520969 scopus 로고    scopus 로고
    • Quality control by DNA repair
    • Lindahl, T., and Wood, R. D. (1999) Quality control by DNA repair. Science 286, 1897-1905.
    • (1999) Science , vol.286 , pp. 1897-1905
    • Lindahl, T.1    Wood, R.D.2
  • 19
    • 0034733694 scopus 로고    scopus 로고
    • Base excision repair in yeast and mammals
    • Memisoglu, A., and Samson, L. (2000) Base excision repair in yeast and mammals. Mutat. Res. 451, 39-51.
    • (2000) Mutat. Res. , vol.451 , pp. 39-51
    • Memisoglu, A.1    Samson, L.2
  • 20
    • 0035111895 scopus 로고    scopus 로고
    • Recent progress in the biology, chemistry and structural biology of DNA glycosylases
    • Schärer, O. D., and Jiricny, J. (2001) Recent progress in the biology, chemistry and structural biology of DNA glycosylases. BioEssays 23, 270-281.
    • (2001) BioEssays , vol.23 , pp. 270-281
    • Schärer, O.D.1    Jiricny, J.2
  • 21
    • 0038557114 scopus 로고    scopus 로고
    • Who's on first in the cellular response to DNA damage?
    • Cline, S. D., and Hanawalt, P. C. (2003) Who's on first in the cellular response to DNA damage? Nat. Rev. 4, 361-372.
    • (2003) Nat. Rev. , vol.4 , pp. 361-372
    • Cline, S.D.1    Hanawalt, P.C.2
  • 22
  • 23
    • 0037125133 scopus 로고    scopus 로고
    • A novel human DNA glycosylase that removes oxidative DNA damage and is homologous to Escherichia coli endonuclease VIII
    • Bandaru, V., Sunkara, S., Wallace, S. S., and Bond, J. P. (2002) A novel human DNA glycosylase that removes oxidative DNA damage and is homologous to Escherichia coli endonuclease VIII. DNA Repair 1, 517-529.
    • (2002) DNA Repair , vol.1 , pp. 517-529
    • Bandaru, V.1    Sunkara, S.2    Wallace, S.S.3    Bond, J.P.4
  • 24
    • 0037112668 scopus 로고    scopus 로고
    • Human DNA glycosylases of the bacterial Fpg/MutM superfamily: An alternative pathway for the repair of 8-oxoguanine and other oxidation products in DNA
    • Morland, I., Rolseth, V., Luna, L., Rognes, T., Bjørås, M., and Seeberg, E. (2002) Human DNA glycosylases of the bacterial Fpg/ MutM superfamily: an alternative pathway for the repair of 8-oxoguanine and other oxidation products in DNA. Nucleic Acids Res. 30, 4926-4936.
    • (2002) Nucleic Acids Res. , vol.30 , pp. 4926-4936
    • Morland, I.1    Rolseth, V.2    Luna, L.3    Rognes, T.4    Bjørås, M.5    Seeberg, E.6
  • 25
    • 0037162995 scopus 로고    scopus 로고
    • Identification and characterization of a novel human DNA glycosylase for repair of cytosine-derived lesions
    • Hazra, T. K., Kow, Y. W., Hatahet, Z., Imhoff, B., Boldogh, I., Mokkapati, S. K., Mitra, S., and Izumi, T. (2002) Identification and characterization of a novel human DNA glycosylase for repair of cytosine-derived lesions. J. Biol. Chem. 277, 30417-30420.
    • (2002) J. Biol. Chem. , vol.277 , pp. 30417-30420
    • Hazra, T.K.1    Kow, Y.W.2    Hatahet, Z.3    Imhoff, B.4    Boldogh, I.5    Mokkapati, S.K.6    Mitra, S.7    Izumi, T.8
  • 26
    • 0037325763 scopus 로고    scopus 로고
    • The discovery of a new family of mammalian enzymes for repair of oxidatively damaged DNA, and its physiological implications
    • Hazra, T. K., Izumi, T., Kow, Y. W., and Mitra, S. (2003) The discovery of a new family of mammalian enzymes for repair of oxidatively damaged DNA, and its physiological implications. Carcinogenesis 24, 155-157.
    • (2003) Carcinogenesis , vol.24 , pp. 155-157
    • Hazra, T.K.1    Izumi, T.2    Kow, Y.W.3    Mitra, S.4
  • 27
    • 0030987556 scopus 로고    scopus 로고
    • Cloning, overexpression, and biochemical characterization of the catalytic domain of MutY
    • Manuel, R. C., and Lloyd, R. S. (1997) Cloning, overexpression, and biochemical characterization of the catalytic domain of MutY. Biochemistry 36, 11140-11152.
    • (1997) Biochemistry , vol.36 , pp. 11140-11152
    • Manuel, R.C.1    Lloyd, R.S.2
  • 28
    • 0032534053 scopus 로고    scopus 로고
    • Evidence that MutY is a monofunctional glycosylase capable of forming a covalent Schiff base intermediate with substrate DNA
    • Williams, S. D., and David, S. S. (1998) Evidence that MutY is a monofunctional glycosylase capable of forming a covalent Schiff base intermediate with substrate DNA. Nucleic Acids Res. 26, 5123-5133.
    • (1998) Nucleic Acids Res. , vol.26 , pp. 5123-5133
    • Williams, S.D.1    David, S.S.2
  • 29
    • 0032497404 scopus 로고    scopus 로고
    • MutY DNA glycosylase: Base release and intermediate complex formation
    • Zharkov, D. O., and Grollman, A. P. (1998) MutY DNA glycosylase: Base release and intermediate complex formation. Biochemistry 37, 12384-12394.
    • (1998) Biochemistry , vol.37 , pp. 12384-12394
    • Zharkov, D.O.1    Grollman, A.P.2
  • 30
    • 0033598684 scopus 로고    scopus 로고
    • Formation of a Schiff base intermediate is not required for the adenine glycosylase activity of Escherichia coli MutY
    • Williams, S. D., and David, S. S. (1999) Formation of a Schiff base intermediate is not required for the adenine glycosylase activity of Escherichia coli MutY. Biochemistry 38, 15417-15424.
    • (1999) Biochemistry , vol.38 , pp. 15417-15424
    • Williams, S.D.1    David, S.S.2
  • 31
    • 0025120572 scopus 로고
    • The enzymology of apurinic/apyrimidinic endonucleases
    • Doetsch, P. W., and Cunningham, R. P. (1990) The enzymology of apurinic/apyrimidinic endonucleases. Mutat. Res. 236, 173-201.
    • (1990) Mutat. Res. , vol.236 , pp. 173-201
    • Doetsch, P.W.1    Cunningham, R.P.2
  • 32
    • 0029347105 scopus 로고
    • Structure and function of apurinic/apyrimidinic endonucleases
    • Barzilay, G., and Hickson, I. D. (1995) Structure and function of apurinic/apyrimidinic endonucleases. BioEssays 17, 713-719.
    • (1995) BioEssays , vol.17 , pp. 713-719
    • Barzilay, G.1    Hickson, I.D.2
  • 33
    • 0035837587 scopus 로고    scopus 로고
    • The major human abasic endonuclease: Formation, consequences and repair of abasic lesions in DNA
    • Wilson, D. M., III, and Barsky, D. (2001) The major human abasic endonuclease: formation, consequences and repair of abasic lesions in DNA. Mutat. Res. 485, 283-307.
    • (2001) Mutat. Res. , vol.485 , pp. 283-307
    • Wilson D.M. III1    Barsky, D.2
  • 34
    • 0033591336 scopus 로고    scopus 로고
    • The type of DNA glycosylase determines the base excision repair pathway in mammalian cells
    • Fortini, P., Parlanti, E., Sidorkina, O. M., Laval, J., and Dogliotti, E. (1999) The type of DNA glycosylase determines the base excision repair pathway in mammalian cells. J. Biol. Chem. 274, 15230-15236.
    • (1999) J. Biol. Chem. , vol.274 , pp. 15230-15236
    • Fortini, P.1    Parlanti, E.2    Sidorkina, O.M.3    Laval, J.4    Dogliotti, E.5
  • 35
    • 0035224951 scopus 로고    scopus 로고
    • Multiple pathways for DNA base excision repair. The mechanism of switching among multiple BER pathways
    • Dogliotti, E., Fortini, P., Pascucci, B., and Parlanti, E. (2001) Multiple pathways for DNA base excision repair. The mechanism of switching among multiple BER pathways. Prog. Nucleic Acid Res. Mol. Biol. 68, 1-28.
    • (2001) Prog. Nucleic Acid Res. Mol. Biol. , vol.68 , pp. 1-28
    • Dogliotti, E.1    Fortini, P.2    Pascucci, B.3    Parlanti, E.4
  • 36
    • 0026589375 scopus 로고
    • Generation of single-nucleotide repair patches following excision of uracil residues from DNA
    • Dianov, G., Price, A., and Lindahl, T, (1992) Generation of single-nucleotide repair patches following excision of uracil residues from DNA. Mol. Cell. Biol. 12, 1605-1612.
    • (1992) Mol. Cell. Biol. , vol.12 , pp. 1605-1612
    • Dianov, G.1    Price, A.2    Lindahl, T.3
  • 37
    • 0029842307 scopus 로고    scopus 로고
    • Reconstitution of DNA base excision-repair with purified human proteins: Interaction between DNA polymerase β and the XRCC1 protein
    • Kubota, Y., Nash, R. A., Klungland, A., Schar, P., Barnes, D. E., and Lindahl, T. (1996) Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase β and the XRCC1 protein. EMBO J. 15, 6662-6670.
    • (1996) EMBO J. , vol.15 , pp. 6662-6670
    • Kubota, Y.1    Nash, R.A.2    Klungland, A.3    Schar, P.4    Barnes, D.E.5    Lindahl, T.6
  • 38
    • 0030939690 scopus 로고    scopus 로고
    • Reconstitution of human base excision repair with purified proteins
    • Nicholl, I. D., Nealon, K., and Kenny, M. K. (1997) Reconstitution of human base excision repair with purified proteins. Biochemistry 36, 7557-7566.
    • (1997) Biochemistry , vol.36 , pp. 7557-7566
    • Nicholl, I.D.1    Nealon, K.2    Kenny, M.K.3
  • 39
    • 0036847501 scopus 로고    scopus 로고
    • DNA base excision repair of uracil reidues in reconstituted nucleosome core particles
    • Nilsen, H., Lindahl, T., and Verreault, A. (2002) DNA base excision repair of uracil reidues in reconstituted nucleosome core particles. EMBO J. 21, 5943-5952.
    • (2002) EMBO J. , vol.21 , pp. 5943-5952
    • Nilsen, H.1    Lindahl, T.2    Verreault, A.3
  • 41
    • 0034697012 scopus 로고    scopus 로고
    • Single nucleotide patch base excision repair is the major pathway for removal of thymine glycol from DNA in human cell extracts
    • Dianov, G. L., Thybo, T., Dianova, I. I., Lipinski, L. J., and Bohr, V. A. (2000) Single nucleotide patch base excision repair is the major pathway for removal of thymine glycol from DNA in human cell extracts. J. Biol. Chem. 275, 11809-11813.
    • (2000) J. Biol. Chem. , vol.275 , pp. 11809-11813
    • Dianov, G.L.1    Thybo, T.2    Dianova, I.I.3    Lipinski, L.J.4    Bohr, V.A.5
  • 42
    • 0032509471 scopus 로고    scopus 로고
    • Repair pathways for processing of 8-oxoguanine in DNA by mammalian cell extracts
    • Dianov, G., Bischoff, C., Piotrowski, J., and Bohr, V. A. (1998) Repair pathways for processing of 8-oxoguanine in DNA by mammalian cell extracts. J. Biol. Chem. 273, 33811-33816.
    • (1998) J. Biol. Chem. , vol.273 , pp. 33811-33816
    • Dianov, G.1    Bischoff, C.2    Piotrowski, J.3    Bohr, V.A.4
  • 44
    • 0035937102 scopus 로고    scopus 로고
    • Human homologue of the MutY repair protein (hMYH) physically interacts with proteins involved in long patch DNA base excision repair
    • Parker, A., Gu, Y., Mahoney, W., Lee, S.-H., Singh, K. K., and Lu, A.-L. (2001) Human homologue of the MutY repair protein (hMYH) physically interacts with proteins involved in long patch DNA base excision repair. J. Biol. Chem. 276, 5547-5555.
