메뉴 건너뛰기




Volumn 18, Issue , 2018, Pages

Improving palliative care with deep learning

Author keywords

Deep learning; Electronic health records; Interpretation; Palliative care

Indexed keywords

ADULT; ARTICLE; ELECTRONIC HEALTH RECORD; HUMAN; INSTITUTIONAL REVIEW; MACHINE LEARNING; MEDICAL RECORD REVIEW; MORTALITY; NIGHT; PALLIATIVE THERAPY; PHYSICIAN; PREDICTION; CLINICAL DECISION MAKING; PATIENT SELECTION; PROGNOSIS;

EID: 85058340075     PISSN: None     EISSN: 14726947     Source Type: Journal    
DOI: 10.1186/s12911-018-0677-8     Document Type: Article
Times cited : (241)

References (50)
  • 1
    • 85058343928 scopus 로고    scopus 로고
    • Where do americans die?Accessed 15 Apr 2017
    • Where do americans die?Available: https://palliative.stanford.edu/home-hospice-home-care-of-the-dying-patient/where-do-americans-die/. Accessed 15 Apr 2017.
  • 3
    • 85058265172 scopus 로고    scopus 로고
    • palliative care, report card. 2015 Accessed 15 Apr 2017
    • palliative care, report card. 2015. Available: https://web.archive.org/web/20170316014732/https://reportcard.capc.org/#key-findings. Accessed 15 Apr 2017.
  • 5
    • 0034685236 scopus 로고    scopus 로고
    • Extent and determinants of error in doctors' prognoses in terminally ill patients: Prospective cohort study
    • 1:STN:280:DC%2BD3c7ktlKisQ%3D%3D
    • Christakis N, Lamont E. Extent and determinants of error in doctors' prognoses in terminally ill patients: prospective cohort study. BMJ Clin Res. 2000; 320(7233):469-72.
    • (2000) BMJ Clin Res , vol.320 , Issue.7233 , pp. 469-472
    • Christakis, N.1    Lamont, E.2
  • 6
    • 85058332795 scopus 로고    scopus 로고
    • most physicians would forgo aggressive treatment for themselves at the end of life, study finds. 2014 Accessed 15 Apr 2017
    • most physicians would forgo aggressive treatment for themselves at the end of life, study finds. 2014. Available: https://med.stanford.edu/news/all-news/2014/05/most-physicians-would-forgo-aggressive-treatment-for-themselves-.html. Accessed 15 Apr 2017.
  • 9
    • 80053570812 scopus 로고    scopus 로고
    • Clinician Accuracy When Estimating Survival Duration: The Role of the Patient's Performance Status and Time-Based Prognostic Categories
    • Selby D, Chakraborty A, Lilien T, Stacey E, Zhang L, Myers J. Clinician Accuracy When Estimating Survival Duration: The Role of the Patient's Performance Status and Time-Based Prognostic Categories. J Pain Symptom Manag. 2011; 42(4):578-88.
    • (2011) J Pain Symptom Manag , vol.42 , Issue.4 , pp. 578-588
    • Selby, D.1    Chakraborty, A.2    Lilien, T.3    Stacey, E.4    Zhang, L.5    Myers, J.6
  • 10
    • 0033168454 scopus 로고    scopus 로고
    • The Relative Accuracy of the Clinical Estimation of the Duration of Life for Patients with End of Life Cancer
    • Vigano A, Dorgan M, Bruera E, Suarez-Almazor ME. The Relative Accuracy of the Clinical Estimation of the Duration of Life for Patients with End of Life Cancer. Cancer. 1999; 86(1):170-6.
    • (1999) Cancer , vol.86 , Issue.1 , pp. 170-176
    • Vigano, A.1    Dorgan, M.2    Bruera, E.3    Suarez-Almazor, M.E.4
  • 12
    • 84990892300 scopus 로고    scopus 로고
    • A Systematic Review of Predictions of Survival in Palliative Care: How Accurate Are Clinicians and Who Are the Experts?
    • White N, Reid F, Harris A, Harries P, Stone P, Pulenzas N. A Systematic Review of Predictions of Survival in Palliative Care: How Accurate Are Clinicians and Who Are the Experts?PLoS ONE. 2016; 11(8):e0161407.
    • (2016) PLoS ONE , vol.11 , Issue.8 , pp. e0161407
    • White, N.1    Reid, F.2    Harris, A.3    Harries, P.4    Stone, P.5    Pulenzas, N.6
  • 13
    • 0000375599 scopus 로고    scopus 로고
    • Accuracy of prediction of survival by different professional groups in a hospice
    • Macmillan DO. Accuracy of prediction of survival by different professional groups in a hospice. Palliat Med. 1998; 12:117-8.
    • (1998) Palliat Med , vol.12 , pp. 117-118
    • Macmillan, D.O.1
  • 14
