-
1
-
-
0036936746
-
The Preamble of the Constitution of the World Health Organization
-
PID: 12571728
-
Grad, F. P. The Preamble of the Constitution of the World Health Organization. Bull. World Health Organ. 80, 981 (2002).
-
(2002)
Bull. World Health Organ.
, vol.80
, pp. 981
-
-
Grad, F.P.1
-
2
-
-
85103735893
-
-
Springer
-
Burton-Jeangros, C., Cullati, S., Sacker, A. & Blane, D. A Life Course Perspective on Health Trajectories and Transitions Vol. 4 pp. 1–18 (Springer, 2015); https://link.springer.com/chapter/10.1007/978-3-319-20484-0_1
-
(2015)
A Life Course Perspective on Health Trajectories and Transitions
, vol.4
, pp. 1-18
-
-
Burton-Jeangros, C.1
Cullati, S.2
Sacker, A.3
Blane, D.4
-
3
-
-
84990046464
-
Predicting the future—big data, machine learning, and clinical medicine
-
PID: 27682033
-
Obermeyer, Z. & Emanuel, E. J. Predicting the future—big data, machine learning, and clinical medicine. N. Engl. J. Med. 375, 1216–1219 (2016).
-
(2016)
N. Engl. J. Med.
, vol.375
, pp. 1216-1219
-
-
Obermeyer, Z.1
Emanuel, E.J.2
-
4
-
-
85058346391
-
Artificial intelligence and big data in public health
-
PID: 30544648
-
Benke, K. & Benke, G. Artificial intelligence and big data in public health. Int. J. Environ. Res. Public Health 15, E2796 (2018).
-
(2018)
Int. J. Environ. Res. Public Health
, vol.15
, pp. E2796
-
-
Benke, K.1
Benke, G.2
-
5
-
-
84934897215
-
Toward a literature-driven definition of big data in healthcare
-
PID: 26137488
-
Baro, E., Degoul, S., Beuscart, R. & Chazard, E. Toward a literature-driven definition of big data in healthcare. BioMed. Res. Int. 2015, 639021 (2015).
-
(2015)
BioMed. Res. Int.
, vol.2015
, pp. 639021
-
-
Baro, E.1
Degoul, S.2
Beuscart, R.3
Chazard, E.4
-
6
-
-
84959496982
-
Integrative methods for analyzing big data in precision medicine
-
PID: 26677817
-
Gligorijević, V., Malod-Dognin, N. & Pržulj, N. Integrative methods for analyzing big data in precision medicine. Proteomics 16, 741–758 (2016).
-
(2016)
Proteomics
, vol.16
, pp. 741-758
-
-
Gligorijević, V.1
Malod-Dognin, N.2
Pržulj, N.3
-
7
-
-
0036756222
-
Uniqueness of medical data mining
-
PID: 12234714
-
Cios, K. J. & Moore, G. W. Uniqueness of medical data mining. Artif. Intell. Med. 26, 1–24 (2002).
-
(2002)
Artif. Intell. Med.
, vol.26
, pp. 1-24
-
-
Cios, K.J.1
Moore, G.W.2
-
8
-
-
84961393205
-
Big data analytics to improve cardiovascular care: promise and challenges
-
COI: 1:CAS:528:DC%2BC28XltVanu7o%3D, PID: 27009423
-
Rumsfeld, J. S., Joynt, K. E. & Maddox, T. M. Big data analytics to improve cardiovascular care: promise and challenges. Nat. Rev. Cardiol. 13, 350–359 (2016).
-
(2016)
Nat. Rev. Cardiol.
, vol.13
, pp. 350-359
-
-
Rumsfeld, J.S.1
Joynt, K.E.2
Maddox, T.M.3
-
9
-
-
84931273036
-
Relational diversity and neighbourhood cohesion. Unpacking variety, balance and in-group size
-
PID: 26188445
-
Koopmans, R. & Schaeffer, M. Relational diversity and neighbourhood cohesion. Unpacking variety, balance and in-group size. Soc. Sci. Res. 53, 162–176 (2015).
-
(2015)
Soc. Sci. Res.
, vol.53
, pp. 162-176
-
-
Koopmans, R.1
Schaeffer, M.2
-
10
-
-
0029001316
-
Planning and revising the sample size for a trial
-
COI: 1:STN:280:DyaK28%2Fht1ehsw%3D%3D, PID: 7569499
-
Gould, A. L. Planning and revising the sample size for a trial. Stat. Med. 14, 1039–1051 (1995).
-
(1995)
Stat. Med.
, vol.14
, pp. 1039-1051
-
-
Gould, A.L.1
-
11
-
-
79955090687
-
A systematic review of the effect of retention methods in population-based cohort studies
-
PID: 21504610
-
Booker, C. L., Harding, S. & Benzeval, M. A systematic review of the effect of retention methods in population-based cohort studies. BMC Public Health 11, 249 (2011).
-
(2011)
BMC Public Health
, vol.11
-
-
Booker, C.L.1
Harding, S.2
Benzeval, M.3
-
12
-
-
84934441400
-
Characterizing multi-omic data in systems biology
-
COI: 1:CAS:528:DC%2BC2MXlvFGlur4%3D, PID: 24292960
-
Mason, C. E., Porter, S. G. & Smith, T. M. Characterizing multi-omic data in systems biology. Adv. Exp. Med. Biol. 799, 15–38 (2014).
-
(2014)
Adv. Exp. Med. Biol.
, vol.799
, pp. 15-38
-
-
Mason, C.E.1
Porter, S.G.2
Smith, T.M.3
-
13
-
-
84858439578
-
The human microbiome: at the interface of health and disease
-
COI: 1:CAS:528:DC%2BC38Xjs1Wguro%3D, PID: 22411464
-
Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).
-
(2012)
Nat. Rev. Genet.
, vol.13
, pp. 260-270
-
-
Cho, I.1
Blaser, M.J.2
-
14
-
-
77958460555
-
The challenges of integrating multi-omic data sets
-
PID: 20976870
-
Palsson, B. & Zengler, K. The challenges of integrating multi-omic data sets. Nat. Chem. Biol. 6, 787–789 (2010).
-
(2010)
Nat. Chem. Biol.
, vol.6
, pp. 787-789
-
-
Palsson, B.1
Zengler, K.2
-
15
-
-
84897143486
-
Is the $1,000 genome for real?