    • (2001) J. Biol. Chem. , vol.276 , pp. 5547-5555
    • Parker, A.1    Gu, Y.2    Mahoney, W.3    Lee, S.-H.4    Singh, K.K.5    Lu, A.-L.6
  • 45
    • 0027965229 scopus 로고
    • Proliferating cell nuclear antigen-dependent abasic site repair in Xenopus laevis oocytes: An alternative pathway of base excision DNA repair
    • Matsumoto, Y., Kim, K., and Bogenhage, D. F. (1994) Proliferating cell nuclear antigen-dependent abasic site repair in Xenopus laevis oocytes: an alternative pathway of base excision DNA repair. Mol. Cell. Biol. 14, 6187-6189.
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 6187-6189
    • Matsumoto, Y.1    Kim, K.2    Bogenhage, D.F.3
  • 47
    • 0030957997 scopus 로고    scopus 로고
    • Second pathway for completion of human DNA base excision repair: Reconstitution with purified proteins and requirement for DNase IV (FEN I)
    • Klungland, A., and Lindahl, T. (1997) Second pathway for completion of human DNA base excision repair: reconstitution with purified proteins and requirement for DNase IV (FEN I). EMBO J. 26, 3341-3348.
    • (1997) EMBO J. , vol.26 , pp. 3341-3348
    • Klungland, A.1    Lindahl, T.2
  • 48
    • 0032539979 scopus 로고    scopus 로고
    • Different DNA polymerases are involved in the short- and long-patch base excision repair in mammalian cells
    • Fortini, P., Pascucei, B., Parlanti, E., Sobol, R. W., Wilson, S. H., and Dogliotti, E. (1998) Different DNA polymerases are involved in the short- and long-patch base excision repair in mammalian cells. Biochemistry 37, 3575-3580.
    • (1998) Biochemistry , vol.37 , pp. 3575-3580
    • Fortini, P.1    Pascucei, B.2    Parlanti, E.3    Sobol, R.W.4    Wilson, S.H.5    Dogliotti, E.6
  • 49
    • 0032100860 scopus 로고    scopus 로고
    • Mammalian base excision repair and DNA polymerase β
    • Wilson, S. H. (1998) Mammalian base excision repair and DNA polymerase β. Mutat. Res. 407, 203-215.
    • (1998) Mutat. Res. , vol.407 , pp. 203-215
    • Wilson, S.H.1
  • 50
    • 0031025997 scopus 로고    scopus 로고
    • Defective transcription-coupled repair of oxidative base damage in Cockayne Syndrome patients from XP group G
    • Cooper, P. K., Nouspikel, T., Clarkson, S. G., and Leadon, S. A. (1997) Defective transcription-coupled repair of oxidative base damage in Cockayne Syndrome patients from XP group G. Science 275, 990-993.
    • (1997) Science , vol.275 , pp. 990-993
    • Cooper, P.K.1    Nouspikel, T.2    Clarkson, S.G.3    Leadon, S.A.4
  • 51
    • 0034646516 scopus 로고    scopus 로고
    • Transcription-coupled repair of 8-oxoGuanine: Requirement for XPG, TFIIH, and CSB and implications for Cockayne syndrome
    • Le Page, F., Kwoh, E. E., Avrutskaya, A., Gentil, A., Leadon, S. A., Sarasin, A., and Cooper, P. K. (2000) Transcription -coupled repair of 8-oxoGuanine: Requirement for XPG, TFIIH, and CSB and implications for Cockayne syndrome. Cell 101, 159-171.
    • (2000) Cell , vol.101 , pp. 159-171
    • Le Page, F.1    Kwoh, E.E.2    Avrutskaya, A.3    Gentil, A.4    Leadon, S.A.5    Sarasin, A.6    Cooper, P.K.7
  • 52
    • 0034682518 scopus 로고    scopus 로고
    • Transcription coupled repair of 8-oxoguanine in murine cells: The Ogg1 protein is required for repair in nontranscribed sequences but not in transcribed sequences
    • Le Page, F., Klungland, A., Barnes, D. E., Sarasin, A., and Boiteux, S. (2000) Transcription coupled repair of 8-oxoguanine in murine cells: The Ogg1 protein is required for repair in nontranscribed sequences but not in transcribed sequences. Proc. Natl. Acad. Sci. U.S.A. 97, 8397-8402.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 8397-8402
    • Le Page, F.1    Klungland, A.2    Barnes, D.E.3    Sarasin, A.4    Boiteux, S.5
  • 53
    • 0034437623 scopus 로고    scopus 로고
    • Transcriptional-coupled repair of oxidative DNA damage in human cells: Mechanism and consequences
    • Cold Spring Harbor Laboratory Press, New York
    • Tsutakawa, S. E., and Cooper, P. K. (2000) Transcriptional-coupled repair of oxidative DNA damage in human cells: mechanism and consequences. In Cold Spring Harbor Symposia on Quantitative Biology 65, pp 201-215, Cold Spring Harbor Laboratory Press, New York.
    • (2000) Cold Spring Harbor Symposia on Quantitative Biology 65 , pp. 201-215
    • Tsutakawa, S.E.1    Cooper, P.K.2
  • 54
    • 0033603440 scopus 로고    scopus 로고
    • BRCA1 expression restores radiation resistance in BRCA1-defective cancer cells through enhancement of transcription-coupled DNA repair
    • Abbott, D. W., Thompson, M. E., Robinson-Benion, C., Tomlinson, G., Jensen, R. A., and Holt, J. T. (1999) BRCA1 expression restores radiation resistance in BRCA1-defective cancer cells through enhancement of transcription-coupled DNA repair. J. Biol. Chem. 274, 18808-18812.
    • (1999) J. Biol. Chem. , vol.274 , pp. 18808-18812
    • Abbott, D.W.1    Thompson, M.E.2    Robinson-Benion, C.3    Tomlinson, G.4    Jensen, R.A.5    Holt, J.T.6
  • 55
    • 0034307185 scopus 로고    scopus 로고
    • BRCA1 and BRCA2 are necessary for the transcription-coupled repair of the oxidative 8-oxoguanine lesion in human cells
    • Le Page, F., Randrianarison, V., Marot, D., Cabannes, J., Perricaudet, M., Feunteun, J., and Sarasin, A. (2000) BRCA1 and BRCA2 are necessary for the transcription-coupled repair of the oxidative 8-oxoguanine lesion in human cells. Cancer Res. 60, 5548-5552.
    • (2000) Cancer Res. , vol.60 , pp. 5548-5552
    • Le Page, F.1    Randrianarison, V.2    Marot, D.3    Cabannes, J.4    Perricaudet, M.5    Feunteun, J.6    Sarasin, A.7
  • 56
    • 0034738983 scopus 로고    scopus 로고
    • Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions
    • Johnson, R. E., Washington, M. T., Haracska, L., Prakash, S., and Prakash, L. (2000) Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions. Nature 406, 1015-1019.
    • (2000) Nature , vol.406 , pp. 1015-1019
    • Johnson, R.E.1    Washington, M.T.2    Haracska, L.3    Prakash, S.4    Prakash, L.5
  • 57
    • 0034214838 scopus 로고    scopus 로고
    • Pol ι, a remarkably error-prone human DNA polymerase
    • Tissier, A., McDonald, J. P., Frank, E. G., and Woodgate, R. (2000) Pol ι, a remarkably error-prone human DNA polymerase. Genes Dev. 14, 1642-1650.
    • (2000) Genes Dev. , vol.14 , pp. 1642-1650
    • Tissier, A.1    McDonald, J.P.2    Frank, E.G.3    Woodgate, R.4
  • 58
    • 0033830464 scopus 로고    scopus 로고
    • Preferential incorporation of G opposite template T by the low-fidelity human DNA polymerase t
    • Zhang, Y., Yuan, F., Wu, X., and Wang, Z. (2000) Preferential incorporation of G opposite template T by the low-fidelity human DNA polymerase t. Mol. Cell. Biol. 20, 7099-7108.
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 7099-7108
    • Zhang, Y.1    Yuan, F.2    Wu, X.3    Wang, Z.4
  • 60
    • 0035890302 scopus 로고    scopus 로고
    • Unique misinsertion specificity of polι may decrease the mutagenic potential of deaminated cytosines
    • Vaisman, A., and Woodgate, R. (2001) Unique misinsertion specificity of polι may decrease the mutagenic potential of deaminated cytosines. EMBO J. 20, 6520-6529.
    • (2001) EMBO J. , vol.20 , pp. 6520-6529
    • Vaisman, A.1    Woodgate, R.2
  • 61
    • 0028862933 scopus 로고
    • Characterization of the XRCC1-DNA ligase III complex in vitro and its absence from mutant hamster cells
    • Caldecott, K. W., Tucker, J. D., Stanker, L. H., and Thompson, L. H. (1995) Characterization of the XRCC1-DNA ligase III complex in vitro and its absence from mutant hamster cells. Nucleic Acids Res. 23, 4836-4843.
    • (1995) Nucleic Acids Res. , vol.23 , pp. 4836-4843
    • Caldecott, K.W.1    Tucker, J.D.2    Stanker, L.H.3    Thompson, L.H.4
  • 62
    • 0030018848 scopus 로고    scopus 로고
    • Specific interaction of DNA polymerase β and DNA ligase I in a multiprotein base excision repair complex from bovine testis
    • Prasad, R., Singhal, R. K., Srivastava, D. K., Molina, J. T., Tomkinson, A. E., and Wilson, S. H. (1996) Specific interaction of DNA polymerase β and DNA ligase I in a multiprotein base excision repair complex from bovine testis. J. Biol. Chem. 271, 16000-16007.
    • (1996) J. Biol. Chem. , vol.271 , pp. 16000-16007
    • Prasad, R.1    Singhal, R.K.2    Srivastava, D.K.3    Molina, J.T.4    Tomkinson, A.E.5    Wilson, S.H.6
  • 63
    • 0034093291 scopus 로고    scopus 로고
    • Passing the baton in base excision repair
    • Wilson, S. H., and Kunkel, T. A. (2000) Passing the baton in base excision repair. Nat. Struct. Biol. 7, 176-178.
    • (2000) Nat. Struct. Biol. , vol.7 , pp. 176-178
    • Wilson, S.H.1    Kunkel, T.A.2
  • 64
    • 0031149139 scopus 로고    scopus 로고
    • How do DNA repair proteins locate damaged bases in the genome?
    • Verdine, G. L., and Bruner, S. D. (1997) How do DNA repair proteins locate damaged bases in the genome? Chem. Biol. 4, 329-334.
    • (1997) Chem. Biol. , vol.4 , pp. 329-334
    • Verdine, G.L.1    Bruner, S.D.2
  • 65
    • 0032836651 scopus 로고    scopus 로고
    • Initiation of base excision repair: Glycosylase mechanisms and structures
    • McCullough, A. K., Dodson, M. L., and Lloyd, R. S. (1999) Initiation of base excision repair: glycosylase mechanisms and structures. Annu. Rev. Biochem. 68, 255-285.
    • (1999) Annu. Rev. Biochem. , vol.68 , pp. 255-285
    • McCullough, A.K.1    Dodson, M.L.2    Lloyd, R.S.3
  • 68
    • 0034734383 scopus 로고    scopus 로고
    • Structure and function in the uracil-DNA glycosylase superfamily
    • Pearl, L. H. (2000) Structure and function in the uracil-DNA glycosylase superfamily. Mutat. Res. 460, 165-181.
    • (2000) Mutat. Res. , vol.460 , pp. 165-181
    • Pearl, L.H.1
  • 69
    • 0034734322 scopus 로고    scopus 로고
    • Structural studies of human alkyladenine glycosylase and E. coli 3-methyladenine glycosylase
    • Hollis, T., Lau, A., and Ellenberger, T. (2000) Structural studies of human alkyladenine glycosylase and E. coli 3-methyladenine glycosylase. Mutat. Res. 460, 201-210.
    • (2000) Mutat. Res. , vol.460 , pp. 201-210
    • Hollis, T.1    Lau, A.2    Ellenberger, T.3
  • 70
    • 0032167424 scopus 로고    scopus 로고
    • Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA
    • Parikh, S. S., Mol, C. D., Slupphaug, G., Bharati, S., Krokan, H. E., and Tainer, J. A. (1998) Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA. EMBO J. 17, 5214-5226.
    • (1998) EMBO J. , vol.17 , pp. 5214-5226
    • Parikh, S.S.1    Mol, C.D.2    Slupphaug, G.3    Bharati, S.4    Krokan, H.E.5    Tainer, J.A.6
  • 71
    • 0032498302 scopus 로고    scopus 로고
    • Crystal structure of a G: T/U mismatch-specific DNA glycosylase: Mismatch recognition by complementary-strand interactions
    • Barrett, T. E., Savva, R., Panayotou, G., Barlow, T., Brown, T., Jiricny, J., and Pearl, L. H. (1998) Crystal structure of a G: T/U mismatch-specific DNA glycosylase: mismatch recognition by complementary-strand interactions. Cell 92, 117-129.
    • (1998) Cell , vol.92 , pp. 117-129
    • Barrett, T.E.1    Savva, R.2    Panayotou, G.3    Barlow, T.4    Brown, T.5    Jiricny, J.6    Pearl, L.H.7
  • 72
    • 0030728449 scopus 로고    scopus 로고
    • The crystal structure of the human DNA repair endonuclease HAP1 suggests the recognition of extra-helical deoxyribose at DNA abasic sites
    • Gorman, M. A., Morera, S., Rothwell, D. G., de La Fortelle, E., Mol, C. D., Tainer, J. A., Hickson, I. D., and Freemont, P. S. (1997) The crystal structure of the human DNA repair endonuclease HAP1 suggests the recognition of extra-helical deoxyribose at DNA abasic sites. EMBO J. 16, 6548-6558.
    • (1997) EMBO J. , vol.16 , pp. 6548-6558
    • Gorman, M.A.1    Morera, S.2    Rothwell, D.G.3    De La Fortelle, E.4    Mol, C.D.5    Tainer, J.A.6    Hickson, I.D.7    Freemont, P.S.8
  • 73
    • 0034719372 scopus 로고    scopus 로고
    • DNA-bound structures and mutants reveal abasic DNA binding by APE1 DNA repair and coordination
    • Mol, C. D., Izumi, T., Mitra, S., and Tainer, J. A. (2000) DNA-bound structures and mutants reveal abasic DNA binding by APE1 DNA repair and coordination. Nature 403, 451-456.
    • (2000) Nature , vol.403 , pp. 451-456
    • Mol, C.D.1    Izumi, T.2    Mitra, S.3    Tainer, J.A.4
  • 74
    • 0030740948 scopus 로고    scopus 로고
    • Interaction of human apurinic endonuclease and DNA polymerase β in the base excision repair pathway
    • Bennett, R. A. O., Wilson, D. M., III, Wong, D., and Demple, B. (1997) Interaction of human apurinic endonuclease and DNA polymerase β in the base excision repair pathway. Proc. Natl. Acad. Sci. U.S.A. 94, 7166-7169.
    • (1997) Proc. Natl. Acad. Sci. U.S.A. , vol.94 , pp. 7166-7169
    • Bennett, R.A.O.1    Wilson D.M. III2    Wong, D.3    Demple, B.4
  • 75
    • 0034635403 scopus 로고    scopus 로고
    • FEN1 stimulation ofDNA polymerase β mediates an excision step in mammalian long patch base excision repair
    • Prasad, R., Dianov, G. L., Bohr, V. A., and Wilson, S. H. (2000) FEN1 stimulation ofDNA polymerase β mediates an excision step in mammalian long patch base excision repair. J. Biol. Chem. 275, 4460-4466.
    • (2000) J. Biol. Chem. , vol.275 , pp. 4460-4466
    • Prasad, R.1    Dianov, G.L.2    Bohr, V.A.3    Wilson, S.H.4
  • 76
    • 0037163025 scopus 로고    scopus 로고
    • Direct interaction between mammalian DNA polymerase β and proliferating cell nuclear antigen
    • Kedar, P. S., Kim, S.-J., Robertson, A., Hou, E., Prasad, R., Horton, J. K., and Wilson, S. H. (2002) Direct interaction between mammalian DNA polymerase β and proliferating cell nuclear antigen. J. Biol. Chem. 277, 31115-31123.
    • (2002) J. Biol. Chem. , vol.277 , pp. 31115-31123
    • Kedar, P.S.1    Kim, S.-J.2    Robertson, A.3    Hou, E.4    Prasad, R.5    Horton, J.K.6    Wilson, S.H.7
  • 77
    • 0034734380 scopus 로고    scopus 로고
    • Lessons learned from structural results on uracil-DNA glycosylase
    • Parikh, S. S., Putnam, C. D., and Tainer, J. A. (2000) Lessons learned from structural results on uracil-DNA glycosylase. Mutat. Res. 460, 183-199.
    • (2000) Mutat. Res. , vol.460 , pp. 183-199
    • Parikh, S.S.1    Putnam, C.D.2    Tainer, J.A.3
  • 78
    • 0032213289 scopus 로고    scopus 로고
    • Human mitochondrial uracil-DNA glycosylase preform (UNG1) is processed to two forms, one of which is resistant to inhibition by AP-sites
    • Bharati, S., Krokan, H. E., Kristiansen, L., Otterlei, M., and Slupphaug, G. (1998) Human mitochondrial uracil-DNA glycosylase preform (UNG1) is processed to two forms, one of which is resistant to inhibition by AP-sites. Nucleic Acids Res. 26, 4953-4959.
    • (1998) Nucleic Acids Res. , vol.26 , pp. 4953-4959
    • Bharati, S.1    Krokan, H.E.2    Kristiansen, L.3    Otterlei, M.4    Slupphaug, G.5
  • 79
    • 0035312710 scopus 로고    scopus 로고
    • Characterization of uracil-DNA glycosylase activity from Trypanosoma cruzi and its stimulation by AP endonuclease
    • Fárez-Vidal, M. E., Gallego, C., Ruiz-Pérez, L. M., and González-Pacanowska, D. (2001) Characterization of uracil-DNA glycosylase activity from Trypanosoma cruzi and its stimulation by AP endonuclease. Nucleic Acids Res. 29, 1549-1555.
    • (2001) Nucleic Acids Res. , vol.29 , pp. 1549-1555
    • Fárez-Vidal, M.E.1    Gallego, C.2    Ruiz-Pérez, L.M.3    González-Pacanowska, D.4
  • 80
    • 0035421186 scopus 로고    scopus 로고
    • Excision of deaminated cytosine from the vertebrate genome: Role of the SMUG1 uracil-DNA glycosylase
    • Nilsen, H., Haushalter, K. A., Robins, P., Barnes, D. E., Verdine, G. L., and Lindahl, T. (2001) Excision of deaminated cytosine from the vertebrate genome: role of the SMUG1 uracil-DNA glycosylase. EMBO J. 20, 4278-4286.
    • (2001) EMBO J. , vol.20 , pp. 4278-4286
    • Nilsen, H.1    Haushalter, K.A.2    Robins, P.3    Barnes, D.E.4    Verdine, G.L.5    Lindahl, T.6
  • 81
    • 18644363009 scopus 로고    scopus 로고
    • hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup
    • Kavli, B., Sundheim, O., Akbari, M., Otterlei, M., Nilsen, H., Skorpen, F., Aas, P. A., Hagen, L., Krokan, H. E., and Slupphaug, G. (2002) hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup. J. Biol. Chem. 277, 39926-39936.
    • (2002) J. Biol. Chem. , vol.277 , pp. 39926-39936
    • Kavli, B.1    Sundheim, O.2    Akbari, M.3    Otterlei, M.4    Nilsen, H.5    Skorpen, F.6    Aas, P.A.7    Hagen, L.8    Krokan, H.E.9    Slupphaug, G.10
  • 82
    • 0028933306 scopus 로고
    • Properties of a recombinant human uracil-DNA glycosylase from the UNG gene and evidence that UNG encodes the major uracil-DNA glycosylase
    • Slupphaug, G., Eftedal, I., Kavli, B., Bharati, S., Helle, N. M., Haug, T., Levine, D. W., and Krokan, H. E. (1995) Properties of a recombinant human uracil-DNA glycosylase from the UNG gene and evidence that UNG encodes the major uracil-DNA glycosylase. Biochemistry 34, 128-138.
    • (1995) Biochemistry , vol.34 , pp. 128-138
    • Slupphaug, G.1    Eftedal, I.2    Kavli, B.3    Bharati, S.4    Helle, N.M.5    Haug, T.6    Levine, D.W.7    Krokan, H.E.8
  • 83
    • 0032493637 scopus 로고    scopus 로고
    • Kinetics of the action of thymine DNA glycosylase
    • Waters, T. R., and Swann, P. F. (1998) Kinetics of the action of thymine DNA glycosylase. J. Biol. Chem. 273, 20007-20014.
    • (1998) J. Biol. Chem. , vol.273 , pp. 20007-20014
    • Waters, T.R.1    Swann, P.F.2
  • 84
    • 0032951710 scopus 로고    scopus 로고
    • Human thymine DNA glycosylase binds to apurinic sites in DNA but is displaced by human apurinic endonuclease 1
    • Waters, T. R., Gallinari, P., Jiricny, J., and Swann, P. F. (1999) Human thymine DNA glycosylase binds to apurinic sites in DNA but is displaced by human apurinic endonuclease 1. J. Biol. Chem. 274, 67-74.
    • (1999) J. Biol. Chem. , vol.274 , pp. 67-74
    • Waters, T.R.1    Gallinari, P.2    Jiricny, J.3    Swann, P.F.4
  • 86
    • 0037086643 scopus 로고    scopus 로고
    • Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover
    • Hardeland, U., Steinacher, R., Jiricny, J., and Schar, P. (2002) Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J. 21, 1456-1464.
    • (2002) EMBO J. , vol.21 , pp. 1456-1464
    • Hardeland, U.1    Steinacher, R.2    Jiricny, J.3    Schar, P.4
  • 87
    • 0034702867 scopus 로고    scopus 로고
    • Escherichia coli double-strand uracil-DNA glycosylase: Involvement in uracil-mediated DNA base excision repair and stimulation of activity by endonuclease IV
    • Sung, J.-S., and Mosbaugh, D. W. (2000) Escherichia coli double-strand uracil-DNA glycosylase: Involvement in uracil-mediated DNA base excision repair and stimulation of activity by endonuclease IV. Biochemistry 39, 10224-10235.
    • (2000) Biochemistry , vol.39 , pp. 10224-10235
    • Sung, J.-S.1    Mosbaugh, D.W.2
  • 88
    • 0037133232 scopus 로고    scopus 로고
    • 4-ethenocytosine, a potential product resulting from glycidaldehyde reaction
    • 4-ethenocytosine, a potential product resulting from glycidaldehyde reaction. Biochemistry 41, 2158-2165.
    • (2002) Biochemistry , vol.41 , pp. 2158-2165
    • Hang, B.1    Downing, G.2    Guliaev, A.B.3    Singer, B.4
  • 89
    • 0034681444 scopus 로고    scopus 로고
    • Distinct repair activities of human 7,8-dihydro-8-oxoguanine DNA glycosylase and formamidopyrimidine DNA glycosylase for formamidopyrimidine and 7,8-dihydro-8-oxoguanine
    • Asagoshi, K., Yamada, T., Terato, H., Ohyama, Y., Monden, Y., Arai, T., Nishimura, S., Aburatani, H., Lindahl, T., and Ide, H. (2000) Distinct repair activities of human 7,8-dihydro-8-oxoguanine DNA glycosylase and formamidopyrimidine DNA glycosylase for formamidopyrimidine and 7,8-dihydro-8-oxoguanine. J. Biol. Chem. 275, 4956-4964.
    • (2000) J. Biol. Chem. , vol.275 , pp. 4956-4964
    • Asagoshi, K.1    Yamada, T.2    Terato, H.3    Ohyama, Y.4    Monden, Y.5    Arai, T.6    Nishimura, S.7    Aburatani, H.8    Lindahl, T.9    Ide, H.10
  • 90
    • 0034666313 scopus 로고    scopus 로고
    • Substrate specificity and reaction mechanism of murine 8-oxoguanine-DNA glycosylase
    • Zharkov, D. O., Rosenquist, T. A., Gerchman, S. E., and Grollman, A. P. (2000) Substrate specificity and reaction mechanism of murine 8-oxoguanine-DNA glycosylase. J. Biol. Chem. 275, 28607-28617.
    • (2000) J. Biol. Chem. , vol.275 , pp. 28607-28617
    • Zharkov, D.O.1    Rosenquist, T.A.2    Gerchman, S.E.3    Grollman, A.P.4
  • 91
    • 0035863739 scopus 로고    scopus 로고
    • Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: Potential coordination of the initial steps in base excision repair
    • Hill, J. W., Hazra, T. K., Izumi, T., and Mitra, S. (2001) Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: Potential coordination of the initial steps in base excision repair. Nucleic Acids Res. 29, 430-438.
    • (2001) Nucleic Acids Res. , vol.29 , pp. 430-438
    • Hill, J.W.1    Hazra, T.K.2    Izumi, T.3    Mitra, S.4
  • 92
    • 0035869114 scopus 로고    scopus 로고
    • Mechanism of stimulation of the DNA glycosylase activity of hOGG1 by the major human AP endonuclease: Bypass of the AP lyase activity step
    • Vidal, A. E., Hickson, I. D., Boiteux, S., and Radicella, J. P. (2001) Mechanism of stimulation of the DNA glycosylase activity of hOGG1 by the major human AP endonuclease: Bypass of the AP lyase activity step. Nucleic Acids Res. 29, 1285-1292.
    • (2001) Nucleic Acids Res. , vol.29 , pp. 1285-1292
    • Vidal, A.E.1    Hickson, I.D.2    Boiteux, S.3    Radicella, J.P.4
  • 95
    • 0035877851 scopus 로고    scopus 로고
    • Stimulation of human endonuclease III by Y box-binding protein 1 (DNA-binding protein B). Interaction between a base excision repair enzyme and a transcription factor
    • Marenstein, D. R., Ocampo, M. T. A., Chan, M. K., Altamirano, A., Basu, A. K., Boorstein, R. J., Cunningham, R. P., and Teebor, G. W. (2001) Stimulation of human endonuclease III by Y box-binding protein 1 (DNA-binding protein B). Interaction between a base excision repair enzyme and a transcription factor. J. Biol. Chem. 276, 21242-21249.
    • (2001) J. Biol. Chem. , vol.276 , pp. 21242-21249
    • Marenstein, D.R.1    Ocampo, M.T.A.2    Chan, M.K.3    Altamirano, A.4    Basu, A.K.5    Boorstein, R.J.6    Cunningham, R.P.7    Teebor, G.W.8
  • 97
    • 0035811075 scopus 로고    scopus 로고
    • Human endonuclease III acts preferentially on DNA damage opposite guanine residues in DNA
    • Eide, L., Luna, L., Gustad, E. C., Henderson, P. T., Essigmann, J. M., Demple, B., and Seeberg, E. (2001) Human endonuclease III acts preferentially on DNA damage opposite guanine residues in DNA. Biochemistry 40, 6653-6659.
    • (2001) Biochemistry , vol.40 , pp. 6653-6659
    • Eide, L.1    Luna, L.2    Gustad, E.C.3    Henderson, P.T.4    Essigmann, J.M.5    Demple, B.6    Seeberg, E.7
  • 99
    • 0033557139 scopus 로고    scopus 로고
    • Nucleotide excision repair 3′ endonuclease XPG stimulates the activity of base excision repair enzyme thymine glycol DNA glycosylase
    • Bessho, T. (1999) Nucleotide excision repair 3′ endonuclease XPG stimulates the activity of base excision repair enzyme thymine glycol DNA glycosylase. Nucleic Acids Res. 27, 979-983.
    • (1999) Nucleic Acids Res. , vol.27 , pp. 979-983
    • Bessho, T.1
  • 100
    • 0242418186 scopus 로고    scopus 로고
    • Endonuclease IV enhances base excision repair of endonuclease III from Methanobacterium thermoautotrophicum
    • Back, J. H., Chung, J. H., Park, Y. I., Kim, K.-S., and Han, Y. S. (2003) Endonuclease IV enhances base excision repair of endonuclease III from Methanobacterium thermoautotrophicum. DNA Repair 2, 455-470.
    • (2003) DNA Repair , vol.2 , pp. 455-470
    • Back, J.H.1    Chung, J.H.2    Park, Y.I.3    Kim, K.-S.4    Han, Y.S.5
  • 101
    • 0037151055 scopus 로고    scopus 로고
    • Escherichia coli apurinic-apyrimidinic endonucleases enhance the turnover of the adenine glycosylase MutY with G:A substrates
    • Pope, M. A., Porello, S. L., and David, S. S. (2002) Escherichia coli apurinic-apyrimidinic endonucleases enhance the turnover of the adenine glycosylase MutY with G:A substrates. J. Biol. Chem. 277, 22605-22615.
    • (2002) J. Biol. Chem. , vol.277 , pp. 22605-22615
    • Pope, M.A.1    Porello, S.L.2    David, S.S.3
  • 102
    • 0035253515 scopus 로고    scopus 로고
    • Enhanced activity of adenine-DNA glycosylase (Myh) by apurinic/apyrimidinic endonuclease (Apel) in mammalian base excision repair of an A/GO mismatch
    • Yang, H., Clendenin, W. M., Wong, D., Demple, B., Slupska, M. M., Chiang, J.-H., and Miller, J. H. (2001) Enhanced activity of adenine-DNA glycosylase (Myh) by apurinic/apyrimidinic endonuclease (Apel) in mammalian base excision repair of an A/GO mismatch. Nucleic Acids Res. 29, 743-752.
    • (2001) Nucleic Acids Res. , vol.29 , pp. 743-752
    • Yang, H.1    Clendenin, W.M.2    Wong, D.3    Demple, B.4    Slupska, M.M.5    Chiang, J.-H.6    Miller, J.H.7
  • 103
    • 0019876798 scopus 로고
    • Purification and characterization of an apurinic/apyrimidinic endonuclease from HeLa cells
    • Kane, C. M., and Linn, S. (1981) Purification and characterization of an apurinic/apyrimidinic endonuclease from HeLa cells. J. Biol. Chem. 256, 3405-3414.
    • (1981) J. Biol. Chem. , vol.256 , pp. 3405-3414
    • Kane, C.M.1    Linn, S.2
  • 104
    • 0030474259 scopus 로고    scopus 로고
    • An unusual mechanism for the major human apurinic/apyrimidinic (AP) endonuclease involving 5″ cleavage of DNA containing a benzene-derived exocyclic adduct in the absence of an AP site
    • Hang, B., Chenna, A., Fraenkel-Conrat, H., and Singer, B. (1996) An unusual mechanism for the major human apurinic/apyrimidinic (AP) endonuclease involving 5″ cleavage of DNA containing a benzene-derived exocyclic adduct in the absence of an AP site. Proc. Natl. Acad. Sci. U.S.A. 93, 13737-13741.
    • (1996) Proc. Natl. Acad. Sci. U.S.A. , vol.93 , pp. 13737-13741
    • Hang, B.1    Chenna, A.2    Fraenkel-Conrat, H.3    Singer, B.4
  • 105
    • 0035098395 scopus 로고    scopus 로고
    • Rates of base excision repair are not solely dependent on levels of initiating enzymes
    • Cappelli, E., Hazra, T., Hill, J. W., Slupphaug, G., Bogliolo, M., and Frosina, G. (2001) Rates of base excision repair are not solely dependent on levels of initiating enzymes. Carcinogenesis 22, 387-393.
    • (2001) Carcinogenesis , vol.22 , pp. 387-393
    • Cappelli, E.1    Hazra, T.2    Hill, J.W.3    Slupphaug, G.4    Bogliolo, M.5    Frosina, G.6
  • 106
    • 0032574770 scopus 로고    scopus 로고
    • Activation of apurinic/apyrimidinic endonuclease in human cells by reactive oxygen species and its correlation with their adaptive response to genotoxicity of free radicals
    • Ramana, C. V., Boldogh, I., Izumi, T., and Mitra, S. (1998) Activation of apurinic/apyrimidinic endonuclease in human cells by reactive oxygen species and its correlation with their adaptive response to genotoxicity of free radicals. Proc. Natl. Acad. Sci. U.S.A. 95, 5061-5066.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 5061-5066
    • Ramana, C.V.1    Boldogh, I.2    Izumi, T.3    Mitra, S.4
  • 107
    • 0032188756 scopus 로고    scopus 로고
    • Apurinic endonuclease (Ref-1) is induced in mammalian cells by oxidative stress and involved in clastogenic adaptation
    • Grosch, S., Fritz, G., and Kaina, B. (1998) Apurinic endonuclease (Ref-1) is induced in mammalian cells by oxidative stress and involved in clastogenic adaptation. Cancer Res. 58, 4410-4416.
    • (1998) Cancer Res. , vol.58 , pp. 4410-4416
    • Grosch, S.1    Fritz, G.2    Kaina, B.3
  • 108
    • 0025342965 scopus 로고
    • Repair of intrinsic DNA lesions
    • Lindahl, T. (1990) Repair of intrinsic DNA lesions. Mutat. Res. 238, 305-311.
    • (1990) Mutat. Res. , vol.238 , pp. 305-311
    • Lindahl, T.1
  • 109
    • 0028801762 scopus 로고
    • Overexpression of N-methylpurine-DNA glycosylase in Chinese hamster ovary cells renders them more sensitive to the production of chromosomal aberrations by methylating agents: A case of imbalanced DNA repair
    • Coquerelle, T., Dosch, J., and Kaina, B. (1995) Overexpression of N-methylpurine-DNA glycosylase in Chinese hamster ovary cells renders them more sensitive to the production of chromosomal aberrations by methylating agents: a case of imbalanced DNA repair. Mutat. Res. 336, 9-17.
    • (1995) Mutat. Res. , vol.336 , pp. 9-17
    • Coquerelle, T.1    Dosch, J.2    Kaina, B.3
  • 110
    • 0032747178 scopus 로고    scopus 로고
    • Imbalanced base excision repair increases spontaneous mutation and alkylation sensitivity in Escherichia coli
    • Posnick, L. M., and Samson, L. D. (1999) Imbalanced base excision repair increases spontaneous mutation and alkylation sensitivity in Escherichia coli. J. Bacteriol. 181, 6763-6771.
    • (1999) J. Bacteriol. , vol.181 , pp. 6763-6771
    • Posnick, L.M.1    Samson, L.D.2
  • 111
    • 0345003994 scopus 로고    scopus 로고
    • Modulation of the toxic and mutagenic effects induced by methyl methanesulfonate in Chinese hamster ovary cells by overexpression of rat N-alkylpurine-DNA glycosylase
    • Calleja, F., Jansen, J. G., Vrieling, H., Laval, F., and van Zeeland, A. A. (1999) Modulation of the toxic and mutagenic effects induced by methyl methanesulfonate in Chinese hamster ovary cells by overexpression of rat N-alkylpurine-DNA glycosylase. Mutat. Res. 425, 185-194.
    • (1999) Mutat. Res. , vol.425 , pp. 185-194
    • Calleja, F.1    Jansen, J.G.2    Vrieling, H.3    Laval, F.4    Van Zeeland, A.A.5
  • 112
    • 0034007886 scopus 로고    scopus 로고
    • Overexpression of enzymes that repair endogenous damage to DNA
    • Frosina, G. (2000) Overexpression of enzymes that repair endogenous damage to DNA. Eur. J. Biochem. 267, 2135-2149.
    • (2000) Eur. J. Biochem. , vol.267 , pp. 2135-2149
    • Frosina, G.1
  • 113
    • 0027477075 scopus 로고
    • In vivo evidence for endogenous DNA alkylation damage as a source of spontaneous mutation in eukaryotic cells
    • Xiao, W., and Samson, L. (1993) In vivo evidence for endogenous DNA alkylation damage as a source of spontaneous mutation in eukaryotic cells. Proc. Natl. Acad. Sci. U.S.A. 90, 2117-2121.
    • (1993) Proc. Natl. Acad. Sci. U.S.A. , vol.90 , pp. 2117-2121
    • Xiao, W.1    Samson, L.2
  • 115
    • 0039118382 scopus 로고    scopus 로고
    • Proliferating cell nuclear antigen: More than a clamp for DNA polymerases
    • Jónsson, Z. O., and Hübscher, U. (1997) Proliferating cell nuclear antigen: more than a clamp for DNA polymerases. BioEssays 19, 967-975.
    • (1997) BioEssays , vol.19 , pp. 967-975
    • Jónsson, Z.O.1    Hübscher, U.2
  • 116
    • 0032126403 scopus 로고    scopus 로고
    • Protein-PCNA interactions: A DNA-scanning mechanism?
    • Kelman, Z., and Hurwitz, J. (1998) Protein-PCNA interactions: a DNA-scanning mechanism? Trends Biochem. Sci. 23, 236-238.
    • (1998) Trends Biochem. Sci. , vol.23 , pp. 236-238
    • Kelman, Z.1    Hurwitz, J.2
  • 117
    • 0033777562 scopus 로고    scopus 로고
    • The puzzle of PCNA's many partners
    • Warbrick, E. (2000) The puzzle of PCNA's many partners. BioEssays 22, 997-1006.
    • (2000) BioEssays , vol.22 , pp. 997-1006
    • Warbrick, E.1
  • 118
    • 0029892790 scopus 로고    scopus 로고
    • DNA excision repair
    • Sancar, A. (1996) DNA excision repair. Annu. Rev. Biochem. 65, 43-81.
    • (1996) Annu. Rev. Biochem. , vol.65 , pp. 43-81
    • Sancar, A.1
  • 119
    • 0029892791 scopus 로고    scopus 로고
    • DNA repair in eukaryotes
    • Wood, R. D. (1996) DNA repair in eukaryotes. Annu. Rev. Biochem. 65, 135-167.
    • (1996) Annu. Rev. Biochem. , vol.65 , pp. 135-167
    • Wood, R.D.1
  • 120
    • 0033118354 scopus 로고    scopus 로고
    • Molecular mechanism of nucleotide excision repair
    • de Laat, W. L., Jaspers, N. G. J., and Hoeijmakers, J. H. J. (1999) Molecular mechanism of nucleotide excision repair. Genes Dev. 13, 768-785.
    • (1999) Genes Dev. , vol.13 , pp. 768-785
    • De Laat, W.L.1    Jaspers, N.G.J.2    Hoeijmakers, J.H.J.3
  • 121
    • 0036318818 scopus 로고    scopus 로고
    • Molecular anatomy of the human excision nuclease assembled at sites of DNA damage
    • Reardon, J. T., and Sancar, A. (2002) Molecular anatomy of the human excision nuclease assembled at sites of DNA damage. Mol. Cell. Biol. 22, 5938-5945.
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 5938-5945
    • Reardon, J.T.1    Sancar, A.2
  • 122
    • 0024468299 scopus 로고
    • A new mechanism for repairing oxidative damage to DNA: (A)BC excinuclease removes AP sites and thymine glycols from DNA
    • Lin, J.-J., and Sancar, A. (1989) A new mechanism for repairing oxidative damage to DNA: (A)BC excinuclease removes AP sites and thymine glycols from DNA. Biochemistry 28, 7979-7984.
    • (1989) Biochemistry , vol.28 , pp. 7979-7984
    • Lin, J.-J.1    Sancar, A.2
  • 123
    • 0025017257 scopus 로고
    • UvrABC nuclease complex repairs thymine glycol, an oxidative DNA base damage
    • Kow, Y. W., Wallace, S. S., and Van Houten, B. (1990) UvrABC nuclease complex repairs thymine glycol, an oxidative DNA base damage. Mutat. Res. 235, 147-156.
    • (1990) Mutat. Res. , vol.235 , pp. 147-156
    • Kow, Y.W.1    Wallace, S.S.2    Van Houten, B.3
  • 124
    • 0034713911 scopus 로고    scopus 로고
    • The role of nucleotide excision repair of Escherichia coli in repair of spontaneous and gamma-radiation-induced DNA damage in the lacZcα gene
    • Kuipers, G. K., Slotman, B. J., Poldervaart, H. A., van Vilsteren, I. M., Reitsma-Wijker, C. A., and Lafleur, M. V. (2000) The role of nucleotide excision repair of Escherichia coli in repair of spontaneous and gamma-radiation-induced DNA damage in the lacZcα gene. Mutat. Res. 460, 117-125.
    • (2000) Mutat. Res. , vol.460 , pp. 117-125
    • Kuipers, G.K.1    Slotman, B.J.2    Poldervaart, H.A.3    Van Vilsteren, I.M.4    Reitsma-Wijker, C.A.5    Lafleur, M.V.6
  • 125
    • 0025337198 scopus 로고
    • Damage repertoire of Escherichia coli UvrABC nuclease complex includes abasic sites, base-damage analogues, and lesions containing adjacent 5′ or 3′ nicks
    • Snowden, A., Kow, Y. W., and Houten, B. V. (1990) Damage repertoire of Escherichia coli UvrABC nuclease complex includes abasic sites, base-damage analogues, and lesions containing adjacent 5′ or 3′ nicks. Biochemistry 29, 7254-7259.
    • (1990) Biochemistry , vol.29 , pp. 7254-7259
    • Snowden, A.1    Kow, Y.W.2    Houten, B.V.3
  • 126
    • 0027944087 scopus 로고
    • Substrate spectrum of human excinuclease: Repair of abasic sites, methylated bases, mismatches, and bulky adducts
    • Huang, J. C., Hsu, D. S., Kazantsev, A., and Sancar, A. (1994) Substrate spectrum of human excinuclease: repair of abasic sites, methylated bases, mismatches, and bulky adducts. Proc. Natl. Acad. Sci. U.S.A. 91, 12213-12217.
    • (1994) Proc. Natl. Acad. Sci. U.S.A. , vol.91 , pp. 12213-12217
    • Huang, J.C.1    Hsu, D.S.2    Kazantsev, A.3    Sancar, A.4
  • 127
    • 0030745912 scopus 로고    scopus 로고
    • In vitro repair of oxidative DNA damage by human nucleotide excision repair system: Possible explanation for neurodegeneration in Xeroderma pigmentosum patients
    • Reardon, J. T., Bessho, T., Kung, H. C., Bolton, P. H., and Sancar, A. (1997) In vitro repair of oxidative DNA damage by human nucleotide excision repair system: Possible explanation for neurodegeneration in Xeroderma pigmentosum patients. Proc. Natl. Acad. Sci. U.S.A. 94, 9463-9468.
    • (1997) Proc. Natl. Acad. Sci. U.S.A. , vol.94 , pp. 9463-9468
    • Reardon, J.T.1    Bessho, T.2    Kung, H.C.3    Bolton, P.H.4    Sancar, A.5
  • 128
    • 0034922788 scopus 로고    scopus 로고
    • Synergism between base excision repair, mediated by the DNA glycosylases Ntg1 and Ntg2, and nucleotide excision repair in the removal of oxidatively damaged DNA bases in Saccharomyces cerevisiae
    • Gellon, L., Barbey, R., van der Kemp, P. A., Thomas, D., and Boiteux, S. (2001) Synergism between base excision repair, mediated by the DNA glycosylases Ntg1 and Ntg2, and nucleotide excision repair in the removal of oxidatively damaged DNA bases in Saccharomyces cerevisiae. Mol. Gen. Genet. 265, 1087-1096.
    • (2001) Mol. Gen. Genet. , vol.265 , pp. 1087-1096
    • Gellon, L.1    Barbey, R.2    Van der Kemp, P.A.3    Thomas, D.4    Boiteux, S.5
  • 129
    • 0031889266 scopus 로고    scopus 로고
    • Synergism between yeast nucleotide and base excision repair pathways in the protection against DNA methylation damage
    • Xiao, W., and Chow, B. L. (1998) Synergism between yeast nucleotide and base excision repair pathways in the protection against DNA methylation damage. Curr. Genet. 33, 92-99.
    • (1998) Curr. Genet. , vol.33 , pp. 92-99
    • Xiao, W.1    Chow, B.L.2
  • 130
    • 0034031405 scopus 로고    scopus 로고
    • Contribution of base excision repair, nucleotide excision repair, and DNA recombination to alkylation resistance of the fission yeast Schizosaccharomyces pombe
    • Memisoglu, A., and Samson, L. (2000) Contribution of base excision repair, nucleotide excision repair, and DNA recombination to alkylation resistance of the fission yeast Schizosaccharomyces pombe. J. Bacteriol. 182, 2104-2112.
    • (2000) J. Bacteriol. , vol.182 , pp. 2104-2112
    • Memisoglu, A.1    Samson, L.2
  • 131
    • 0032913570 scopus 로고    scopus 로고
    • Overlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae
    • Swanson, R. L., Morey, N. J., Doetsch, P. W., and Jinks-Robertson, S. (1999) Overlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 2929-2935.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 2929-2935
    • Swanson, R.L.1    Morey, N.J.2    Doetsch, P.W.3    Jinks-Robertson, S.4
  • 132
    • 0037096191 scopus 로고    scopus 로고
    • Repair of 8-oxoguanine in Saccharomyces cerevisiae: Interplay of DNA repair and replication mechanisms
    • Boiteux, S., Gellon, L., and Guibourt, N. (2002) Repair of 8-oxoguanine in Saccharomyces cerevisiae: Interplay of DNA repair and replication mechanisms. Free Radical Biol. Med. 32, 1244-1253.
    • (2002) Free Radical Biol. Med. , vol.32 , pp. 1244-1253
    • Boiteux, S.1    Gellon, L.2    Guibourt, N.3
  • 138
    • 0034738030 scopus 로고    scopus 로고
    • Database of mouse strains carrying targeted mutations in genes affecting cellular responses to DNA damage
    • Friedberg, E. C., and Meira, L. B. (2000) Database of mouse strains carrying targeted mutations in genes affecting cellular responses to DNA damage. Mutat. Res. 459, 243-274.
    • (2000) Mutat. Res. , vol.459 , pp. 243-274
    • Friedberg, E.C.1    Meira, L.B.2
  • 141
    • 0037435402 scopus 로고    scopus 로고
    • The novel DNA glycosylase, NEIL1, protects mammalian cells from radiation-mediated cell death
    • Rosenquist, T. A., Zaikaa, E., Fernandesa, A. S., Zharkovb, D. O., Millera, H., and Grollman, A. P. (2003) The novel DNA glycosylase, NEIL1, protects mammalian cells from radiation-mediated cell death. DNA Repair 2, 581-591.
    • (2003) DNA Repair , vol.2 , pp. 581-591
    • Rosenquist, T.A.1    Zaikaa, E.2    Fernandesa, A.S.3    Zharkovb, D.O.4    Millera, H.5    Grollman, A.P.6
  • 144
    • 0030991162 scopus 로고    scopus 로고
    • XPC interacts with both hHR23B and hHR23A in vivo
    • Li, L., Lu, X., Peterson, C., and Legerski, R. (1997) XPC interacts with both hHR23B and hHR23A in vivo. Mutat. Res. 383, 197-203.
    • (1997) Mutat. Res. , vol.383 , pp. 197-203
    • Li, L.1    Lu, X.2    Peterson, C.3    Legerski, R.4
  • 145
    • 0033603338 scopus 로고    scopus 로고
    • Order of assembly of human DNA repair excision nuclease
    • Wakasugi, M., and Sancar, A. (1999) Order of assembly of human DNA repair excision nuclease. J. Biol. Chem. 274, 18759-18768.
    • (1999) J. Biol. Chem. , vol.274 , pp. 18759-18768
    • Wakasugi, M.1    Sancar, A.2
  • 146
    • 0037413689 scopus 로고    scopus 로고
    • Xeroderma pigmentosum group C protein interacts physically and functionally with thymine DNA glycosylase
    • Shimizu, Y., Iwai, S., Hanaoka, F., and Sugasawa, K. (2003) Xeroderma pigmentosum group C protein interacts physically and functionally with thymine DNA glycosylase. EMBO J. 22, 164-173.
    • (2003) EMBO J. , vol.22 , pp. 164-173
    • Shimizu, Y.1    Iwai, S.2    Hanaoka, F.3    Sugasawa, K.4
  • 147
    • 0028341657 scopus 로고
    • Isolation of active recombinant XPG protein, a human DNA repair endonuclease
    • O'Donovan, A., Scherly, D., Clarkson, S. G., and Wood, R. D. (1994) Isolation of active recombinant XPG protein, a human DNA repair endonuclease. J. Biol. Chem. 269, 15965-15968.
    • (1994) J. Biol. Chem. , vol.269 , pp. 15965-15968
    • O'Donovan, A.1    Scherly, D.2    Clarkson, S.G.3    Wood, R.D.4
  • 148
    • 0028983217 scopus 로고
    • XPG protein has a structure-specific endonuclease activity
    • Cloud, K. G., Shen, B., Strniste, G. F., and Park, M. S. (1995) XPG protein has a structure-specific endonuclease activity. Mutat. Res. 347, 55-60.
    • (1995) Mutat. Res. , vol.347 , pp. 55-60
    • Cloud, K.G.1    Shen, B.2    Strniste, G.F.3    Park, M.S.4
  • 149
    • 0029870677 scopus 로고    scopus 로고
    • Reaction mechanism of human DNA repair excision nuclease
    • Mu, D., Hsu, D. S., and Sancar, A. (1996). Reaction mechanism of human DNA repair excision nuclease. J. Biol. Chem. 271, 8285-8294.
    • (1996) J. Biol. Chem. , vol.271 , pp. 8285-8294
    • Mu, D.1    Hsu, D.S.2    Sancar, A.3
  • 150
    • 0030941340 scopus 로고    scopus 로고
    • The noncatalytic function of XPG protein during dual incision in human nucleotide excision repair
    • Wakasugi, M., Reardon, J. T., and Sancar, A. (1997) The noncatalytic function of XPG protein during dual incision in human nucleotide excision repair. J. Biol. Chem. 272, 16030-16034.
    • (1997) J. Biol. Chem. , vol.272 , pp. 16030-16034
    • Wakasugi, M.1    Reardon, J.T.2    Sancar, A.3
  • 151
    • 0028281443 scopus 로고
    • The characterization of a mammalian DNA structure- specific endonuclease
    • Harrington, J. J., and Lieber, M. R. (1994) The characterization of a mammalian DNA structure- specific endonuclease. EMBO J. 13, 1235-1246.
    • (1994) EMBO J. , vol.13 , pp. 1235-1246
    • Harrington, J.J.1    Lieber, M.R.2
  • 152
    • 0028089040 scopus 로고
    • The calf 5′ to 3′-exonuclease is also an endonuclease with both activities dependent on primers annealed upstream of the point of cleavage
    • Murante, R. S., Huang, L., Turchi, J. J., and Bambara, R. A. (1994) The calf 5′ to 3′-exonuclease is also an endonuclease with both activities dependent on primers annealed upstream of the point of cleavage. J. Biol. Chem. 269, 1191-1196.
    • (1994) J. Biol. Chem. , vol.269 , pp. 1191-1196
    • Murante, R.S.1    Huang, L.2    Turchi, J.J.3    Bambara, R.A.4
  • 153
    • 0030990434 scopus 로고    scopus 로고
    • A common mutational pattern in Cockayne syndrome patients from xeroderma pigmentosum group G: Implications for a second XPG function
    • Nouspikel, T., Lalle, P., Leadon, S. A., Cooper, P. K., and Clarkson, S. G. (1997) A common mutational pattern in Cockayne syndrome patients from xeroderma pigmentosum group G: Implications for a second XPG function. Proc. Natl. Acad. Sci. U.S.A. 94, 3116-3121.
    • (1997) Proc. Natl. Acad. Sci. U.S.A. , vol.94 , pp. 3116-3121
    • Nouspikel, T.1    Lalle, P.2    Leadon, S.A.3    Cooper, P.K.4    Clarkson, S.G.5
  • 154
    • 0035225869 scopus 로고    scopus 로고
    • Multiple DNA glycosylases for repair of 8-oxoguanine and their potential in vivo functions
    • Hazra, T. K., Hill, J. W., Izumi, T., and Mitra, S. (2001) Multiple DNA glycosylases for repair of 8-oxoguanine and their potential in vivo functions. Prog. Nucleic Acid Res. Mol. Biol. 68, 193-205.
    • (2001) Prog. Nucleic Acid Res. Mol. Biol. , vol.68 , pp. 193-205
    • Hazra, T.K.1    Hill, J.W.2    Izumi, T.3    Mitra, S.4
  • 158
    • 0035225868 scopus 로고    scopus 로고
    • Molecular mechanism of PCNA-dependent base excision repair
    • Matsumoto, Y. (2001) Molecular mechanism of PCNA-dependent base excision repair. Prog. Nucleic Acid Res. Mol. Biol. 68, 129-138.
    • (2001) Prog. Nucleic Acid Res. Mol. Biol. , vol.68 , pp. 129-138
    • Matsumoto, Y.1
  • 160
    • 0037151021 scopus 로고    scopus 로고
    • Direct interaction between uracil-DNA glycosylase and a proliferating cell nuclear antigen homologue in the crenarchaeon Pyrobaculum aerophilum
    • Yang, H., Chiang, J.-H., Fitz-Gibbon S., Lebel, M., Sartori, A. A., Jiricny, J., Slupska, M. M., and Miller, J. H. (2002) Direct interaction between uracil-DNA glycosylase and a proliferating cell nuclear antigen homologue in the crenarchaeon Pyrobaculum aerophilum. J. Biol. Chem. 277, 22271-22278.
    • (2002) J. Biol. Chem. , vol.277 , pp. 22271-22278
    • Yang, H.1    Chiang, J.-H.2    Fitz-Gibbon, S.3    Lebel, M.4    Sartori, A.A.5    Jiricny, J.6    Slupska, M.M.7    Miller, J.H.8
  • 161
    • 0033799985 scopus 로고    scopus 로고
    • Human DNA-demethylating activity: A glycosylase associated with RNA and PCNA
    • Vairapandi, M., Liebermann, D. A., Hoffman, B., and Duker, N. J. (2000) Human DNA-demethylating activity: A glycosylase associated with RNA and PCNA. J. Cell. Biochem. 79, 249-260.
    • (2000) J. Cell. Biochem. , vol.79 , pp. 249-260
    • Vairapandi, M.1    Liebermann, D.A.2    Hoffman, B.3    Duker, N.J.4
  • 162
    • 0037023678 scopus 로고    scopus 로고
    • Functional interaction of MutY homologue with proliferating cell nuclear antigen in fission yeast, Schizosaccharomyces pombe
    • Chang, D.-Y., and Lu, A.-L. (2002) Functional interaction of MutY homologue with proliferating cell nuclear antigen in fission yeast, Schizosaccharomyces pombe. J. Biol. Chem. 277, 11853-11858.
    • (2002) J. Biol. Chem. , vol.277 , pp. 11853-11858
    • Chang, D.-Y.1    Lu, A.-L.2
  • 163
    • 0030767281 scopus 로고    scopus 로고
    • The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor p21
    • Gary, R., Ludwig, D. L., Cornelius, H. L., MacInnes, M. A., and Park, M. S. (1997) The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor p21. J. Biol. Chem. 272, 24522-24529.
    • (1997) J. Biol. Chem. , vol.272 , pp. 24522-24529
    • Gary, R.1    Ludwig, D.L.2    Cornelius, H.L.3    MacInnes, M.A.4    Park, M.S.5
  • 164
    • 0030908093 scopus 로고    scopus 로고
    • Replication protein A: A heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism
    • Wold, M. S. (1997) Replication protein A: A heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem. 66, 61-92.
    • (1997) Annu. Rev. Biochem. , vol.66 , pp. 61-92
    • Wold, M.S.1
  • 166
    • 0028929611 scopus 로고
    • RPA involvement in the damage-recognition and incision steps of nucleotide excision repair
    • He, Z., Henricksen, L. A., Wold, M. S., Ingles, C. J. (1995) RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. Nature 374, 566-569.
    • (1995) Nature , vol.374 , pp. 566-569
    • He, Z.1    Henricksen, L.A.2    Wold, M.S.3    Ingles, C.J.4
  • 167
    • 0028942129 scopus 로고
    • DNA repair protein XPA binds replication protein A (RPA)
    • Matsuda, T., Saijo, M., Kuraoka, I., Kobayashi, T., Nakatsu, Y., Nagai, A., Enjoji, T., Masutani, C., Sugasawa, K., Hanaoka, F., Yasui, A., and Tanaka, K. (1995) DNA repair protein XPA binds replication protein A (RPA). J. Biol. Chem. 270, 4152-4157.
    • (1995) J. Biol. Chem. , vol.270 , pp. 4152-4157
    • Matsuda, T.1    Saijo, M.2    Kuraoka, I.3    Kobayashi, T.4    Nakatsu, Y.5    Nagai, A.6    Enjoji7
  • 168
    • 0029131609 scopus 로고
    • Human xeroderma pigmentosum group A protein interacts with human replication protein A and inhibits DNA replication
    • Lee, S.-H., Kim, D. K., and Drissi, R. (1995) Human xeroderma pigmentosum group A protein interacts with human replication protein A and inhibits DNA replication. J. Biol. Chem. 270, 21800-21805.
    • (1995) J. Biol. Chem. , vol.270 , pp. 21800-21805
    • Lee, S.-H.1    Kim, D.K.2    Drissi, R.3
  • 169
    • 17544367892 scopus 로고    scopus 로고
    • Replication protein A confers structure-specific endonuclease activities to the XPF-ERCC 1 and XPG subunits of human DNA repair excision nuclease
    • Matsunaga, T., Park, C. H., Bessho, T., Mu, D., and Sancar, A. (1996) Replication protein A confers structure-specific endonuclease activities to the XPF-ERCC 1 and XPG subunits of human DNA repair excision nuclease. J. Biol. Chem. 271, 11047-11050.
    • (1996) J. Biol. Chem. , vol.271 , pp. 11047-11050
    • Matsunaga, T.1    Park, C.H.2    Bessho, T.3    Mu, D.4    Sancar, A.5
  • 170
    • 0032502760 scopus 로고    scopus 로고
    • Functional analysis of human replication protein A in nucleotide excision repair
    • Stigger, E., Drissi, R., and Lee, S.-H. (1998) Functional analysis of human replication protein A in nucleotide excision repair. J. Biol. Chem. 273, 9337-9343.
    • (1998) J. Biol. Chem. , vol.273 , pp. 9337-9343
    • Stigger, E.1    Drissi, R.2    Lee, S.-H.3
  • 171
    • 0030996226 scopus 로고    scopus 로고
    • A sequence in the N-terminal region of human uracil-DNA glycosylase with homology to XPA interacts with the C-terminal part of the 34-kDa subunit of replication protein A
    • Nagelhus, T. A., Haug, T., Singh, K. K., Keshav, K. F., Skorpen, F., Otterlei, M., Bharati, S., Lindmo, T., Benichou, S., Benarous, R., and Krokan, H. E. (1997) A sequence in the N-terminal region of human uracil-DNA glycosylase with homology to XPA interacts with the C-terminal part of the 34-kDa subunit of replication protein A. J. Biol. Chem. 272, 6561-6566.
    • (1997) J. Biol. Chem. , vol.272 , pp. 6561-6566
    • Nagelhus, T.A.1    Haug, T.2    Singh, K.K.3    Keshav, K.F.4    Skorpen, F.5    Otterlei, M.6    Bharati, S.7    Lindmo, T.8    Benichou, S.9    Benarous, R.10    Krokan, H.E.11
  • 172
    • 0034721654 scopus 로고    scopus 로고
    • Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA
    • Mer, G., Bochkarev, A., Gupta, R., Bochkareva, E., Frappier, L., Ingles, C. J., Edwards, A. M., and Chazin, W. J. (2000) Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA. Cell 103, 449-456.
    • (2000) Cell , vol.103 , pp. 449-456
    • Mer, G.1    Bochkarev, A.2    Gupta, R.3    Bochkareva, E.4    Frappier, L.5    Ingles, C.J.6    Edwards, A.M.7    Chazin, W.J.8
  • 173
    • 0343990787 scopus 로고    scopus 로고
    • Stimulation of RTH1 nuclease of the yeast Saccharomyces cerevisiae by replication protein A
    • Biswas, E. E., Zhu, F. X., and Biswas, S. B. (1997) Stimulation of RTH1 nuclease of the yeast Saccharomyces cerevisiae by replication protein A. Biochemistry 36, 5955-5962.
    • (1997) Biochemistry , vol.36 , pp. 5955-5962
    • Biswas, E.E.1    Zhu, F.X.2    Biswas, S.B.3
  • 174
    • 0037127211 scopus 로고    scopus 로고
    • Mechanism underlying replication protein A stimulation of DNA ligase I
    • Ranalli, A., DeMott, M. S., and Bambara, R. A. (2002) Mechanism underlying replication protein A stimulation of DNA ligase I. J. Biol. Chem. 277, 1719-1727.
    • (2002) J. Biol. Chem. , vol.277 , pp. 1719-1727
    • Ranalli, A.1    DeMott, M.S.2    Bambara, R.A.3
  • 175
    • 0032538561 scopus 로고    scopus 로고
    • Replication protein A stimulates long patch DNA base excision repair
    • DeMott, M. S., Zigman, S., and Bambara, R. A. (1998) Replication protein A stimulates long patch DNA base excision repair. J. Biol. Chem. 273, 27492-27498.
    • (1998) J. Biol. Chem. , vol.273 , pp. 27492-27498
    • DeMott, M.S.1    Zigman, S.2    Bambara, R.A.3
  • 176
    • 0035393812 scopus 로고    scopus 로고
    • hMYH cell cycle-dependent expression, subcellular localization and association with replication foci: Evidence suggesting replication-coupled repair of adenine:8-oxoguanine mispairs
    • Boldogh, I., Milligan, D., Lee, M. S., Bassett, H., Lloyd, R. S., and McCullough, A. K. (2001) hMYH cell cycle-dependent expression, subcellular localization and association with replication foci: evidence suggesting replication-coupled repair of adenine:8-oxoguanine mispairs. Nucleic Acids Res. 29, 2802-2809.
    • (2001) Nucleic Acids Res. , vol.29 , pp. 2802-2809
    • Boldogh, I.1    Milligan, D.2    Lee, M.S.3    Bassett, H.4    Lloyd, R.S.5    McCullough, A.K.6
  • 177
    • 0025994365 scopus 로고
    • Cell cycle regulation and in vitro hybrid arrest analysis of the major human uracil-DNA glycosylase
    • Slupphaug, G., Olsen, L. C., Helland, D., Aasland, R., and Krokan, H. E. (1991) Cell cycle regulation and in vitro hybrid arrest analysis of the major human uracil-DNA glycosylase. Nucleic Acids Res. 19, 5131-5137.
    • (1991) Nucleic Acids Res. , vol.19 , pp. 5131-5137
    • Slupphaug, G.1    Olsen, L.C.2    Helland, D.3    Aasland, R.4    Krokan, H.E.5
  • 178
    • 0029125211 scopus 로고
    • Cell cycle regulation and subcellular localization of the major human uracil-DNA glycosylase
    • Nagelhus, T. A., Slupphaug, G., Lindmo, T., and Krokan, H. E. (1995) Cell cycle regulation and subcellular localization of the major human uracil-DNA glycosylase. Exp. Cell Res. 220, 292-297.
    • (1995) Exp. Cell Res. , vol.220 , pp. 292-297
    • Nagelhus, T.A.1    Slupphaug, G.2    Lindmo, T.3    Krokan, H.E.4
  • 179
    • 0029943449 scopus 로고    scopus 로고
    • Mismatch repair in replication fidelity, genetic recombination, and cancer biology
    • Modrich, P., and Lahue, R. (1996) Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu. Rev. Biochem. 65, 101-133.
    • (1996) Annu. Rev. Biochem. , vol.65 , pp. 101-133
    • Modrich, P.1    Lahue, R.2
  • 180
    • 0033557898 scopus 로고    scopus 로고
    • Recognition of DNA alterations by the mismatch repair system
    • Marra, G., and Schär, P. (1999) Recognition of DNA alterations by the mismatch repair system. Biochem. J. 338, 1-13.
    • (1999) Biochem. J. , vol.338 , pp. 1-13
    • Marra, G.1    Schär, P.2
  • 183
    • 0035850251 scopus 로고    scopus 로고
    • Molecular mechanisms of DNA mismatch repair
    • Hsieh, P. (2001) Molecular mechanisms of DNA mismatch repair. Mutat. Res. 486, 71-87.
    • (2001) Mutat. Res. , vol.486 , pp. 71-87
    • Hsieh, P.1
  • 184
    • 0036181088 scopus 로고    scopus 로고
    • Mismatch repair and the hereditary nonpolyposis colorectal cancer syndrome (HNPCC)
    • Muller, A., and Fishel, R. (2002) Mismatch repair and the hereditary nonpolyposis colorectal cancer syndrome (HNPCC). Cancer Invest. 20, 102-109.
    • (2002) Cancer Invest. , vol.20 , pp. 102-109
    • Muller, A.1    Fishel, R.2
  • 185
    • 0030580211 scopus 로고    scopus 로고
    • MutS interaction with mismatch and alkylated base containing DNA molecules detected by optical biosensor
    • Babic, I., Andrew, S. E., and Jirik, F. R. (1996) MutS interaction with mismatch and alkylated base containing DNA molecules detected by optical biosensor. Mutat. Res. 372, 87-96.
    • (1996) Mutat. Res. , vol.372 , pp. 87-96
    • Babic, I.1    Andrew, S.E.2    Jirik, F.R.3
  • 186
    • 0033578651 scopus 로고    scopus 로고
    • MutS recognition of exocyclic DNA adducts that are endogenous products of lipid oxidation
    • Johnson, K. A., Mierzwa, M. L., Fink, S. P., and Marnett, L. J. (1999) MutS recognition of exocyclic DNA adducts that are endogenous products of lipid oxidation. J. Biol. Chem 274, 27112-27118.
    • (1999) J. Biol. Chem. , vol.274 , pp. 27112-27118
    • Johnson, K.A.1    Mierzwa, M.L.2    Fink, S.P.3    Marnett, L.J.4
  • 187
    • 0033609832 scopus 로고    scopus 로고
    • Enzymatic repair of 5-formyluracil. II. Mismatch formation between 5-formyluracil and guanine during DNA replication and its recognition by two proteins involved in base excision repair (AlkA) and mismatch repair (MutS)
    • Terato, H., Masaoka, A., Kobayashi, M., Fukushima, S., Ohyama, Y., Yoshida, M., and Ide, H. (1999) Enzymatic repair of 5-formyluracil. II. Mismatch formation between 5-formyluracil and guanine during DNA replication and its recognition by two proteins involved in base excision repair (AlkA) and mismatch repair (MutS). J. Biol. Chem. 274, 25144-25150.
    • (1999) J. Biol. Chem. , vol.274 , pp. 25144-25150
    • Terato, H.1    Masaoka, A.2    Kobayashi, M.3    Fukushima, S.4    Ohyama, Y.5    Yoshida, M.6    Ide, H.7
  • 188
    • 0033197818 scopus 로고    scopus 로고
    • MSH2 and MSH6 are required for removal of adenine misincorporated opposite 8-oxo-guanine in S. cerevisiae
    • Ni, T. T., Marsischky, G. T., and Kolodner, R. D. (1999) MSH2 and MSH6 are required for removal of adenine misincorporated opposite 8-oxo-guanine in S. cerevisiae. Mol. Cell 4, 439-444.
    • (1999) Mol. Cell , vol.4 , pp. 439-444
    • Ni, T.T.1    Marsischky, G.T.2    Kolodner, R.D.3
  • 189
    • 0037040962 scopus 로고    scopus 로고
    • Activation of human MutS homologues by 8-oxo-guanine DNA damage
    • Mazurek, A., Berardini, M., and Fishel, R. (2002) Activation of human MutS homologues by 8-oxo-guanine DNA damage. J. Biol. Chem. 277, 8260-8266.
    • (2002) J. Biol. Chem. , vol.277 , pp. 8260-8266
    • Mazurek, A.1    Berardini, M.2    Fishel, R.3
  • 192
    • 0030198880 scopus 로고    scopus 로고
    • The mismatch-repair protein hMSH2 binds selectively to DNA adducts of the anticancer drug cisplatin
    • Mello, J. A., Acharya, S., Fishel, R., and Essigman, J. M. (1996) The mismatch-repair protein hMSH2 binds selectively to DNA adducts of the anticancer drug cisplatin. Chem. Biol. 3, 579-589.
    • (1996) Chem. Biol. , vol.3 , pp. 579-589
    • Mello, J.A.1    Acharya, S.2    Fishel, R.3    Essigman, J.M.4
  • 193
    • 0030811508 scopus 로고    scopus 로고
    • Selective recognition of a cisplatin-DNA adduct by human mismatch repair proteins
    • Yamada, M., O'Regan, E., Brown, R., and Karran, P. (1997) Selective recognition of a cisplatin-DNA adduct by human mismatch repair proteins. Nucleic Acids Res. 25, 491-495.
    • (1997) Nucleic Acids Res. , vol.25 , pp. 491-495
    • Yamada, M.1    O'Regan, E.2    Brown, R.3    Karran, P.4
  • 194
    • 0031053575 scopus 로고    scopus 로고
    • Recognition and repair of compound DNA lesions (base damage and mismatch) by human mismatch repair and excision repair systems
    • Mu, D., Tursun, M., Duckett, D. R., Drummond, J. T., Modrich, P., and Sancar, A. (1997) Recognition and repair of compound DNA lesions (base damage and mismatch) by human mismatch repair and excision repair systems. Mol. Cell. Biol. 17, 760-769.
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 760-769
    • Mu, D.1    Tursun, M.2    Duckett, D.R.3    Drummond, J.T.4    Modrich, P.5    Sancar, A.6
  • 195
    • 0032416476 scopus 로고    scopus 로고
    • The role of mismatch repair in the prevention of base pair mutations in Saccharomyces cerevisiae
    • Earley, M. C., and Crouse, G. F. (1998) The role of mismatch repair in the prevention of base pair mutations in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 95, 15487-15491.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 15487-15491
    • Earley, M.C.1    Crouse, G.F.2
  • 198
    • 0037192812 scopus 로고    scopus 로고
    • Human MutY homolog, a DNA glycosylase involved in base excision repair, physically and functionally interacts with mismatch repair proteins human MutS homologue 2/human MutS homologue 6
    • Gu, Y., Parker, A., Wilson, T. M., Bai, H., Chang, D.-Y., and Lu, A.-L. (2002) Human MutY homolog, a DNA glycosylase involved in base excision repair, physically and functionally interacts with mismatch repair proteins human MutS homologue 2/human MutS homologue 6. J. Biol. Chem. 277, 11135-11142.
    • (2002) J. Biol. Chem. , vol.277 , pp. 11135-11142
    • Gu, Y.1    Parker, A.2    Wilson, T.M.3    Bai, H.4    Chang, D.-Y.5    Lu, A.-L.6
  • 199
    • 0034711275 scopus 로고    scopus 로고
    • Functional interaction of proliferating cell nuclear antigen with MSH2-MSH6 and MSH2-MSH3 complexes
    • Clark, A. B., Valle, F., Drotschmann, K., Gary, R. K., and Kunkel, T. A. (2000) Functional interaction of proliferating cell nuclear antigen with MSH2-MSH6 and MSH2-MSH3 complexes. J. Biol. Chem. 275, 36498-36501.
    • (2000) J. Biol. Chem. , vol.275 , pp. 36498-36501
    • Clark, A.B.1    Valle, F.2    Drotschmann, K.3    Gary, R.K.4    Kunkel, T.A.5
  • 200
    • 0035868951 scopus 로고    scopus 로고
    • hMSH3 and hMSH6 interact with PCNA and colocalize with it to replication foci
    • Kleczkowska, H. E., Marra, G., Lettieri, T., and Jiricny, J. (2001) hMSH3 and hMSH6 interact with PCNA and colocalize with it to replication foci. Genes Dev. 15, 724-736.
    • (2001) Genes Dev. , vol.15 , pp. 724-736
    • Kleczkowska, H.E.1    Marra, G.2    Lettieri, T.3    Jiricny, J.4
  • 202
    • 0032029995 scopus 로고    scopus 로고
    • ATP-dependent interaction of human mismatch repair proteins and dual role of PCNA in mismatch repair
    • Gu, L., Hong, Y., McCulloch, S., Watanabe, H., and Li, G. M. (1998) ATP-dependent interaction of human mismatch repair proteins and dual role of PCNA in mismatch repair. Nucleic Acids Res. 26, 1173-1178.