    • 33751060167 scopus 로고    scopus 로고
    • Use of Palliative Performance Scale in End-of-Life Prognostication
    • Lau F, Downing GM, Lesperance M, Shaw J, Kuziemsky C. Use of Palliative Performance Scale in End-of-Life Prognostication. J Palliat Med. 2006; 9(5):1066-75.
    • (2006) J Palliat Med , vol.9 , Issue.5 , pp. 1066-1075
    • Lau, F.1    Downing, G.M.2    Lesperance, M.3    Shaw, J.4    Kuziemsky, C.5
  • 15
    • 84961250245 scopus 로고
    • The use of the nitrogen mustards in the palliative treatment of carcinoma.With particular reference to bronchogenic carcinoma
    • Karnofsky DA, Abelmann WH, Craver LF, Burchenal JH. The use of the nitrogen mustards in the palliative treatment of carcinoma.With particular reference to bronchogenic carcinoma. Cancer. 1948; 1(4):634-56.
    • (1948) Cancer , vol.1 , Issue.4 , pp. 634-656
    • Karnofsky, D.A.1    Abelmann, W.H.2    Craver, L.F.3    Burchenal, J.H.4
  • 17
    • 0022256529 scopus 로고
    • APACHE II: A severity of disease classification system
    • 1:STN:280:DyaL2M3otlyqtQ%3D%3D
    • Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985; 13(10):818-29.
    • (1985) Crit Care Med , vol.13 , Issue.10 , pp. 818-829
    • Knaus, W.A.1    Draper, E.A.2    Wagner, D.P.3    Zimmerman, J.E.4
  • 19
    • 0027132478 scopus 로고
    • A New Simplified Acute Physiology Score (SAPS II) Based on a European/North American Multicenter Study
    • Le Gall J-R, Lemeshow S, Saulnier F. A New Simplified Acute Physiology Score (SAPS II) Based on a European/North American Multicenter Study. J Am Med Assoc. 1993; 12(24):2957.
    • (1993) J Am Med Assoc , vol.12 , Issue.24 , pp. 2957
    • Le Gall, J.-R.1    Lemeshow, S.2    Saulnier, F.3
  • 20
    • 84930512028 scopus 로고    scopus 로고
    • Development of a tool for defining and identifying the dying patient in hospital: Criteria for Screening and Triaging to Appropriate aLternative care (CriSTAL)
    • Cardona-Morrell M, Hillman K. Development of a tool for defining and identifying the dying patient in hospital: Criteria for Screening and Triaging to Appropriate aLternative care (CriSTAL). BMJ Support Palliat Care. 2015; 3(1):78-90.
    • (2015) BMJ Support Palliat Care , vol.3 , Issue.1 , pp. 78-90
    • Cardona-Morrell, M.1    Hillman, K.2
  • 21
    • 33646066274 scopus 로고    scopus 로고
    • A Practical Tool to Identify Patients Who May Benefit from a Palliative Approach: The CARING Criteria
    • Fischer SM, Gozansky WS, Sauaia A, Min S-J, Kutner JS, Kramer A. A Practical Tool to Identify Patients Who May Benefit from a Palliative Approach: The CARING Criteria. J Pain Symptom Manag. 2006; 31(4):285-92.
    • (2006) J Pain Symptom Manag , vol.31 , Issue.4 , pp. 285-292
    • Fischer, S.M.1    Gozansky, W.S.2    Sauaia, A.3    Min, S.-J.4    Kutner, J.S.5    Kramer, A.6
  • 22
    • 84919479557 scopus 로고    scopus 로고
    • PREDICT: A diagnostic accuracy study of a tool for predicting mortality within one year: Who should have an advance healthcare directive?
    • Richardson P, Greenslade J, Shanmugathasan S, Doucet K, Widdicombe N, Chu K, Brown A. PREDICT: a diagnostic accuracy study of a tool for predicting mortality within one year: Who should have an advance healthcare directive?Palliat Med. 2015; 29(1):31-7.
    • (2015) Palliat Med , vol.29 , Issue.1 , pp. 31-37
    • Richardson, P.1    Greenslade, J.2    Shanmugathasan, S.3    Doucet, K.4    Widdicombe, N.5    Chu, K.6    Brown, A.7
  • 25
    • 84959010652 scopus 로고    scopus 로고
    • Identification of hospital patients in need of palliative care-a predictive score
    • Meffert C, Rucker G, Hatami I, Becker G. Identification of hospital patients in need of palliative care-a predictive score. BMC Palliat Care. 2016;15. https://doi.org/10.1186/s12904-016-0094-7.
    • (2016) BMC Palliat Care. , vol.15
    • Meffert, C.1    Rucker, G.2    Hatami, I.3    Becker, G.4
  • 28
    • 34547566315 scopus 로고    scopus 로고
    • Using Automated Clinical Data for Risk Adjustment