-
Check Hayden, E. Is the $1,000 genome for real? Nature https://www.nature.com/news/is-the-1-000-genome-for-real-1.14530 (2014).
-
(2014)
Nature
-
-
Check Hayden, E.1
-
16
-
-
85034107150
-
What is fetal programming?: a lifetime health is under the control of in utero health
-
PID: 29184858
-
Kwon, E. J. & Kim, Y. J. What is fetal programming?: a lifetime health is under the control of in utero health. Obstet. Gynecol. Sci. 60, 506–519 (2017).
-
(2017)
Obstet. Gynecol. Sci.
, vol.60
, pp. 506-519
-
-
Kwon, E.J.1
Kim, Y.J.2
-
17
-
-
0031661215
-
In utero programming of chronic disease
-
COI: 1:STN:280:DyaK1czks12lsg%3D%3D, PID: 9680492
-
Barker, D. J. In utero programming of chronic disease. Clin. Sci. 95, 115–128 (1998).
-
(1998)
Clin. Sci.
, vol.95
, pp. 115-128
-
-
Barker, D.J.1
-
18
-
-
84897136781
-
Individualized medicine from prewomb to tomb
-
COI: 1:CAS:528:DC%2BC2cXmtVCktLw%3D, PID: 24679539
-
Topol, E. J. Individualized medicine from prewomb to tomb. Cell 157, 241–253 (2014).
-
(2014)
Cell
, vol.157
, pp. 241-253
-
-
Topol, E.J.1
-
19
-
-
85015621848
-
The born in guangzhou cohort study (BIGCS)
-
PID: 28321694
-
Qiu, X. et al. The born in guangzhou cohort study (BIGCS). Eur. J. Epidemiol. 32, 337–346 (2017).
-
(2017)
Eur. J. Epidemiol.
, vol.32
, pp. 337-346
-
-
Qiu, X.1
-
20
-
-
0035130957
-
ALSPAC—The Avon Longitudinal Study of Parents and Children
-
Golding, J., Pembrey M., Jones, R. & ALSPAC Study Team. ALSPAC—The Avon Longitudinal Study of Parents and Children. Paediatr. Perinat. Epidemiol. 15, 74–87 (2001).
-
(2001)
Paediatr. Perinat. Epidemiol
, vol.15
, pp. 74-87
-
-
Golding, J.1
Pembrey, M.2
Jones, R.3
-
21
-
-
84949626344
-
Selection bias due to loss to follow up in cohort studies
-
PID: 26484424
-
Howe, C. J., Cole, S. R., Lau, B., Napravnik, S. & Eron, J. J. Jr. Selection bias due to loss to follow up in cohort studies. Epidemiology 27, 91–97 (2016).
-
(2016)
Epidemiology
, vol.27
, pp. 91-97
-
-
Howe, C.J.1
Cole, S.R.2
Lau, B.3
Napravnik, S.4
Eron, J.J.5
-
22
-
-
84863649785
-
The UK Biobank and selection bias
-
PID: 22794246
-
Swanson, J. M. The UK Biobank and selection bias. Lancet 380, 110 (2012).
-
(2012)
Lancet
, vol.380
, pp. 110
-
-
Swanson, J.M.1
-
23
-
-
85068046749
-
Genes for Good: engaging the public in genetics research via social media
-
COI: 1:CAS:528:DC%2BC1MXhtFOku7jJ, PID: 31204010
-
Brieger, K. et al. Genes for Good: engaging the public in genetics research via social media. Am. J. Hum. Genet. 105, 65–77 (2019).
-
(2019)
Am. J. Hum. Genet.
, vol.105
, pp. 65-77
-
-
Brieger, K.1
-
24
-
-
84873911989
-
The Finnish Twin Cohort Study: an update
-
PID: 23298696
-
Kaprio, J. The Finnish Twin Cohort Study: an update. Twin Res. Hum. Genet. 16, 157–162 (2013).
-
(2013)
Twin Res. Hum. Genet.
, vol.16
, pp. 157-162
-
-
Kaprio, J.1
-
25
-
-
84971657354
-
Cohort profile update: the Norwegian mother and child cohort study (MoBa)
-
PID: 27063603
-
Magnus, P. et al. Cohort profile update: the Norwegian mother and child cohort study (MoBa). Int. J. Epidemiol. 45, 382–388 (2016).
-
(2016)
Int. J. Epidemiol.
, vol.45
, pp. 382-388
-
-
Magnus, P.1
-
26
-
-
85077090340
-
The emerging landscape of health research based on biobanks linked to electronic health records: existing resources, statistical challenges, and potential opportunities
-
Beesley, L. J. et al. The emerging landscape of health research based on biobanks linked to electronic health records: existing resources, statistical challenges, and potential opportunities. Stat. Med. 10.1002/sim.8445 (2019).
-
(2019)
Stat. Med.
-
-
Beesley, L.J.1
-
27
-
-
34447268935
-
Interval and clinical cohort studies: epidemiological issues
-
PID: 17604539
-
Lau, B., Gange, S. J. & Moore, R. D. Interval and clinical cohort studies: epidemiological issues. AIDS Res. Hum. Retroviruses 23, 769–776 (2007).
-
(2007)
AIDS Res. Hum. Retroviruses
, vol.23
, pp. 769-776
-
-
Lau, B.1
Gange, S.J.2
Moore, R.D.3
-
28
-
-
84900030681
-
Twenty years post-NIH Revitalization Act: enhancing minority participation in clinical trials (EMPaCT): laying the groundwork for improving minority clinical trial accrual: renewing the case for enhancing minority participation in cancer clinical trials
-
PID: 24643646
-
Chen, M. S. Jr., Lara, P. N., Dang, J. H. T., Paterniti, D. A. & Kelly, K. Twenty years post-NIH Revitalization Act: enhancing minority participation in clinical trials (EMPaCT): laying the groundwork for improving minority clinical trial accrual: renewing the case for enhancing minority participation in cancer clinical trials. Cancer 120, 1091–1096 (2014).
-
(2014)
Cancer
, vol.120
, pp. 1091-1096
-
-
Chen, M.S.1
Lara, P.N.2
Dang, J.H.T.3
Paterniti, D.A.4
Kelly, K.5
-
29
-
-
84991669666
-
Genomics is failing on diversity
-
COI: 1:CAS:528:DC%2BC28Xhs1yit7nI, PID: 27734877
-
Popejoy, A. B. & Fullerton, S. M. Genomics is failing on diversity. Nature 538, 161–164 (2016).
-
(2016)
Nature
, vol.538
, pp. 161-164
-
-
Popejoy, A.B.1
Fullerton, S.M.2
-
30
-
-
84896114187
-
The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective
-
Mahmood, S. S., Levy, D., Vasan, R. S. & Wang, T. J. The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective. Lancet 383, 999–1008 (2014).
-
(2014)
Lancet
, vol.383
, pp. 999-1008
-
-
Mahmood, S.S.1
Levy, D.2
Vasan, R.S.3
Wang, T.J.4
-
31
-
-
0030938817
-
The Nurses’ Health Study: 20-year contribution to the understanding of health among women
-
COI: 1:STN:280:DyaK2s3hslGnuw%3D%3D
-
Colditz, G. A., Manson, J. E. & Hankinson, S. E. The Nurses’ Health Study: 20-year contribution to the understanding of health among women. J. Women’s Health 6, 49–62 (1997).
-
(1997)
J. Women’s Health
, vol.6
, pp. 49-62
-
-
Colditz, G.A.1
Manson, J.E.2
Hankinson, S.E.3
-
32
-
-
0032908595
-
How generalizable are coronary risk prediction models? Comparison of Framingham and two national cohorts
-
COI: 1:STN:280:DyaK1M3jvVKisg%3D%3D
-
Liao, Y., McGee, D. L., Cooper, R. S. & Sutkowski, M. B. How generalizable are coronary risk prediction models? Comparison of Framingham and two national cohorts. Am. Heart J. 137, 837–845 (1999).
-
(1999)
Am. Heart J.
, vol.137
, pp. 837-845
-
-
Liao, Y.1
McGee, D.L.2
Cooper, R.S.3
Sutkowski, M.B.4
-
33
-
-
85070840174
-
The “All of Us” Research Program
-
Denny, J. C. et al. The “All of Us” Research Program. N. Engl. J. Med. 381, 668–676 (2019).
-
(2019)
N. Engl. J. Med.
, vol.381
, pp. 668-676
-
-
Denny, J.C.1
-
34
-
-
84952053307
-
Observational Health Data Sciences and Informatics (OHDSI): opportunities for observational researchers
-
PID: 26262116
-
Hripcsak, G. et al. Observational Health Data Sciences and Informatics (OHDSI): opportunities for observational researchers. Stud. Health Technol. Inform. 216, 574–578 (2015).
-
(2015)
Stud. Health Technol. Inform.
, vol.216
, pp. 574-578
-
-
Hripcsak, G.1
-
35
-
-
85127431078
-
Scalable and accurate deep learning with electronic health records
-
PID: 31304302
-
Rajkomar, A. et al. Scalable and accurate deep learning with electronic health records. npj Digit. Med. 1, 18 (2018).
-
(2018)
npj Digit. Med.
, vol.1
, pp. 18
-
-
Rajkomar, A.1
-
36
-
-
85069579507
-
Association of hemoglobin a1c levels with use of sulfonylureas, dipeptidyl peptidase 4 inhibitors, and thiazolidinediones in patients with type 2 diabetes treated with metformin: analysis from the observational health data sciences and informatics initiative
-
PID: 30646124
-
Vashisht, R. et al. Association of hemoglobin a1c levels with use of sulfonylureas, dipeptidyl peptidase 4 inhibitors, and thiazolidinediones in patients with type 2 diabetes treated with metformin: analysis from the observational health data sciences and informatics initiative. JAMA Netw. Open 1, e181755 (2018).
-
(2018)
JAMA Netw. Open
, vol.1
-
-
Vashisht, R.1
-
38
-
-
84926430250
-
UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age
-
PID: 25826379
-
Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).
-
(2015)
PLoS Med.
, vol.12
-
-
Sudlow, C.1
-
39
-
-
85048616382
-
Electronic health records: the next wave of complex disease genetics
-
COI: 1:CAS:528:DC%2BC1cXitlKgtbrK, PID: 29547983
-
Wolford, B. N., Willer, C. J. & Surakka, I. Electronic health records: the next wave of complex disease genetics. Hum. Mol. Genet. 27, R14–R21 (2018).
-
(2018)
Hum. Mol. Genet.
, vol.27
, pp. R14-R21
-
-
Wolford, B.N.1
Willer, C.J.2
Surakka, I.3
-
40
-
-
84902799705
-
Finding the missing link for big biomedical data
-
COI: 1:CAS:528:DC%2BC2cXhsFemt7zJ
-
Weber, G. M., Mandl, K. D. & Kohane, I. S. Finding the missing link for big biomedical data. J. Am. Med. Assoc. 311, 2479–2480 (2014).
-
(2014)
J. Am. Med. Assoc.
, vol.311
, pp. 2479-2480
-
-
Weber, G.M.1
Mandl, K.D.2
Kohane, I.S.3
-
41
-
-
85021848683
-
Electronic health records: then, now, and in the future
-
PID: 27199197
-
Evans, R. S. Electronic health records: then, now, and in the future. Yearb. Med. Inform. 1, S48–S61 (2016).
-
(2016)
Yearb. Med. Inform.
, vol.1
, pp. S48-S61
-
-
Evans, R.S.1
-
42
-
-
77954618307
-
Patient opportunities in the Estonian electronic health record system
-
PID: 20543352
-
Tiik, M. & Ross, P. Patient opportunities in the Estonian electronic health record system. Stud. Health Technol. Inform. 156, 171–177 (2010).
-
(2010)
Stud. Health Technol. Inform.
, vol.156
, pp. 171-177
-
-
Tiik, M.1
Ross, P.2
-
43
-
-
85019848006
-
Data sharing and the idea of ownership
-
PID: 28517982
-
Montgomery, J. Data sharing and the idea of ownership. New Bioeth. 23, 81–86 (2017).
-
(2017)
New Bioeth.
, vol.23
, pp. 81-86
-
-
Montgomery, J.1
-
44
-
-
67649998646
-
The case for public ownership of patient data
-
COI: 1:CAS:528:DC%2BD1MXotF2ls74%3D
-
Rodwin, M. A. The case for public ownership of patient data. J. Am. Med. Assoc. 302, 86–88 (2009).
-
(2009)
J. Am. Med. Assoc.
, vol.302
, pp. 86-88
-
-
Rodwin, M.A.1
-
45
-
-
84962269370
-
The FAIR Guiding Principles for scientific data management and stewardship
-
PID: 4792175
-
Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).
-
(2016)
Sci. Data
, vol.3
-
-
Wilkinson, M.D.1
-
47
-
-
85078559744
-
Glossary of Statistical Terms: Biobank
-
OECD
-
Organization for Economic Cooperation and Development. Glossary of Statistical Terms: Biobank. in Creation and Governance of Human Genetic Research Databases (OECD). https://stats.oecd.org/glossary/detail.asp?ID=7220 (2006).
-
(2006)
Creation and Governance of Human Genetic Research Databases
-
-
-
48
-
-
84958979393
-
Biobanks in the era of personalized medicine: objectives, challenges, and innovation: Overview
-
PID: 4762166
-
Kinkorová, J. Biobanks in the era of personalized medicine: objectives, challenges, and innovation: Overview. EPMA J. 7, 4 (2016).
-
(2016)
EPMA J.
, vol.7
, pp. 4
-
-
Kinkorová, J.1
-
49
-
-
84957436835
-
Million Veteran Program: A mega-biobank to study genetic influences on health and disease
-
Gaziano, J. M. et al. Million Veteran Program: A mega-biobank to study genetic influences on health and disease. J. Clin. Epidemiol. 70, 214–223 (2016).
-
(2016)
J. Clin. Epidemiol.
, vol.70
, pp. 214-223
-
-
Gaziano, J.M.1
-
50
-
-
85054630384
-
The UK Biobank resource with deep phenotyping and genomic data
-
COI: 1:CAS:528:DC%2BC1cXhvV2qsbvI, PID: 6786975
-
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).
-
(2018)
Nature
, vol.562
, pp. 203-209
-
-
Bycroft, C.1
-
51
-
-
83455213326
-
China Kadoorie Biobank of 0.5 million people: survey methods, baseline characteristics and long-term follow-up
-
PID: 22158673
-
Chen, Z. et al. China Kadoorie Biobank of 0.5 million people: survey methods, baseline characteristics and long-term follow-up. Int. J. Epidemiol. 40, 1652–1666 (2011).
-
(2011)
Int. J. Epidemiol.
, vol.40
, pp. 1652-1666
-
-
Chen, Z.1
-
52
-
-
33645812738
-
Cohort profile: the Mexico City Prospective Study
-
PID: 16556648
-
Tapia-Conyer, R. et al. Cohort profile: the Mexico City Prospective Study. Int. J. Epidemiol. 35, 243–249 (2006).
-
(2006)
Int. J. Epidemiol.
, vol.35
, pp. 243-249
-
-
Tapia-Conyer, R.1
-
53
-
-
85057238105
-
Statistical pitfalls of personalized medicine
-
COI: 1:CAS:528:DC%2BC1cXitlent77N, PID: 30482931
-
Senn, S. Statistical pitfalls of personalized medicine. Nature 563, 619–621 (2018).
-
(2018)
Nature
, vol.563
, pp. 619-621
-
-
Senn, S.1
-
54
-
-
85064686347
-
The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight
-
COI: 1:CAS:528:DC%2BC1MXntVChtL0%3D, PID: 30975860
-
Garrett-Bakelman, F. E. et al. The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science 364, eaau8650 (2019).
-
(2019)
Science
, vol.364
, pp. eaau8650
-
-
Garrett-Bakelman, F.E.1
-
55
-
-
84947812071
-
Personalized nutrition by prediction of glycemic responses
-
COI: 1:CAS:528:DC%2BC2MXhvVyqtbvM, PID: 26590418
-
Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).
-
(2015)
Cell
, vol.163
, pp. 1079-1094
-
-
Zeevi, D.1
-
56
-
-
85043351358
-
Environment dominates over host genetics in shaping human gut microbiota
-
COI: 1:CAS:528:DC%2BC1cXjsFaitLg%3D, PID: 29489753
-
Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).
-
(2018)
Nature
, vol.555
, pp. 210-215
-
-
Rothschild, D.1
-
57
-
-
85063619329
-
Structural variation in the gut microbiome associates with host health
-
COI: 1:CAS:528:DC%2BC1MXmslKrsLY%3D, PID: 30918406
-
Zeevi, D. et al. Structural variation in the gut microbiome associates with host health. Nature 568, 43–48 (2019).
-
(2019)
Nature
, vol.568
, pp. 43-48
-
-
Zeevi, D.1
-
58
-
-
84882672302
-
Population genomics of cardiometabolic traits: design of the University College London-London School of Hygiene and Tropical Medicine-Edinburgh-Bristol (UCLEB) Consortium
-
COI: 1:CAS:528:DC%2BC3sXhtlKmu7%2FJ, PID: 23977022
-
Shah, T. et al. Population genomics of cardiometabolic traits: design of the University College London-London School of Hygiene and Tropical Medicine-Edinburgh-Bristol (UCLEB) Consortium. PLoS One 8, e71345 (2013).
-
(2013)
PLoS One
, vol.8
-
-
Shah, T.1
-
59
-
-
84941588145
-
Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands: study design and baseline characteristics
-
PID: 26319774
-
Tigchelaar, E. F. et al. Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands: study design and baseline characteristics. BMJ Open 5, e006772 (2015).
-
(2015)
BMJ Open
, vol.5
-
-
Tigchelaar, E.F.1
-
60
-
-
85070654537
-
Big data, big tech, and protecting patient privacy
-
Cohen, I.G. & Mello, M.M. Big data, big tech, and protecting patient privacy. J. Am. Med. Assoc. 322, 1141–1142 (2019).
-
(2019)
J. Am. Med. Assoc.
, vol.322
, pp. 1141-1142
-
-
Cohen, I.G.1
Mello, M.M.2
-
61
-
-
85059805583
-
Privacy in the age of medical big data
-
COI: 1:CAS:528:DC%2BC1MXmvVOgs7Y%3D, PID: 30617331
-
Price, W. N. II & Cohen, I. G. Privacy in the age of medical big data. Nat. Med. 25, 37–43 (2019).
-
(2019)
Nat. Med.
, vol.25
, pp. 37-43
-
-
Price, W.N.1
Cohen, I.G.2
-
62
-
-
2442506800
-
Governing UK Biobank: the importance of ensuring public trust
-
COI: 1:CAS:528:DC%2BD2cXkt1agsLY%3D, PID: 15158057
-
Tutton, R., Kaye, J. & Hoeyer, K. Governing UK Biobank: the importance of ensuring public trust. Trends Biotechnol. 22, 284–285 (2004).
-
(2004)
Trends Biotechnol.
, vol.22
, pp. 284-285
-
-
Tutton, R.1
Kaye, J.2
Hoeyer, K.3
-
63
-
-
71849090072
-
Public opinion about the importance of privacy in biobank research
-
COI: 1:CAS:528:DC%2BC3cXksFWqsw%3D%3D, PID: 19878915
-
Kaufman, D. J., Murphy-Bollinger, J., Scott, J. & Hudson, K. L. Public opinion about the importance of privacy in biobank research. Am. J. Hum. Genet. 85, 643–654 (2009).
-
(2009)
Am. J. Hum. Genet.
, vol.85
, pp. 643-654
-
-
Kaufman, D.J.1
Murphy-Bollinger, J.2
Scott, J.3
Hudson, K.L.4
-
64
-
-
85065484975
-
A second chance to get causal inference right: a classification of data science tasks
-
Hernán, M. A., Hsu, J. & Healy, B. A second chance to get causal inference right: a classification of data science tasks. Chance 32, 42–49 (2019).
-
(2019)
Chance
, vol.32
, pp. 42-49
-
-
Hernán, M.A.1
Hsu, J.2
Healy, B.3
-
65
-
-
78751611452
-
To Explain or to Predict?
-
Shmueli, G. To Explain or to Predict? Stat. Sci. 25, 289–310 (2010).
-
(2010)
Stat. Sci.
, vol.25
, pp. 289-310
-
-
Shmueli, G.1
-
66
-
-
85054421858
-
Acceleration of BMI in early childhood and risk of sustained obesity
-
PID: 30281992
-
Geserick, M. et al. Acceleration of BMI in early childhood and risk of sustained obesity. N. Engl. J. Med. 379, 1303–1312 (2018).
-
(2018)
N. Engl. J. Med.
, vol.379
, pp. 1303-1312
-
-
Geserick, M.1
-
67
-
-
85041220170
-
Individual differences in normal body temperature: longitudinal big data analysis of patient records
-
Obermeyer, Z., Samra, J. K. & Mullainathan, S. Individual differences in normal body temperature: longitudinal big data analysis of patient records. Br. Med. J. 359, j5468 (2017).
-
(2017)
Br. Med. J.
, vol.359
, pp. j5468
-
-
Obermeyer, Z.1
Samra, J.K.2
Mullainathan, S.3
-
68
-
-
84930630277
-
Deep learning
-
COI: 1:CAS:528:DC%2BC2MXht1WlurzP, PID: 26017442
-
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
69
-
-
85020126914
-
ImageNet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2017).
-
(2017)
Commun. ACM
, vol.60
, pp. 84-90
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
70
-
-
14844283547
-
PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
-
COI: 1:STN:280:DC%2BD3czhtFGisw%3D%3D, PID: 10851218
-
Goldberger, A. L. et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101, E215–E220 (2000).
-
(2000)
Circulation
, vol.101
, pp. E215-E220
-
-
Goldberger, A.L.1
-
71
-
-
84971287198
-
MIMIC-III, a freely accessible critical care database
-
COI: 1:CAS:528:DC%2BC28Xos1Wnu74%3D, PID: 27219127
-
Johnson, A. E. W. et al. MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016).
-
(2016)
Sci. Data
, vol.3
-
-
Johnson, A.E.W.1
-
73
-
-
85045190865
-
Opportunities and obstacles for deep learning in biology and medicine
-
PID: 29618526
-
Ching, T. et al. Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 15, 20170387 (2018).
-
(2018)
J. R. Soc. Interface
, vol.15
, pp. 20170387
-
-
Ching, T.1
-
74
-
-
85064136537
-
-
Ghassemi, M., Naumann, T., Schulam, P., Beam, A. L. & Ranganath, R. Opportunities in machine learning for healthcare. arXiv 1806.00388 (2018).
-
(2018)
Opportunities in Machine Learning for Healthcare
-
-
Ghassemi, M.1
Naumann, T.2
Schulam, P.3
Beam, A.L.4
Ranganath, R.5
-
75
-
-
85059811921
-
High-performance medicine: the convergence of human and artificial intelligence
-
COI: 1:CAS:528:DC%2BC1MXmvVOgsbs%3D
-
Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25, 44–56 (2019).
-
(2019)
Nat. Med.
, vol.25
, pp. 44-56
-
-
Topol, E.J.1
-
76
-
-
85063969463
-
Machine learning in medicine
-
PID: 30943338
-
Rajkomar, A., Dean, J. & Kohane, I. Machine learning in medicine. N. Engl. J. Med. 380, 1347–1358 (2019).
-
(2019)
N. Engl. J. Med.
, vol.380
, pp. 1347-1358
-
-
Rajkomar, A.1
Dean, J.2
Kohane, I.3
-
77
-
-
84879854889
-
Representation learning: a review and new perspectives
-
PID: 23787338
-
Bengio, Y., Courville, A. & Vincent, P. Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013).
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
79
-
-
85074204481
-
Avoidable flaws in observational analyses: an application to statins and cancer
-
COI: 1:CAS:528:DC%2BC1MXhvFaksbbP
-
Dickerman, B. A., García-Albéniz, X., Logan, R. W., Denaxas, S. & Hernán, M. A. Avoidable flaws in observational analyses: an application to statins and cancer. Nat. Med. 25, 1601–1606 (2019).
-
(2019)
Nat. Med.
, vol.25
, pp. 1601-1606
-
-
Dickerman, B.A.1
García-Albéniz, X.2
Logan, R.W.3
Denaxas, S.4
Hernán, M.A.5
-
80
-
-
85046254953
-
Biases in electronic health record data due to processes within the healthcare system: retrospective observational study
-
Agniel, D., Kohane, I. S. & Weber, G. M. Biases in electronic health record data due to processes within the healthcare system: retrospective observational study. Br. Med. J. 361, k1479 (2018).
-
(2018)
Br. Med. J.
, vol.361
, pp. k1479
-
-
Agniel, D.1
Kohane, I.S.2
Weber, G.M.3
-
81
-
-
84964378350
-
Using big data to emulate a target trial when a randomized trial is not available
-
PID: 26994063
-
Hernán, M. A. & Robins, J. M. Using big data to emulate a target trial when a randomized trial is not available. Am. J. Epidemiol. 183, 758–764 (2016).
-
(2016)
Am. J. Epidemiol.
, vol.183
, pp. 758-764
-
-
Hernán, M.A.1
Robins, J.M.2
-
82
-
-
70349349170
-
-
(, Cambridge University Press
-
Pearl, J. Causality (Cambridge University Press, 2009).
-
(2009)
Causality
-
-
Pearl, J.1
-
84
-
-
85074204481
-
Avoidable flaws in observational analyses: an application to statins and cancer
-
COI: 1:CAS:528:DC%2BC1MXhvFaksbbP
-
Dickerman, B. A., García-Albéniz, X., Logan, R. W., Denaxas, S. & Hernán, M. A. Avoidable flaws in observational analyses: an application to statins and cancer. Nat. Med. 25, 1601–1606 (2019).
-
(2019)
Nat. Med.
, vol.25
, pp. 1601-1606
-
-
Dickerman, B.A.1
García-Albéniz, X.2
Logan, R.W.3
Denaxas, S.4
Hernán, M.A.5
-
85
-
-
0037322022
-
‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease?
-
PID: 12689998
-
Smith, G. D. & Ebrahim, S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 32, 1–22 (2003).
-
(2003)
Int. J. Epidemiol.
, vol.32
, pp. 1-22
-
-
Smith, G.D.1
Ebrahim, S.2
-
86
-
-
85049642286
-
Application of causal inference to genomic analysis: advances in methodology
-
PID: 30042787
-
Hu, P., Jiao, R., Jin, L. & Xiong, M. Application of causal inference to genomic analysis: advances in methodology. Front. Genet. 9, 238 (2018).
-
(2018)
Front. Genet.
, vol.9
, pp. 238
-
-
Hu, P.1
Jiao, R.2
Jin, L.3
Xiong, M.4
-
87
-
-
85080843337
-
Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): A prospective cohort study
-
Yusuf, S. et al. Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): a prospective cohort study. Lancet 10.1016/S0140-6736(19)32008-2 (2019).
-
(2019)
Lancet
, vol.19
, pp. 32008-32012
-
-
Yusuf, S.1
-
88
-
-
85070862380
-
A clinically applicable approach to continuous prediction of future acute kidney injury
-
Tomašev, N. et al. A clinically applicable approach to continuous prediction of future acute kidney injury. Nature 572, 116–119 (2019).
-
(2019)
Nature
, vol.572
, pp. 116-119
-
-
Tomašev, N.1
-
89
-
-
0035829842
-
Early goal-directed therapy in the treatment of severe sepsis and septic shock
-
COI: 1:STN:280:DC%2BD38%2FmsFGjtA%3D%3D, PID: 11794169
-
Rivers, E. et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N. Engl. J. Med. 345, 1368–1377 (2001).
-
(2001)
N. Engl. J. Med.
, vol.345
, pp. 1368-1377
-
-
Rivers, E.1
-
90
-
-
84969271438
-
A computational approach to early sepsis detection
-
PID: 27208704
-
Calvert, J. S. et al. A computational approach to early sepsis detection. Comput. Biol. Med. 74, 69–73 (2016).
-
(2016)
Comput. Biol. Med.
, vol.74
, pp. 69-73
-
-
Calvert, J.S.1
-
91
-
-
85052147470
-
Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial
-
PID: 29435343
-
Shimabukuro, D. W., Barton, C. W., Feldman, M. D., Mataraso, S. J. & Das, R. Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial. BMJ Open Respir. Res. 4, e000234 (2017).
-
(2017)
BMJ Open Respir. Res.
, vol.4
-
-
Shimabukuro, D.W.1
Barton, C.W.2
Feldman, M.D.3
Mataraso, S.J.4
Das, R.5
-
92
-
-
85058340075
-
Improving palliative care with deep learning
-
PID: 6290509
-
Avati, A. et al. Improving palliative care with deep learning. BMC Med. Inform. Decis. Mak. 18, 122 (2018).
-
(2018)
BMC Med. Inform. Decis. Mak.
, vol.18
, pp. 122
-
-
Avati, A.1
-
93
-
-
85054551793
-
The mythos of model interpretability
-
Lipton, Z. C. The mythos of model interpretability. Commun. ACM 61, 36–43 (2018).
-
(2018)
Commun. ACM
, vol.61
, pp. 36-43
-
-
Lipton, Z.C.1
-
94
-
-
85072162046
-
How precision medicine and screening with big data could increase overdiagnosis
-
Vogt, H., Green, S., Ekstrøm, C. T. & Brodersen, J. How precision medicine and screening with big data could increase overdiagnosis. Br. Med. J. 366, l5270 (2019).
-
(2019)
Br. Med. J.
, vol.366
, pp. l5270
-
-
Vogt, H.1
Green, S.2
Ekstrøm, C.T.3
Brodersen, J.4
-
95
-
-
85074104242
-
Dissecting racial bias in an algorithm used to manage the health of populations
-
COI: 1:CAS:528:DC%2BC1MXitVemtrjF, PID: 31649194
-
Obermeyer, Z., Powers, B., Vogeli, C. & Mullainathan, S. Dissecting racial bias in an algorithm used to manage the health of populations. Science 366, 447–453 (2019).
-
(2019)
Science
, vol.366
, pp. 447-453
-
-
Obermeyer, Z.1
Powers, B.2
Vogeli, C.3
Mullainathan, S.4
-
96
-
-
84871941957
-
Diagnosis and classification of diabetes mellitus
-
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 36, S67–S74 (2013).
-
(2013)
Diabetes Care
, vol.36
, pp. S67-S74
-
-
-
97
-
-
85054638667
-
Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: A soft clustering analysis
-
PID: 30240442
-
Udler, M. S. et al. Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: A soft clustering analysis. PLoS Med. 15, e1002654 (2018).
-
(2018)
PLoS Med.
, vol.15
-
-
Udler, M.S.1
-
98
-
-
85072730063
-
Deconstructing the sources of genotype-phenotype associations in humans
-
COI: 1:CAS:528:DC%2BC1MXhvVOit7jM, PID: 31604265
-
Young, A. I., Benonisdottir, S., Przeworski, M. & Kong, A. Deconstructing the sources of genotype-phenotype associations in humans. Science 365, 1396–1400 (2019).
-
(2019)
Science
, vol.365
, pp. 1396-1400
-
-
Young, A.I.1
Benonisdottir, S.2
Przeworski, M.3
Kong, A.4
-
99
-
-
85060078322
-
Repurposing large health insurance claims data to estimate genetic and environmental contributions in 560 phenotypes
-
COI: 1:CAS:528:DC%2BC1MXlvFSgu74%3D, PID: 30643253
-
Lakhani, C. M. et al. Repurposing large health insurance claims data to estimate genetic and environmental contributions in 560 phenotypes. Nat. Genet. 51, 327–334 (2019).
-
(2019)
Nat. Genet.
, vol.51
, pp. 327-334
-
-
Lakhani, C.M.1
-
100
-
-
79956327715
-
Using electronic health records to drive discovery in disease genomics
-
COI: 1:CAS:528:DC%2BC3MXmtFyms7Y%3D, PID: 21587298
-
Kohane, I. S. Using electronic health records to drive discovery in disease genomics. Nat. Rev. Genet. 12, 417–428 (2011).
-
(2011)
Nat. Rev. Genet.
, vol.12
, pp. 417-428
-
-
Kohane, I.S.1
-
101
-
-
85064124697
-
Illustrating informed presence bias in electronic health records data: how patient interactions with a healthsystem can impact inference
-
PID: 29930963
-
Phelan, M., Bhavsar, N. & Goldstein, B. A. Illustrating informed presence bias in electronic health records data: how patient interactions with a healthsystem can impact inference. eGEMs 5, 22 (2017).
-
(2017)
eGEMs
, vol.5
, pp. 22
-
-
Phelan, M.1
Bhavsar, N.2
Goldstein, B.A.3
-
103
-
-
84893100457
-
Improving productivity of modern-day drug discovery
-
COI: 1:CAS:528:DC%2BC2cXht1Ghu74%3D, PID: 24328737
-
Breyer, M. D. Improving productivity of modern-day drug discovery. Expert Opin. Drug Discov. 9, 115–118 (2014).
-
(2014)
Expert Opin. Drug Discov.
, vol.9
, pp. 115-118
-
-
Breyer, M.D.1
-
104
-
-
85051380026
-
The future of humans as model organisms
-
COI: 1:CAS:528:DC%2BC1cXhsFKrt77P, PID: 30093589
-
FitzGerald, G. et al. The future of humans as model organisms. Science 361, 552–553 (2018).
-
(2018)
Science
, vol.361
, pp. 552-553
-
-
FitzGerald, G.1
-
105
-
-
85017093581
-
Omics”-informed drug and biomarker discovery: opportunities, challenges and future perspectives
-
Matthews, H., Hanison, J. & Nirmalan, N. “Omics”-informed drug and biomarker discovery: opportunities, challenges and future perspectives. Proteomes 4, 28 (2016).
-
(2016)
Proteomes
, vol.4
, pp. 28
-
-
Matthews, H.1
Hanison, J.2
Nirmalan, N.3
-
106
-
-
83755163018
-
Detecting novel associations in large data sets
-
COI: 1:CAS:528:DC%2BC3MXhs1aju7rN, PID: 22174245
-
Reshef, D. N. et al. Detecting novel associations in large data sets. Science 334, 1518–1524 (2011).
-
(2011)
Science
, vol.334
, pp. 1518-1524
-
-
Reshef, D.N.1
-
107
-
-
85017477447
-
The druggable genome and support for target identification and validation in drug development
-
PID: 28356508
-
Finan, C. et al. The druggable genome and support for target identification and validation in drug development. Sci. Transl. Med. 9, eaag1166 (2017).
-
(2017)
Sci. Transl. Med.
, vol.9
, pp. eaag1166
-
-
Finan, C.1
-
108
-
-
84938292742
-
The support of human genetic evidence for approved drug indications
-
COI: 1:CAS:528:DC%2BC2MXhtFeju7rF, PID: 26121088
-
Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015).
-
(2015)
Nat. Genet.
, vol.47
, pp. 856-860
-
-
Nelson, M.R.1
-
109
-
-
85057067854
-
Drug repurposing: progress, challenges and recommendations
-
COI: 1:CAS:528:DC%2BC1cXhvV2gtr7I, PID: 30310233
-
Pushpakom, S. et al. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov. 18, 41–58 (2019).
-
(2019)
Nat. Rev. Drug Discov.
, vol.18
, pp. 41-58
-
-
Pushpakom, S.1
-
110
-
-
84924353789
-
Repurpose terbutaline sulfate for amyotrophic lateral sclerosis using electronic medical records
-
COI: 1:CAS:528:DC%2BC2MXhtFKhu7%2FL, PID: 25739475
-
Paik, H. et al. Repurpose terbutaline sulfate for amyotrophic lateral sclerosis using electronic medical records. Sci. Rep. 5, 8580 (2015).
-
(2015)
Sci. Rep.
, vol.5
-
-
Paik, H.1
-
111
-
-
80051831092
-
Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease
-
COI: 1:CAS:528:DC%2BC3MXhtFOisL3J, PID: 21849664
-
Dudley, J. T. et al. Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci. Transl. Med. 3, 96ra76 (2011).
-
(2011)
Sci. Transl. Med.
, vol.3
, pp. 96ra76
-
-
Dudley, J.T.1
-
112
-
-
85072020577
-
Prevalence and predictability of low-yield inpatient laboratory diagnostic tests
-
PID: 31509205
-
Xu, S. et al. Prevalence and predictability of low-yield inpatient laboratory diagnostic tests. JAMA Netw. Open 2, e1910967 (2019).
-
(2019)
JAMA Netw. Open
, vol.2
-
-
Xu, S.1
-
113
-
-
85049131339
-
Predictive modeling of U.S. health care spending in late life
-
COI: 1:CAS:528:DC%2BC1cXht1SrtrnO, PID: 29954980
-
Einav, L., Finkelstein, A., Mullainathan, S. & Obermeyer, Z. Predictive modeling of U.S. health care spending in late life. Science 360, 1462–1465 (2018).
-
(2018)
Science
, vol.360
, pp. 1462-1465
-
-
Einav, L.1
Finkelstein, A.2
Mullainathan, S.3
Obermeyer, Z.4
-
114
-
-
85042583803
-
Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables
-
PID: 29503172
-
Ahlqvist, E. et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 6, 361–369 (2018).
-
(2018)
Lancet Diabetes Endocrinol.
, vol.6
, pp. 361-369
-
-
Ahlqvist, E.1
-
115
-
-
84899013764
-
Parkinson disease subtypes
-
PID: 24514863
-
Thenganatt, M. A. & Jankovic, J. Parkinson disease subtypes. JAMA Neurol. 71, 499–504 (2014).
-
(2014)
JAMA Neurol.
, vol.71
, pp. 499-504
-
-
Thenganatt, M.A.1
Jankovic, J.2
-
116
-
-
85050581535
-
Developing and validating Parkinson’s disease subtypes and their motor and cognitive progression
-
PID: 30464029
-
Lawton, M. et al. Developing and validating Parkinson’s disease subtypes and their motor and cognitive progression. J. Neurol. Neurosurg. Psychiatry 89, 1279–1287 (2018).
-
(2018)
J. Neurol. Neurosurg. Psychiatry
, vol.89
, pp. 1279-1287
-
-
Lawton, M.1
-
117
-
-
84898057951
-
Time to redefine PD? Introductory statement of the MDS Task Force on the definition of Parkinson’s disease
-
PID: 24619848
-
Berg, D. et al. Time to redefine PD? Introductory statement of the MDS Task Force on the definition of Parkinson’s disease. Mov. Disord. 29, 454–462 (2014).
-
(2014)
Mov. Disord.
, vol.29
, pp. 454-462
-
-
Berg, D.1
-
118
-
-
84923762812
-
A new initiative on precision medicine
-
COI: 1:CAS:528:DC%2BC2MXjvFGnsLY%3D, PID: 25635347
-
Collins, F. S. & Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 372, 793–795 (2015).
-
(2015)
N. Engl. J. Med.
, vol.372
, pp. 793-795
-
-
Collins, F.S.1
Varmus, H.2
-
119
-
-
84878835954
-
Cohort profile of the CARTaGENE study: Quebec’s population-based biobank for public health and personalized genomics
-
PID: 23071140
-
Awadalla, P. et al. Cohort profile of the CARTaGENE study: Quebec’s population-based biobank for public health and personalized genomics. Int. J. Epidemiol. 42, 1285–1299 (2013).
-
(2013)
Int. J. Epidemiol.
, vol.42
, pp. 1285-1299
-
-
Awadalla, P.1
-
120
-
-
84943805392
-
Cohort Profile: LifeLines, a three-generation cohort study and biobank
-
PID: 25502107
-
Scholtens, S. et al. Cohort Profile: LifeLines, a three-generation cohort study and biobank. Int. J. Epidemiol. 44, 1172–1180 (2015).
-
(2015)
Int. J. Epidemiol.
, vol.44
, pp. 1172-1180
-
-
Scholtens, S.1
-
121
-
-
84866714562
-
New national Biobank of The Danish Center for Strategic Research on Type 2 Diabetes (DD2)
-
PID: 23071400
-
Christensen, H., Nielsen, J. S., Sørensen, K. M., Melbye, M. & Brandslund, I. New national Biobank of The Danish Center for Strategic Research on Type 2 Diabetes (DD2). Clin. Epidemiol. 4, 37–42 (2012).
-
(2012)
Clin. Epidemiol.
, vol.4
, pp. 37-42
-
-
Christensen, H.1
Nielsen, J.S.2
Sørensen, K.M.3
Melbye, M.4
Brandslund, I.5
-
122
-
-
84884802607
-
Cohort profile: the HUNT study, Norway
-
COI: 1:STN:280:DC%2BC38fmvVKqsw%3D%3D, PID: 22879362
-
Krokstad, S. et al. Cohort profile: the HUNT study, Norway. Int. J. Epidemiol. 42, 968–977 (2013).
-
(2013)
Int. J. Epidemiol.
, vol.42
, pp. 968-977
-
-
Krokstad, S.1
-
123
-
-
84943759545
-
Cohort profile: Estonian Biobank of the Estonian Genome Center, University of Tartu
-
PID: 24518929
-
Leitsalu, L. et al. Cohort profile: Estonian Biobank of the Estonian Genome Center, University of Tartu. Int. J. Epidemiol. 44, 1137–1147 (2015).
-
(2015)
Int. J. Epidemiol.
, vol.44
, pp. 1137-1147
-
-
Leitsalu, L.1
-
124
-
-
84949560863
-
The Qatar Biobank: background and methods
-
PID: 26635005
-
Al Kuwari, H. et al. The Qatar Biobank: background and methods. BMC Public Health 15, 1208 (2015).
-
(2015)
BMC Public Health
, vol.15
-
-
Al Kuwari, H.1
-
125
-
-
75149121880
-
An overview of the Guangzhou biobank cohort study-cardiovascular disease subcohort (GBCS-CVD): a platform for multidisciplinary collaboration
-
COI: 1:STN:280:DC%2BC3c%2FitF2hsA%3D%3D, PID: 19587700
-
Jiang, C. Q. et al. An overview of the Guangzhou biobank cohort study-cardiovascular disease subcohort (GBCS-CVD): a platform for multidisciplinary collaboration. J. Hum. Hypertens. 24, 139–150 (2010).
-
(2010)
J. Hum. Hypertens.
, vol.24
, pp. 139-150
-
-
Jiang, C.Q.1
-
126
-
-
85016438418
-
Overview of the BioBank Japan Project: study design and profile
-
PID: 28189464
-
Nagai, A. et al. Overview of the BioBank Japan Project: study design and profile. J. Epidemiol. 27, S2–S8 (2017).
-
(2017)
J. Epidemiol.
, vol.27
, pp. S2-S8
-
-
Nagai, A.1
-
127
-
-
84866867771
-
National Biobank of Korea: quality control programs of collected-human biospecimens
-
PID: 24159512
-
Lee, J.-E. et al. National Biobank of Korea: quality control programs of collected-human biospecimens. Osong Public Health Res. Perspect. 3, 185–189 (2012).
-
(2012)
Osong Public Health Res. Perspect.
, vol.3
, pp. 185-189
-
-
Lee, J.-E.1
-
128
-
-
85044593092
-
Taiwan Biobank: making cross-database convergence possible in the Big Data era
-
PID: 29635374
-
Lin, J.-C., Fan, C.-T., Liao, C.-C. & Chen, Y.-S. Taiwan Biobank: making cross-database convergence possible in the Big Data era. Gigascience 7, 1–4 (2018).
-
(2018)
Gigascience
, vol.7
, pp. 1-4
-
-
Lin, J.-C.1
Fan, C.-T.2
Liao, C.-C.3
Chen, Y.-S.4
|