    • (1998) Nucleic Acids Res. , vol.26 , pp. 1173-1178
    • Gu, L.1    Hong, Y.2    McCulloch, S.3    Watanabe, H.4    Li, G.M.5
  • 204
    • 0033764146 scopus 로고    scopus 로고
    • Proliferating cell nuclear antigen and Msh2p-Msh6p interact to form an active mispair recognition complex
    • Flores-Rozas, H., Clark, D., and Kolodner, R. D. (2000) Proliferating cell nuclear antigen and Msh2p-Msh6p interact to form an active mispair recognition complex. Nat. Genet. 26, 375-378.
    • (2000) Nat. Genet. , vol.26 , pp. 375-378
    • Flores-Rozas, H.1    Clark, D.2    Kolodner, R.D.3
  • 205
    • 0037414642 scopus 로고    scopus 로고
    • Transfer of the MSH2·MSH6 complex from proliferating cell nuclear antigen to mispaired bases in DNA
    • Lau, P. J., and Kolodner, R. D. (2003) Transfer of the MSH2·MSH6 complex from proliferating cell nuclear antigen to mispaired bases in DNA. J. Biol. Chem. 278, 14-17.
    • (2003) J. Biol. Chem. , vol.278 , pp. 14-17
    • Lau, P.J.1    Kolodner, R.D.2
  • 206
    • 0031953114 scopus 로고    scopus 로고
    • The evolutionarily conserved zinc finger motif in the largest subunit of human replication protein A is required for DNA replication and mismatch repair but not for nucleotide excision repair
    • Lin, Y. L., Shivji, M. K., Chen, C., Kolodner, R., Wood, R. D., and Dutta, A. (1998) The evolutionarily conserved zinc finger motif in the largest subunit of human replication protein A is required for DNA replication and mismatch repair but not for nucleotide excision repair. J. Biol. Chem. 273, 1453-1461.
    • (1998) J. Biol. Chem. , vol.273 , pp. 1453-1461
    • Lin, Y.L.1    Shivji, M.K.2    Chen, C.3    Kolodner, R.4    Wood, R.D.5    Dutta, A.6
  • 207
    • 0036121372 scopus 로고    scopus 로고
    • Partial reconstitution of human DNA mismatch repair in vitro: Characterization of the role of human replication protein A
    • Ramilo, C., Gu, L., Guo, S., Zhang, X., Patrick, S. M., Turchi, J. J., and Li, G. M. (2002) Partial reconstitution of human DNA mismatch repair in vitro: characterization of the role of human replication protein A. Mol. Cell. Biol. 22, 2037-2046.
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 2037-2046
    • Ramilo, C.1    Gu, L.2    Guo, S.3    Zhang, X.4    Patrick, S.M.5    Turchi, J.J.6    Li, G.M.7
  • 208
    • 0037119357 scopus 로고    scopus 로고
    • Ntg2p, a Saccharomyces cerevisiae DNA N-glycosylase/apurinic or apyrimidinic lyase involved in base excision repair of oxidative DNA damage, interacts with the DNA mismatch repair protein Mlh1p: Identification of a Mlh1p binding motif
    • Gellon, L., Werner, M., and Boiteux, S. (2002). Ntg2p, a Saccharomyces cerevisiae DNA N-glycosylase/apurinic or apyrimidinic lyase involved in base excision repair of oxidative DNA damage, interacts with the DNA mismatch repair protein Mlh1p: Identification of a Mlh1p binding motif. J. Biol. Chem. 277, 29963-29972.
    • (2002) J. Biol. Chem. , vol.277 , pp. 29963-29972
    • Gellon, L.1    Werner, M.2    Boiteux, S.3
  • 209
    • 0030755372 scopus 로고    scopus 로고
    • Functional domains of the Saccharomyces cerevisiae Mlh1p and Pms1p DNA mismatch repair proteins and their relevance to human hereditary nonpolyposis colorectal cancer-associated mutations
    • Pang, Q., Prolla, T. A., and Liskay, R. M. (1997) Functional domains of the Saccharomyces cerevisiae Mlh1p and Pms1p DNA mismatch repair proteins and their relevance to human hereditary nonpolyposis colorectal cancer-associated mutations. Mol. Cell. Biol. 17, 4465-4473.
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 4465-4473
    • Pang, Q.1    Prolla, T.A.2    Liskay, R.M.3
  • 210
    • 0033598817 scopus 로고    scopus 로고
    • Functional specificity of MutL homologues in yeast: Evidence for three Mlhl-based heterocomplexes with distinct roles during meiosis in recombination and mismatch correction
    • Wang, T.-F., Kleckner, N., and Hunter, N. (1999) Functional specificity of MutL homologues in yeast: Evidence for three Mlhl-based heterocomplexes with distinct roles during meiosis in recombination and mismatch correction. Proc. Natl. Acad. Sci. U.S.A. 96, 13914-13919.
    • (1999) Proc. Natl. Acad. Sci. U.S.A. , vol.96 , pp. 13914-13919
    • Wang, T.-F.1    Kleckner, N.2    Hunter, N.3
  • 211
    • 0035859816 scopus 로고    scopus 로고
    • Interactions of Exolp with components of MutLα in Saccharomyces cerevisiae
    • Tran, P. T., Simon, J. A., and Liskay, R. M. (2001). Interactions of Exolp with components of MutLα in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 98, 9760-9765.
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 9760-9765
    • Tran, P.T.1    Simon, J.A.2    Liskay, R.M.3
  • 214
    • 0032516887 scopus 로고    scopus 로고
    • Retinoic acid receptors interact physically and functionally with the T: G mismatch-specific thymine-DNA glycosylase
    • Um, S., Harbers, M., Benecke, A., Pierrat, B., Losson, R., and Chambon, P. (1998) Retinoic acid receptors interact physically and functionally with the T:G mismatch-specific thymine-DNA glycosylase. J. Biol. Chem. 273, 20728-20736.
    • (1998) J. Biol. Chem. , vol.273 , pp. 20728-20736
    • Um, S.1    Harbers, M.2    Benecke, A.3    Pierrat, B.4    Losson, R.5    Chambon, P.6
  • 215
    • 0035823623 scopus 로고    scopus 로고
    • The DNA glycosylase T:G mismatch-specific thymine DNA glycosylase represses thyroid transcription factor1-activated transcription
    • Missero, C., Pirro, M. T., Simeone, S., Pischetola, M., and Di Lauro, R. (2001) The DNA glycosylase T:G mismatch-specific thymine DNA glycosylase represses thyroid transcription factor1-activated transcription. J. Biol. Chem. 276, 33569-33575.
    • (2001) J. Biol. Chem. , vol.276 , pp. 33569-33575
    • Missero, C.1    Pirro, M.T.2    Simeone, S.3    Pischetola, M.4    Di Lauro, R.5
  • 216
    • 0036184090 scopus 로고    scopus 로고
    • Association of CBP/p300 acetylase and thymine DNA glycosylase links DNA repair and transcription
    • Tini, M., Benecke, A., Um, S., Torchia, J., Evans, R. M., and Chambon, P. (2002) Association of CBP/p300 acetylase and thymine DNA glycosylase links DNA repair and transcription. Mol. Cell 9, 265-277.
    • (2002) Mol. Cell , vol.9 , pp. 265-277
    • Tini, M.1    Benecke, A.2    Um, S.3    Torchia, J.4    Evans, R.M.5    Chambon, P.6
  • 217
    • 0033568099 scopus 로고    scopus 로고
    • Differential subcellular localization of human MutY homologue (hMYH) and the functional activity of adenine: 8-Oxoguanine DNA glycosylase
    • Takao, T., Zhang, Q.-M., Yonei, S., and Yasui, A. (1999) Differential subcellular localization of human MutY homologue (hMYH) and the functional activity of adenine: 8-oxoguanine DNA glycosylase. Nucleic Acids Res. 27, 3638-3644.
    • (1999) Nucleic Acids Res. , vol.27 , pp. 3638-3644
    • Takao, T.1    Zhang, Q.-M.2    Yonei, S.3    Yasui, A.4
  • 218
    • 0034654256 scopus 로고    scopus 로고
    • Identification of human MutY homologue (hMYH) as a repair enzyme for 2-hydroxyadenine in DNA and detection of multiple forms of hMYH located in nuclei and mitochondria
    • Ohtsubo, T., Nishioka, K., Imaiso, Y, Iwai, S., Shimokawa, H., Oda, H., Fujiwara, T., and Nakabeppu, Y. (2000) Identification of human MutY homologue (hMYH) as a repair enzyme for 2-hydroxyadenine in DNA and detection of multiple forms of hMYH located in nuclei and mitochondria. Nucleic Acids Res. 28, 1355-1364.
    • (2000) Nucleic Acids Res. , vol.28 , pp. 1355-1364
    • Ohtsubo, T.1    Nishioka, K.2    Imaiso, Y.3    Iwai, S.4    Shimokawa, H.5    Oda, H.6    Fujiwara, T.7    Nakabeppu, Y.8
  • 219
    • 0032526616 scopus 로고    scopus 로고
    • Mitochondrial targeting of human DNA glycosylases for repair of oxidative DNA damage
    • Takao, M., Aburatani, H., Kobayashi, K., and Yasui, A. (1998) Mitochondrial targeting of human DNA glycosylases for repair of oxidative DNA damage. Nucleic Acids Res. 26, 2917-2922.
    • (1998) Nucleic Acids Res. , vol.26 , pp. 2917-2922
    • Takao, M.1    Aburatani, H.2    Kobayashi, K.3    Yasui, A.4
  • 221
    • 0032945268 scopus 로고    scopus 로고
    • Expression and differential intracellular localization of two major forms of human 8-oxoguanine DNA glycosylase encoded by alternatively spliced OGG1 mRNAs
    • Nishioka, K., Ohtsubo, T., Oda, H., Fujiwara, T., Kang, D., Sugimachi, K., and Nakabeppu, Y. (1999) Expression and differential intracellular localization of two major forms of human 8-oxoguanine DNA glycosylase encoded by alternatively spliced OGG1 mRNAs. Mol. Biol. Cell 10, 1637-1652.
    • (1999) Mol. Biol. Cell , vol.10 , pp. 1637-1652
    • Nishioka, K.1    Ohtsubo, T.2    Oda, H.3    Fujiwara, T.4    Kang, D.5    Sugimachi, K.6    Nakabeppu, Y.7
  • 222
    • 0036837549 scopus 로고    scopus 로고
    • Functional crosstalk between hOgg1 and the helicase domain of Cockayne syndrome group B protein
    • Tuo, J., Chen, C., Zeng, X., Christiansen, M., and Bohr, V. A. (2002) Functional crosstalk between hOgg1 and the helicase domain of Cockayne syndrome group B protein. DNA Repair 3, 913-927.
    • (2002) DNA Repair , vol.3 , pp. 913-927
    • Tuo, J.1    Chen, C.2    Zeng, X.3    Christiansen, M.4    Bohr, V.A.5
  • 223
    • 0033105926 scopus 로고    scopus 로고
    • Repair of 8-oxoguanine in DNA is deficient in Cockayne syndrome group B cells
    • Dianov, G., Bischoff, C., Sunesen, M., and Bohr, V. A. (1999) Repair of 8-oxoguanine in DNA is deficient in Cockayne syndrome group B cells. Nucleic Acids Res. 27, 1365-1368.
    • (1999) Nucleic Acids Res. , vol.27 , pp. 1365-1368
    • Dianov, G.1    Bischoff, C.2    Sunesen, M.3    Bohr, V.A.4
  • 224
    • 0037310197 scopus 로고    scopus 로고
    • Disparity between DNA base excision repair in yeast and mammals: Transcriptional implications
    • Kelly, M. R., Kow, Y. W., and Wilson, D. M., III (2003) Disparity between DNA base excision repair in yeast and mammals: transcriptional implications. Cancer Res. 63, 549-554.
    • (2003) Cancer Res. , vol.63 , pp. 549-554
    • Kelly, M.R.1    Kow, Y.W.2    Wilson D.M. III3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.