    • Tabak YP, Johannes RS, Silber JH. Using Automated Clinical Data for Risk Adjustment. Medical Care. 2007; 45(8):789-805.
    • (2007) Medical Care , vol.45 , Issue.8 , pp. 789-805
    • Tabak, Y.P.1    Johannes, R.S.2    Silber, J.H.3
  • 29
    • 84983219407 scopus 로고    scopus 로고
    • Short-Term Mortality Prediction for Elderly Patients Using Medicare Claims Data
    • Makar M, Ghassemi M, Cutler D, Obermeyer Z. Short-Term Mortality Prediction for Elderly Patients Using Medicare Claims Data. Int J Mach Learn Comput. 2015; 5(3):192-7.
    • (2015) Int J Mach Learn Comput , vol.5 , Issue.3 , pp. 192-197
    • Makar, M.1    Ghassemi, M.2    Cutler, D.3    Obermeyer, Z.4
  • 30
    • 84964490237 scopus 로고    scopus 로고
    • Two Ways of Knowing: Big Data and Evidence-Based Medicine
    • Sim I, FH Z, SM T, SY H, N Z, Y H, M N. Two Ways of Knowing: Big Data and Evidence-Based Medicine. Ann Intern Med. 2016; 164(8):562.
    • (2016) Ann Intern Med , vol.164 , Issue.8 , pp. 562
    • Sim, I.1    Fh, Z.2    Sm, T.3    Sy, H.4
  • 31
    • 84990046464 scopus 로고    scopus 로고
    • Predicting the Future - Big Data, Machine Learning, and Clinical Medicine
    • Obermeyer Z, Emanuel EJ. Predicting the Future - Big Data, Machine Learning, and Clinical Medicine. N Engl J Med. 2016; 9(13):1216-9.
    • (2016) N Engl J Med , vol.9 , Issue.13 , pp. 1216-1219
    • Obermeyer, Z.1    Emanuel, E.J.2
  • 32
    • 84874773224 scopus 로고    scopus 로고
    • Mortality Risk Score Prediction in an Elderly Population Using Machine Learning
    • Rose S. Mortality Risk Score Prediction in an Elderly Population Using Machine Learning. Am J Epidemiol. 2013; 3(5):443-52.
    • (2013) Am J Epidemiol , vol.3 , Issue.5 , pp. 443-452
    • Rose, S.1
  • 35
    • 0031080885 scopus 로고    scopus 로고
    • An Evaluation of Machine-Learning Methods for Predicting Pneumonia Mortality
    • 1:STN:280:DyaK2s7ptlejsA%3D%3D
    • Cooper GF, Aliferis CF, Ambrosino R, Aronis J, Buchanon BG. An Evaluation of Machine-Learning Methods for Predicting Pneumonia Mortality. Artif Intell Med. 1997; 9(2):107-38.
    • (1997) Artif Intell Med , vol.9 , Issue.2 , pp. 107-138
    • Cooper, G.F.1    Aliferis, C.F.2    Ambrosino, R.3    Aronis, J.4    Buchanon, B.G.5
  • 37
    • 85040222789 scopus 로고    scopus 로고
    • Improving palliative care with deep learning
    • Avati A, Jung K, Harman S, Downing L, Ng A, Shah NH. Improving palliative care with deep learning. IEEE; 2017. pp. 311-316. Available: http://ieeexplore.ieee.org/document/8217669/.
    • (2017) IEEE , pp. 311-316
    • Avati, A.1    Jung, K.2    Harman, S.3    Downing, L.4    Ng, A.5    Shah, N.H.6
  • 38
    • 77958007735 scopus 로고    scopus 로고
    • STRIDE - An Integrated Standards-Based Translational Research Informatics Platform
    • Conference paper (AMIA Symposium)
    • Lowe HJ, Ferris TA, Hernandez Nd PM, Weber SC. STRIDE - An Integrated Standards-Based Translational Research Informatics Platform. In: AMIA Annual Symposium Proceedings.2009. p. 391-5. Conference paper (AMIA Symposium).
    • (2009) AMIA Annual Symposium Proceedings , pp. 391-395
    • Lowe, H.J.1    Ferris, T.A.2    Hernandez Nd, P.M.3    Weber, S.C.4
  • 39
    • 84930630277 scopus 로고    scopus 로고
    • Deep Learning
    • 1:CAS:528:DC%2BC2MXht1WlurzP
    • LeCun Y, Bengio Y, Hinton G. Deep Learning. Nature. 2015; 521:436-44.
    • (2015) Nature , vol.521 , pp. 436-444
    • Lecun, Y.1    Bengio, Y.2    Hinton, G.3
  • 42
    • 85058326098 scopus 로고    scopus 로고
    • Pytorch Accessed 2 Nov
    • Pytorch. Available: https://pytorch.org. Accessed 2 Nov 2018.
    • (2018)
  • 44
    • 68549133155 scopus 로고    scopus 로고
    • Learning from Imbalanced Data
    • He H, Garcia E. Learning from Imbalanced Data. IEEE Trans Knowl Data Eng. 2009; 9(9):1263-84.
    • (2009) IEEE Trans Knowl Data Eng , vol.9 , Issue.9 , pp. 1263-1284
    • He, H.1    Garcia, E.2
  • 47
    • 85045254050 scopus 로고    scopus 로고
    • Threshold-free measures for assessing the performance of medical screening tests
    • Yuan Y, Su W, Zhu M. