-
1
-
-
84903739092
-
Measuring tumor cycling hypoxia and angiogenesis using a side‐firing fiber optic probe
-
Yu B, Shah A, Wang B, Rajaram N, Wang Q, Ramanujam N et al. Measuring tumor cycling hypoxia and angiogenesis using a side‐firing fiber optic probe. J Biophotonics 2014; 7: 552–564.
-
(2014)
J Biophotonics
, vol.7
, pp. 552-564
-
-
Yu, B.1
Shah, A.2
Wang, B.3
Rajaram, N.4
Wang, Q.5
Ramanujam, N.6
-
2
-
-
0034648765
-
Angiogenesis in cancer and other diseases
-
Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; 407: 249–257.
-
(2000)
Nature
, vol.407
, pp. 249-257
-
-
Carmeliet, P.1
Jain, R.K.2
-
3
-
-
71649094085
-
The role of hypoxia in development of the mammalian embryo
-
Dunwoodie SL. The role of hypoxia in development of the mammalian embryo. Dev Cell 2009; 17: 755–773.
-
(2009)
Dev Cell
, vol.17
, pp. 755-773
-
-
Dunwoodie, S.L.1
-
4
-
-
0033960898
-
Oxygen: Modulator of metabolic zonation and disease of the liver
-
Jungermann K, Kietzmann T. Oxygen: modulator of metabolic zonation and disease of the liver. Hepatology 2000; 31: 255–260.
-
(2000)
Hepatology
, vol.31
, pp. 255-260
-
-
Jungermann, K.1
Kietzmann, T.2
-
5
-
-
84859445000
-
Hypoxia-inducible factors: Mediators of cancer progression and targets for cancer therapy
-
Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmac Sci 2012; 33: 207–214.
-
(2012)
Trends Pharmac Sci
, vol.33
, pp. 207-214
-
-
Semenza, G.L.1
-
6
-
-
84964178914
-
The growth of malignant disease in man and the lower animals, with special reference to the vascular system
-
Goldmann E. The growth of malignant disease in man and the lower animals, with special reference to the vascular system. Proc R Soc Med 1908; 1: 1–13.
-
(1908)
Proc R Soc Med
, vol.1
, pp. 1-13
-
-
Goldmann, E.1
-
7
-
-
0032889698
-
Vascular permeability factor/ vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis
-
Dvorak HF, Nagy JA, Feng D, Brown LF, Dvorak AM. Vascular permeability factor/ vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol 1999; 237: 97–132.
-
(1999)
Curr Top Microbiol Immunol
, vol.237
, pp. 97-132
-
-
Dvorak, H.F.1
Nagy, J.A.2
Feng, D.3
Brown, L.F.4
Dvorak, A.M.5
-
8
-
-
0033839080
-
Openings between defective endothelial cells explain tumor vessel leakiness
-
Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 2000; 156: 1363–1380.
-
(2000)
Am J Pathol
, vol.156
, pp. 1363-1380
-
-
Hashizume, H.1
Baluk, P.2
Morikawa, S.3
McLean, J.W.4
Thurston, G.5
Roberge, S.6
-
9
-
-
79955759406
-
Therapeutic targeting of cancer cell metabolism
-
Dang CV, Hamaker M, Sun P, Le A, Gao P. Therapeutic targeting of cancer cell metabolism. J Mol Med 2011; 89: 205–212.
-
(2011)
J Mol Med
, vol.89
, pp. 205-212
-
-
Dang, C.V.1
Hamaker, M.2
Sun, P.3
Le, A.4
Gao, P.5
-
10
-
-
70549102512
-
Relationships between cycling hypoxia, HIF-1, angiogenesis and oxidative stress
-
Dewhirst MW. Relationships between cycling hypoxia, HIF-1, angiogenesis and oxidative stress. Radiat Res 2009; 172: 653–665.
-
(2009)
Radiat Res
, vol.172
, pp. 653-665
-
-
Dewhirst, M.W.1
-
11
-
-
44349157832
-
Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response
-
Dewhirst MW, Cao Y, Moeller B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer 2008; 8: 425–437.
-
(2008)
Nat Rev Cancer
, vol.8
, pp. 425-437
-
-
Dewhirst, M.W.1
Cao, Y.2
Moeller, B.3
-
12
-
-
17944375360
-
C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation
-
Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 2001; 107: 43–54.
-
(2001)
Cell
, vol.107
, pp. 43-54
-
-
Epstein, A.C.1
Gleadle, J.M.2
McNeill, L.A.3
Hewitson, K.S.4
O'rourke, J.5
Mole, D.R.6
-
13
-
-
0035834409
-
A conserved family of prolyl-4-hydroxylases that modify HIF
-
Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 2001; 294: 1337–1340.
-
(2001)
Science
, vol.294
, pp. 1337-1340
-
-
Bruick, R.K.1
McKnight, S.L.2
-
14
-
-
0033587146
-
The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis
-
Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999; 399: 271–275.
-
(1999)
Nature
, vol.399
, pp. 271-275
-
-
Maxwell, P.H.1
Wiesener, M.S.2
Chang, G.W.3
Clifford, S.C.4
Vaux, E.C.5
Cockman, M.E.6
-
15
-
-
0034904751
-
Hypoxia-inducible factor-1 alpha (HIF-1 alpha) escapes O(2)-driven proteasomal degradation irrespective of its subcellular localization: Nucleus or cytoplasm
-
Berra E, Roux D, Richard DE, Pouyssegur J. Hypoxia-inducible factor-1 alpha (HIF-1 alpha) escapes O(2)-driven proteasomal degradation irrespective of its subcellular localization: nucleus or cytoplasm. EMBO Rep 2001; 2: 615–620.
-
(2001)
EMBO Rep
, vol.2
, pp. 615-620
-
-
Berra, E.1
Roux, D.2
Richard, D.E.3
Pouyssegur, J.4
-
16
-
-
0029051439
-
Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension
-
Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 1995; 92: 5510–5514.
-
(1995)
Proc Natl Acad Sci USA
, vol.92
, pp. 5510-5514
-
-
Wang, G.L.1
Jiang, B.H.2
Rue, E.A.3
Semenza, G.L.4
-
17
-
-
0029859510
-
Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension
-
Jiang BH, Semenza GL, Bauer C, Marti HH. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 1996; 271: C1172–C1180.
-
(1996)
Am J Physiol
, vol.271
, pp. C1172-C1180
-
-
Jiang, B.H.1
Semenza, G.L.2
Bauer, C.3
Marti, H.H.4
-
18
-
-
0037097861
-
FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor
-
Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 2002; 16: 1466–1471.
-
(2002)
Genes Dev
, vol.16
, pp. 1466-1471
-
-
Lando, D.1
Peet, D.J.2
Gorman, J.J.3
Whelan, D.A.4
Whitelaw, M.L.5
Bruick, R.K.6
-
19
-
-
0036846033
-
Hypoxia-inducible factor asparaginyl hydroxylase (FIH-1) catalyses hydroxylation at the beta-carbon of asparagine-803
-
McNeill LA, Hewitson KS, Claridge TD, Seibel JF, Horsfall LE, Schofield CJ. Hypoxia-inducible factor asparaginyl hydroxylase (FIH-1) catalyses hydroxylation at the beta-carbon of asparagine-803. Biochem J 2002; 367: 571–575.
-
(2002)
Biochem J
, vol.367
, pp. 571-575
-
-
McNeill, L.A.1
Hewitson, K.S.2
Claridge, T.D.3
Seibel, J.F.4
Horsfall, L.E.5
Schofield, C.J.6
-
20
-
-
33645735151
-
The oxygen sensor factor-inhibiting hypoxia-inducible factor-1 controls expression of distinct genes through the bifunctional transcriptional character of hypoxia-inducible factor-1alpha
-
Dayan F, Roux D, Brahimi-Horn MC, Pouyssegur J, Mazure NM. The oxygen sensor factor-inhibiting hypoxia-inducible factor-1 controls expression of distinct genes through the bifunctional transcriptional character of hypoxia-inducible factor-1alpha. Cancer Res 2006; 66: 3688–3698.
-
(2006)
Cancer Res
, vol.66
, pp. 3688-3698
-
-
Dayan, F.1
Roux, D.2
Brahimi-Horn, M.C.3
Pouyssegur, J.4
Mazure, N.M.5
-
21
-
-
1642315195
-
Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases
-
Koivunen P, Hirsila M, Gunzler V, Kivirikko KI, Myllyharju J. Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases. J Biol Chem 2004; 279: 9899–9904.
-
(2004)
J Biol Chem
, vol.279
, pp. 9899-9904
-
-
Koivunen, P.1
Hirsila, M.2
Gunzler, V.3
Kivirikko, K.I.4
Myllyharju, J.5
-
22
-
-
0029944965
-
Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1
-
Jiang BH, Rue E, Wang GL, Roe R, Semenza GL. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem 1996; 271: 17771–17778.
-
(1996)
J Biol Chem
, vol.271
, pp. 17771-17778
-
-
Jiang, B.H.1
Rue, E.2
Wang, G.L.3
Roe, R.4
Semenza, G.L.5
-
23
-
-
79959450883
-
High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq
-
Schodel J, Oikonomopoulos S, Ragoussis J, Pugh CW, Ratcliffe PJ, Mole DR. High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood 2011; 117: e207–e217.
-
(2011)
Blood
, vol.117
, pp. e207-e217
-
-
Schodel, J.1
Oikonomopoulos, S.2
Ragoussis, J.3
Pugh, C.W.4
Ratcliffe, P.J.5
Mole, D.R.6
-
24
-
-
34547124062
-
Hypoxia: A key regulator of angiogenesis in cancer
-
Liao D, Johnson RS. Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev 2007; 26: 281–290.
-
(2007)
Cancer Metastasis Rev
, vol.26
, pp. 281-290
-
-
Liao, D.1
Johnson, R.S.2
-
25
-
-
84944463593
-
HIF isoforms have divergent effects on invasion, metastasis, metabolism and formation of lipid droplets
-
Shah T, Krishnamachary B, Wildes F, Mironchik Y, Kakkad S, Jacob D et al. HIF isoforms have divergent effects on invasion, metastasis, metabolism and formation of lipid droplets. Oncotarget 2015; 6: 28104–28119.
-
(2015)
Oncotarget
, vol.6
, pp. 28104-28119
-
-
Shah, T.1
Krishnamachary, B.2
Wildes, F.3
Mironchik, Y.4
Kakkad, S.5
Jacob, D.6
-
26
-
-
80555147884
-
Pyruvate kinase M2 regulates glucose metabolism by functioning as a coactivator for hypoxia-inducible factor 1 in cancer cells
-
Luo W, Semenza GL. Pyruvate kinase M2 regulates glucose metabolism by functioning as a coactivator for hypoxia-inducible factor 1 in cancer cells. Oncotarget 2011; 2: 551.
-
(2011)
Oncotarget
, vol.2
, pp. 551
-
-
Luo, W.1
Semenza, G.L.2
-
27
-
-
84856739946
-
Hypoxia-inducible factors in physiology and medicine
-
Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell 2012; 148: 399–408.
-
(2012)
Cell
, vol.148
, pp. 399-408
-
-
Semenza, G.L.1
-
28
-
-
0037315337
-
Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs
-
Wiesener MS, Jurgensen JS, Rosenberger C, Scholze CK, Horstrup JH, Warnecke C et al. Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J 2003; 17: 271–273.
-
(2003)
FASEB J
, vol.17
, pp. 271-273
-
-
Wiesener, M.S.1
Jurgensen, J.S.2
Rosenberger, C.3
Scholze, C.K.4
Horstrup, J.H.5
Warnecke, C.6
-
30
-
-
42449111722
-
PHDs overactivation during chronic hypoxia "desensitizes" HIFalpha and protects cells from necrosis
-
Ginouves A, Ilc K, Macias N, Pouyssegur J, Berra E. PHDs overactivation during chronic hypoxia "desensitizes" HIFalpha and protects cells from necrosis. Proc Natl Acad Sci USA 2008; 105: 4745–4750.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 4745-4750
-
-
Ginouves, A.1
Ilc, K.2
Macias, N.3
Pouyssegur, J.4
Berra, E.5
-
31
-
-
0041465022
-
prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia
-
Berra E, Benizri E, Ginouves A, Volmat V, Roux D, Pouyssegur J HIF. prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J 2003; 22: 4082–4090.
-
(2003)
EMBO J
, vol.22
, pp. 4082-4090
-
-
Berra, E.1
Benizri, E.2
Ginouves, A.3
Volmat, V.4
Roux, D.5
Pouyssegur, J.H.I.F.6
-
32
-
-
84866601479
-
Regulation of metabolism by hypoxia-inducible factor 1
-
Semenza G (ed). Regulation of metabolism by hypoxia-inducible factor 1. Cold Spring Harb Symp Quant Biol 2011; 76: 347–353.
-
(2011)
Cold Spring Harb Symp Quant Biol
, vol.76
, pp. 347-353
-
-
Semenza, G.1
-
33
-
-
34547121206
-
Hypoxia in cancer: Significance and impact on clinical out-come
-
Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical out-come. Cancer Metastasis Rev 2007; 26: 225–239.
-
(2007)
Cancer Metastasis Rev
, vol.26
, pp. 225-239
-
-
Vaupel, P.1
Mayer, A.2
-
34
-
-
84883501150
-
HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations
-
Semenza GL. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest 2013; 123: 3664.
-
(2013)
J Clin Invest
, vol.123
, pp. 3664
-
-
Semenza, G.L.1
-
35
-
-
19944429962
-
Hypoxia-inducible factor 1α expression as an intrinsic marker of hypoxia correlation with tumor oxygen, pimonidazole measurements, and outcome in locally advanced carcinoma of the cervix
-
Hutchison GJ, Valentine HR, Loncaster JA, Davidson SE, Hunter RD, Roberts SA et al. Hypoxia-inducible factor 1α expression as an intrinsic marker of hypoxia correlation with tumor oxygen, pimonidazole measurements, and outcome in locally advanced carcinoma of the cervix. Clin Cancer Res 2004; 10: 8405–8412.
-
(2004)
Clin Cancer Res
, vol.10
, pp. 8405-8412
-
-
Hutchison, G.J.1
Valentine, H.R.2
Loncaster, J.A.3
Davidson, S.E.4
Hunter, R.D.5
Roberts, S.A.6
-
36
-
-
4143118037
-
Lack of correlation between expression of HIF-1α protein and oxygenation status in identical tissue areas of squamous cell carcinomas of the uterine cervix
-
Mayer A, Wree A, Höckel M, Leo C, Pilch H, Vaupel P. Lack of correlation between expression of HIF-1α protein and oxygenation status in identical tissue areas of squamous cell carcinomas of the uterine cervix. Cancer Res 2004; 64: 5876–5881.
-
(2004)
Cancer Res
, vol.64
, pp. 5876-5881
-
-
Mayer, A.1
Wree, A.2
Höckel, M.3
Leo, C.4
Pilch, H.5
Vaupel, P.6
-
38
-
-
16644363476
-
HIF-1 and p53: Communication of transcription factors under hypoxia
-
Schmid T, Zhou J, Brune B. HIF-1 and p53: communication of transcription factors under hypoxia. J Cell Mol Med 2004; 8: 423–431.
-
(2004)
J Cell Mol Med
, vol.8
, pp. 423-431
-
-
Schmid, T.1
Zhou, J.2
Brune, B.3
-
39
-
-
0036179376
-
Hypoxia links ATR and p53 through replication arrest
-
Hammond EM, Denko NC, Dorie MJ, Abraham RT, Giaccia AJ. Hypoxia links ATR and p53 through replication arrest. Mol Cell Biol 2002; 22: 1834–1843.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 1834-1843
-
-
Hammond, E.M.1
Denko, N.C.2
Dorie, M.J.3
Abraham, R.T.4
Giaccia, A.J.5
-
42
-
-
31144478127
-
Mxi1 is induced by hypoxia in a HIF-1-dependent manner and protects cells from c-Myc-induced apoptosis
-
Corn PG, Ricci MS, Scata KA, Arsham AM, Simon MC, Dicker DT et al. Mxi1 is induced by hypoxia in a HIF-1-dependent manner and protects cells from c-Myc-induced apoptosis. Cancer Biol Ther 2005; 4: 1285–1294.
-
(2005)
Cancer Biol Ther
, vol.4
, pp. 1285-1294
-
-
Corn, P.G.1
Ricci, M.S.2
Scata, K.A.3
Arsham, A.M.4
Simon, M.C.5
Dicker, D.T.6
-
43
-
-
34047156190
-
HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity
-
Gordan JD, Bertout JA, Hu CJ, Diehl JA, Simon MC. HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 2007; 11: 335–347.
-
(2007)
Cancer Cell
, vol.11
, pp. 335-347
-
-
Gordan, J.D.1
Bertout, J.A.2
Hu, C.J.3
Diehl, J.A.4
Simon, M.C.5
-
45
-
-
38349056675
-
Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shut-tling
-
DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shut-tling. Genes Dev 2008; 22: 239–251.
-
(2008)
Genes Dev
, vol.22
, pp. 239-251
-
-
Deyoung, M.P.1
Horak, P.2
Sofer, A.3
Sgroi, D.4
Ellisen, L.W.5
-
46
-
-
79551691852
-
Targeting mTOR pathway: A new concept in cancer therapy
-
Advani SH. Targeting mTOR pathway: a new concept in cancer therapy. Indian J Med Paediatr Oncol 2010; 31: 132–136.
-
(2010)
Indian J Med Paediatr Oncol
, vol.31
, pp. 132-136
-
-
Advani, S.H.1
-
47
-
-
78649845933
-
Interaction of hypoxia-inducible factor-1alpha and Notch signaling regulates medulloblastoma precursor proliferation and fate
-
Pistollato F, Rampazzo E, Persano L, Abbadi S, Frasson C, Denaro L et al. Interaction of hypoxia-inducible factor-1alpha and Notch signaling regulates medulloblastoma precursor proliferation and fate. Stem Cells 2010; 28: 1918–1929.
-
(2010)
Stem Cells
, vol.28
, pp. 1918-1929
-
-
Pistollato, F.1
Rampazzo, E.2
Persano, L.3
Abbadi, S.4
Frasson, C.5
Denaro, L.6
-
48
-
-
0036566557
-
Activated Notch1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma
-
Jundt F, Anagnostopoulos I, Forster R, Mathas S, Stein H, Dorken B. Activated Notch1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. Blood 2002; 99: 3398–3403.
-
(2002)
Blood
, vol.99
, pp. 3398-3403
-
-
Jundt, F.1
Anagnostopoulos, I.2
Forster, R.3
Mathas, S.4
Stein, H.5
Dorken, B.6
-
49
-
-
77950523330
-
Hypoxia promotes glycogen accumulation through hypoxia inducible factor (HIF)-mediated induction of glycogen synthase 1
-
Pescador N, Villar D, Cifuentes D, Garcia-Rocha M, Ortiz-Barahona A, Vazquez S et al. Hypoxia promotes glycogen accumulation through hypoxia inducible factor (HIF)-mediated induction of glycogen synthase 1. PLoS ONE 2010; 5: e9644.
-
(2010)
Plos ONE
, vol.5
, pp. e9644
-
-
Pescador, N.1
Villar, D.2
Cifuentes, D.3
Garcia-Rocha, M.4
Ortiz-Barahona, A.5
Vazquez, S.6
-
50
-
-
0035233633
-
Mathematical models of tumour invasion mediated by transformation-induced alteration of microenvironmental pH
-
Discussion–9
-
Gatenby RA, Gawlinski ET. Mathematical models of tumour invasion mediated by transformation-induced alteration of microenvironmental pH. Novartis Found Symp 2001; 240: 85–96; Discussion–9.
-
(2001)
Novartis Found Symp
, vol.240
, pp. 85-96
-
-
Gatenby, R.A.1
Gawlinski, E.T.2
-
51
-
-
84870507227
-
Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells
-
Favaro E, Bensaad K, Chong MG, Tennant DA, Ferguson DJ, Snell C et al. Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells. Cell Metab 2012; 16: 751–764.
-
(2012)
Cell Metab
, vol.16
, pp. 751-764
-
-
Favaro, E.1
Bensaad, K.2
Chong, M.G.3
Tennant, D.A.4
Ferguson, D.J.5
Snell, C.6
-
52
-
-
84861851223
-
Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level
-
Obel LF, Muller MS, Walls AB, Sickmann HM, Bak LK, Waagepetersen HS et al. Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level. Front Neuroenergetics 2012; 4: 3.
-
(2012)
Front Neuroenergetics
, vol.4
, pp. 3
-
-
Obel, L.F.1
Muller, M.S.2
Walls, A.B.3
Sickmann, H.M.4
Bak, L.K.5
Waagepetersen, H.S.6
-
53
-
-
84875779488
-
Targeting glycogen metabolism: A novel strategy to inhibit cancer cell growth?
-
Favaro E, Harris AL. Targeting glycogen metabolism: a novel strategy to inhibit cancer cell growth? Oncotarget 2013; 4: 3–4.
-
(2013)
Oncotarget
, vol.4
, pp. 3-4
-
-
Favaro, E.1
Harris, A.L.2
-
54
-
-
77049249588
-
Respiratory enzymes in oxidative phosphorylation. III. The steady state
-
Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. III. The steady state. J BIol Chem 1955; 217: 409–427.
-
(1955)
J Biol Chem
, vol.217
, pp. 409-427
-
-
Chance, B.1
Williams, G.R.2
-
55
-
-
0021398965
-
Brain NADH redox state monitored in vivo by fiber optic surface fluorometry
-
Mayevsky A. Brain NADH redox state monitored in vivo by fiber optic surface fluorometry. Brain Res 1984; 319: 49–68.
-
(1984)
Brain Res
, vol.319
, pp. 49-68
-
-
Mayevsky, A.1
-
56
-
-
33646917296
-
The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism
-
Ullah MS, Davies AJ, Halestrap AP. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J Biol Chem 2006; 281: 9030–9037.
-
(2006)
J Biol Chem
, vol.281
, pp. 9030-9037
-
-
Ullah, M.S.1
Davies, A.J.2
Halestrap, A.P.3
-
57
-
-
0042242676
-
The glycolytic phenotype in carcinogenesis and tumor invasion: Insights through mathematical models
-
Gatenby RA, Gawlinski ET. The glycolytic phenotype in carcinogenesis and tumor invasion: insights through mathematical models. Cancer Res 2003; 63: 3847–3854.
-
(2003)
Cancer Res
, vol.63
, pp. 3847-3854
-
-
Gatenby, R.A.1
Gawlinski, E.T.2
-
58
-
-
0011352928
-
Physicochemical nature of isozvmes
-
Markert CL, Appella E. Physicochemical nature of isozvmes. Ann N Y Acad Sci 1961; 94: 678–690.
-
(1961)
Ann N Y Acad Sci
, vol.94
, pp. 678-690
-
-
Markert, C.L.1
Appella, E.2
-
59
-
-
37049236727
-
Nature and development of lactic dehydrogenases: The two major types of this enzyme form molecular hybrids which change in makeup during development
-
Cahn RD, Zwilling E, Kaplan NO, Levine L. Nature and development of lactic dehydrogenases: the two major types of this enzyme form molecular hybrids which change in makeup during development. Science 1962; 136: 962–969.
-
(1962)
Science
, vol.136
, pp. 962-969
-
-
Cahn, R.D.1
Zwilling, E.2
Kaplan, N.O.3
Levine, L.4
-
60
-
-
0015368324
-
Identification of lactate-dehydrogenase Iso-enzymes by rapid Kinetics
-
Bishop MJ, Everse J, Kaplan NO. Identification of lactate-dehydrogenase Iso-enzymes by rapid Kinetics. Proc Natl Acad Sci USA 1972; 69: 1761–1765.
-
(1972)
Proc Natl Acad Sci USA
, vol.69
, pp. 1761-1765
-
-
Bishop, M.J.1
Everse, J.2
Kaplan, N.O.3
-
61
-
-
0030460724
-
Hypoxia response elements in the aldolase A, enolase 1, and lactate dehy-drogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1
-
Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P et al. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehy-drogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 1996; 271: 32529–32537.
-
(1996)
J Biol Chem
, vol.271
, pp. 32529-32537
-
-
Semenza, G.L.1
Jiang, B.H.2
Leung, S.W.3
Passantino, R.4
Concordet, J.P.5
Maire, P.6
-
63
-
-
33947724515
-
HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells
-
Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 2007; 129: 111–122.
-
(2007)
Cell
, vol.129
, pp. 111-122
-
-
Fukuda, R.1
Zhang, H.2
Kim, J.W.3
Shimoda, L.4
Dang, C.V.5
Semenza, G.L.6
-
64
-
-
34347227058
-
Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1
-
Semenza GL. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J 2007; 405: 1–9.
-
(2007)
Biochem J
, vol.405
, pp. 1-9
-
-
Semenza, G.L.1
-
65
-
-
84902332213
-
Quantitative flux analysis reveals folate-dependent NADPH production
-
Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 2014; 510: 298–302.
-
(2014)
Nature
, vol.510
, pp. 298-302
-
-
Fan, J.1
Ye, J.2
Kamphorst, J.J.3
Shlomi, T.4
Thompson, C.B.5
Rabinowitz, J.D.6
-
66
-
-
84904504373
-
Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells
-
Lewis CA, Parker SJ, Fiske BP, McCloskey D, Gui DY, Green CR et al. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol Cell 2014; 55: 253–263.
-
(2014)
Mol Cell
, vol.55
, pp. 253-263
-
-
Lewis, C.A.1
Parker, S.J.2
Fiske, B.P.3
McCloskey, D.4
Gui, D.Y.5
Green, C.R.6
-
67
-
-
11244347171
-
Glycolytic enzymes can modulate cellular life span
-
Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G et al. Glycolytic enzymes can modulate cellular life span. Cancer Res 2005; 65: 177–185.
-
(2005)
Cancer Res
, vol.65
, pp. 177-185
-
-
Kondoh, H.1
Lleonart, M.E.2
Gil, J.3
Wang, J.4
Degan, P.5
Peters, G.6
-
68
-
-
33745918951
-
TIGAR, a p53-inducible regulator of glycolysis and apoptosis
-
Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 2006; 126: 107–120.
-
(2006)
Cell
, vol.126
, pp. 107-120
-
-
Bensaad, K.1
Tsuruta, A.2
Selak, M.A.3
Vidal, M.N.4
Nakano, K.5
Bartrons, R.6
-
69
-
-
0022461502
-
Oxygen dependence of mitochondrial function in iso-lated rat cardiac myocytes
-
Kennedy FG, Jones DP. Oxygen dependence of mitochondrial function in iso-lated rat cardiac myocytes. Am J Physiol 1986; 250: C374–C383.
-
(1986)
Am J Physiol
, vol.250
, pp. C374-C383
-
-
Kennedy, F.G.1
Jones, D.P.2
-
70
-
-
0023869404
-
The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration
-
Wilson DF, Rumsey WL, Green TJ, Vanderkooi JM. The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration. J Biol Chem 1988; 263: 2712–2718.
-
(1988)
J Biol Chem
, vol.263
, pp. 2712-2718
-
-
Wilson, D.F.1
Rumsey, W.L.2
Green, T.J.3
Vanderkooi, J.M.4
-
71
-
-
84878679199
-
A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence
-
Kaplon J, Zheng L, Meissl K, Chaneton B, Selivanov VA, Mackay G et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 2013; 498: 109–112.
-
(2013)
Nature
, vol.498
, pp. 109-112
-
-
Kaplon, J.1
Zheng, L.2
Meissl, K.3
Chaneton, B.4
Selivanov, V.A.5
Mackay, G.6
-
72
-
-
79957774646
-
Pyruvate car-boxylase is required for glutamine-independent growth of tumor cells
-
Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, Mates JM et al. Pyruvate car-boxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci USA 2011; 108: 8674–8679.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 8674-8679
-
-
Cheng, T.1
Sudderth, J.2
Yang, C.3
Mullen, A.R.4
Jin, E.S.5
Mates, J.M.6
-
73
-
-
84942991530
-
Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis
-
Cardaci S, Zheng L, MacKay G, van den Broek NJ, MacKenzie ED, Nixon C et al. Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis. Nat Cell Biol 2015; 17: 1317–1326.
-
(2015)
Nat Cell Biol
, vol.17
, pp. 1317-1326
-
-
Cardaci, S.1
Zheng, L.2
Mackay, G.3
van den Broek, N.J.4
Mackenzie, E.D.5
Nixon, C.6
-
74
-
-
80052580351
-
Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydra-tase
-
Frezza C, Zheng L, Folger O, Rajagopalan KN, MacKenzie ED, Jerby L et al. Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydra-tase. Nature 2011; 477: 225–228.
-
(2011)
Nature
, vol.477
, pp. 225-228
-
-
Frezza, C.1
Zheng, L.2
Folger, O.3
Rajagopalan, K.N.4
Mackenzie, E.D.5
Jerby, L.6
-
75
-
-
84946210278
-
Loss of succinate dehydrogenase activity results in dependency on pyruvate carboxylation for cellular anabolism
-
Lussey-Lepoutre C, Hollinshead KE, Ludwig C, Menara M, Morin A, Castro-Vega LJ et al. Loss of succinate dehydrogenase activity results in dependency on pyruvate carboxylation for cellular anabolism. Nat Commun 2015; 6: 8784.
-
(2015)
Nat Commun
, vol.6
-
-
Lussey-Lepoutre, C.1
Hollinshead, K.E.2
Ludwig, C.3
Menara, M.4
Morin, A.5
Castro-Vega, L.J.6
-
76
-
-
57749088701
-
Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction
-
Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 2008; 105: 18782–18787.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 18782-18787
-
-
Wise, D.R.1
Deberardinis, R.J.2
Mancuso, A.3
Sayed, N.4
Zhang, X.Y.5
Pfeiffer, H.K.6
-
77
-
-
70350728803
-
MYC-induced cancer cell energy metabolism and therapeutic opportunities
-
Dang CV, Le A, Gao P. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res 2009; 15: 6479–6483.
-
(2009)
Clin Cancer Res
, vol.15
, pp. 6479-6483
-
-
Dang, C.V.1
Le, A.2
Gao, P.3
-
78
-
-
84855453655
-
Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells
-
Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 2012; 15: 110–121.
-
(2012)
Cell Metab
, vol.15
, pp. 110-121
-
-
Le, A.1
Lane, A.N.2
Hamaker, M.3
Bose, S.4
Gouw, A.5
Barbi, J.6
-
79
-
-
84855987831
-
Reductive carboxylation supports growth in tumour cells with defective mitochondria
-
Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 2012; 481: 385–388.
-
(2012)
Nature
, vol.481
, pp. 385-388
-
-
Mullen, A.R.1
Wheaton, W.W.2
Jin, E.S.3
Chen, P.H.4
Sullivan, L.B.5
Cheng, T.6
-
80
-
-
33745149291
-
p53 regulates mitochondrial respiration
-
Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O et al. p53 regulates mitochondrial respiration. Science 2006; 312: 1650–1653.
-
(2006)
Science
, vol.312
, pp. 1650-1653
-
-
Matoba, S.1
Kang, J.G.2
Patino, W.D.3
Wragg, A.4
Boehm, M.5
Gavrilova, O.6
-
81
-
-
84865313576
-
Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells
-
Filipp FV, Scott DA, Ronai ZA, Osterman AL, Smith JW. Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells. Pigm Cell Melanoma R 2012; 25: 375–383.
-
(2012)
Pigm Cell Melanoma R
, vol.25
, pp. 375-383
-
-
Filipp, F.V.1
Scott, D.A.2
Ronai, Z.A.3
Osterman, A.L.4
Smith, J.W.5
-
82
-
-
84856014884
-
Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia
-
Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 2012; 481: 380–384.
-
(2012)
Nature
, vol.481
, pp. 380-384
-
-
Metallo, C.M.1
Gameiro, P.A.2
Bell, E.L.3
Mattaini, K.R.4
Yang, J.5
Hiller, K.6
-
83
-
-
83755178091
-
Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability
-
Wise DR, Ward PS, Shay JE, Cross JR, Gruber JJ, Sachdeva UM et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci USA 2011; 108: 19611–19616.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 19611-19616
-
-
Wise, D.R.1
Ward, P.S.2
Shay, J.E.3
Cross, J.R.4
Gruber, J.J.5
Sachdeva, U.M.6
-
84
-
-
51049091904
-
Quantifying reductive carboxylation flux of glutamine to lipid in a brown adipocyte cell line
-
Yoo H, Antoniewicz MR, Stephanopoulos G, Kelleher JK. Quantifying reductive carboxylation flux of glutamine to lipid in a brown adipocyte cell line. J BIol Chem 2008; 283: 20621–20627.
-
(2008)
J Biol Chem
, vol.283
, pp. 20621-20627
-
-
Yoo, H.1
Antoniewicz, M.R.2
Stephanopoulos, G.3
Kelleher, J.K.4
-
85
-
-
84881329062
-
Reductive glutamine metabolism is a function of the alpha-ketoglutarate to citrate ratio in cells
-
Fendt SM, Bell EL, Keibler MA, Olenchock BA, Mayers JR, Wasylenko TM et al. Reductive glutamine metabolism is a function of the alpha-ketoglutarate to citrate ratio in cells. Nat Commun 2013; 4: 2236.
-
(2013)
Nat Commun
, vol.4
-
-
Fendt, S.M.1
Bell, E.L.2
Keibler, M.A.3
Olenchock, B.A.4
Mayers, J.R.5
Wasylenko, T.M.6
-
86
-
-
84875354450
-
In vivo HIF-mediated reductive carboxylation Is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation
-
Gameiro PA, Yang JJ, Metelo AM, Perez-Carro R, Baker R, Wang ZW et al. In vivo HIF-mediated reductive carboxylation Is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation. Cell Metab 2013; 17: 372–385.
-
(2013)
Cell Metab
, vol.17
, pp. 372-385
-
-
Gameiro, P.A.1
Yang, J.J.2
Metelo, A.M.3
Perez-Carro, R.4
Baker, R.5
Wang, Z.W.6
-
87
-
-
84893465244
-
Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth
-
Sun RC, Denko NC. Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab 2014; 19: 285–292.
-
(2014)
Cell Metab
, vol.19
, pp. 285-292
-
-
Sun, R.C.1
Denko, N.C.2
-
88
-
-
84902343371
-
Oxidation of alpha-ketoglutarate is required for reductive carboxylation in cancer cells with mito-chondrial defects
-
Mullen AR, Hu Z, Shi X, Jiang L, Boroughs LK, Kovacs Z et al. Oxidation of alpha-ketoglutarate is required for reductive carboxylation in cancer cells with mito-chondrial defects. Cell Rep 2014; 7: 1679–1690.
-
(2014)
Cell Rep
, vol.7
, pp. 1679-1690
-
-
Mullen, A.R.1
Hu, Z.2
Shi, X.3
Jiang, L.4
Boroughs, L.K.5
Kovacs, Z.6
-
89
-
-
0036121191
-
Aconitase: Sensitive target and measure of superoxide
-
Gardner PR. Aconitase: sensitive target and measure of superoxide. Methods Enzymol 2002; 349: 9–23.
-
(2002)
Methods Enzymol
, vol.349
, pp. 9-23
-
-
Gardner, P.R.1
-
90
-
-
84903489573
-
IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxi-dative mitochondrial metabolism
-
Grassian AR, Parker S, Davidson S, Divakaruni A, Green C, Zhang XM et al. IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxi-dative mitochondrial metabolism. Cancer Res 2014; 74: 3317–3331.
-
(2014)
Cancer Res
, vol.74
, pp. 3317-3331
-
-
Grassian, A.R.1
Parker, S.2
Davidson, S.3
Divakaruni, A.4
Green, C.5
Zhang, X.M.6
-
91
-
-
0000989147
-
Aconitase as ironminus signSulfur protein, enzyme, and iron-regulatory protein
-
Beinert H, Kennedy MC, Stout CD. Aconitase as ironminus signSulfur protein, enzyme, and iron-regulatory protein. Chem Rev 1996; 96: 2335–2374.
-
(1996)
Chem Rev
, vol.96
, pp. 2335-2374
-
-
Beinert, H.1
Kennedy, M.C.2
Stout, C.D.3
-
92
-
-
33644804529
-
Crystal structure of human iron regulatory protein 1 as cytosolic aconitase
-
Dupuy J, Volbeda A, Carpentier P, Darnault C, Moulis JM, Fontecilla-Camps JC. Crystal structure of human iron regulatory protein 1 as cytosolic aconitase. Structure 2006; 14: 129–139.
-
(2006)
Structure
, vol.14
, pp. 129-139
-
-
Dupuy, J.1
Volbeda, A.2
Carpentier, P.3
Darnault, C.4
Moulis, J.M.5
Fontecilla-Camps, J.C.6
-
93
-
-
33845865301
-
Structure of dual function iron regulatory protein 1 complexed with ferritin IRE-RNA
-
Walden WE, Selezneva AI, Dupuy J, Volbeda A, Fontecilla-Camps JC, Theil EC et al. Structure of dual function iron regulatory protein 1 complexed with ferritin IRE-RNA. Science 2006; 314: 1903–1908.
-
(2006)
Science
, vol.314
, pp. 1903-1908
-
-
Walden, W.E.1
Selezneva, A.I.2
Dupuy, J.3
Volbeda, A.4
Fontecilla-Camps, J.C.5
Theil, E.C.6
-
94
-
-
0023612118
-
Identification of the iron-responsive element for the translational regulation of human ferritin mRNA
-
Hentze MW, Caughman SW, Rouault TA, Barriocanal JG, Dancis A, Harford JB et al. Identification of the iron-responsive element for the translational regulation of human ferritin mRNA. Science 1987; 238: 1570–1573.
-
(1987)
Science
, vol.238
, pp. 1570-1573
-
-
Hentze, M.W.1
Caughman, S.W.2
Rouault, T.A.3
Barriocanal, J.G.4
Dancis, A.5
Harford, J.B.6
-
95
-
-
0024669905
-
A cytosolic protein binds to structural elements within the iron regulatory region of the transferrin receptor mRNA
-
Koeller DM, Casey JL, Hentze MW, Gerhardt EM, Chan LN, Klausner RD et al. A cytosolic protein binds to structural elements within the iron regulatory region of the transferrin receptor mRNA. Proc Natl Acad Sci USA 1989; 86: 3574–3578.
-
(1989)
Proc Natl Acad Sci USA
, vol.86
, pp. 3574-3578
-
-
Koeller, D.M.1
Casey, J.L.2
Hentze, M.W.3
Gerhardt, E.M.4
Chan, L.N.5
Klausner, R.D.6
-
96
-
-
84890209181
-
Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia
-
Fan J, Kamphorst JJ, Mathew R, Chung MK, White E, Shlomi T et al. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol Syst Biol 2013; 9: 712.
-
(2013)
Mol Syst Biol
, vol.9
, pp. 712
-
-
Fan, J.1
Kamphorst, J.J.2
Mathew, R.3
Chung, M.K.4
White, E.5
Shlomi, T.6
-
97
-
-
37449034854
-
Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
-
DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 2007; 104: 19345–19350.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 19345-19350
-
-
Deberardinis, R.J.1
Mancuso, A.2
Daikhin, E.3
Nissim, I.4
Yudkoff, M.5
Wehrli, S.6
-
98
-
-
84873678601
-
Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence
-
Jiang P, Du W, Mancuso A, Wellen KE, Yang X. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature 2013; 493: 689–693.
-
(2013)
Nature
, vol.493
, pp. 689-693
-
-
Jiang, P.1
Du, W.2
Mancuso, A.3
Wellen, K.E.4
Yang, X.5
-
99
-
-
84923148982
-
Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate
-
Kamphorst JJ, Chung MK, Fan J, Rabinowitz JD. Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate. Cancer Metab 2014; 2: 23.
-
(2014)
Cancer Metab
, vol.2
-
-
Kamphorst, J.J.1
Chung, M.K.2
Fan, J.3
Rabinowitz, J.D.4
-
100
-
-
84947648620
-
Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress
-
Schug ZT, Peck B, Jones DT, Zhang Q, Grosskurth S, Alam IS et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell 2015; 27: 57–71.
-
(2015)
Cancer Cell
, vol.27
, pp. 57-71
-
-
Schug, Z.T.1
Peck, B.2
Jones, D.T.3
Zhang, Q.4
Grosskurth, S.5
Alam, I.S.6
-
101
-
-
84867594869
-
Mitochondrial protein acetylation regulates meta-bolism
-
Anderson KA, Hirschey MD. Mitochondrial protein acetylation regulates meta-bolism. Essays Biochem 2012; 52: 23–35.
-
(2012)
Essays Biochem
, vol.52
, pp. 23-35
-
-
Anderson, K.A.1
Hirschey, M.D.2
-
102
-
-
80052426012
-
Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival
-
Frezza C, Zheng L, Tennant DA, Papkovsky DB, Hedley BA, Kalna G et al. Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival. PLoS ONE 2011; 6: e24411.
-
(2011)
Plos ONE
, vol.6
-
-
Frezza, C.1
Zheng, L.2
Tennant, D.A.3
Papkovsky, D.B.4
Hedley, B.A.5
Kalna, G.6
-
103
-
-
84878396462
-
Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells
-
Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 2013; 497: 633–637.
-
(2013)
Nature
, vol.497
, pp. 633-637
-
-
Commisso, C.1
Davidson, S.M.2
Soydaner-Azeloglu, R.G.3
Parker, S.J.4
Kamphorst, J.J.5
Hackett, S.6
-
104
-
-
84878464291
-
Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids
-
Kamphorst JJ, Cross JR, Fan J, de Stanchina E, Mathew R, White EP et al. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc Natl Acad Sci USA 2013; 110: 8882–8887.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 8882-8887
-
-
Kamphorst, J.J.1
Cross, J.R.2
Fan, J.3
de Stanchina, E.4
Mathew, R.5
White, E.P.6
-
105
-
-
84881119066
-
Role of PFKFB3-driven glycolysis in vessel sprouting
-
De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 2013; 154: 651–663.
-
(2013)
Cell
, vol.154
, pp. 651-663
-
-
de Bock, K.1
Georgiadou, M.2
Schoors, S.3
Kuchnio, A.4
Wong, B.W.5
Cantelmo, A.R.6
-
106
-
-
57449097020
-
Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice
-
Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 2008; 118: 3930–3942.
-
(2008)
J Clin Invest
, vol.118
, pp. 3930-3942
-
-
Sonveaux, P.1
Vegran, F.2
Schroeder, T.3
Wergin, M.C.4
Verrax, J.5
Rabbani, Z.N.6
-
107
-
-
77949967131
-
Targeting metabolic transformation for cancer therapy
-
Tennant DA, Duran RV, Gottlieb E. Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 2010; 10: 267–277.
-
(2010)
Nat Rev Cancer
, vol.10
, pp. 267-277
-
-
Tennant, D.A.1
Duran, R.V.2
Gottlieb, E.3
|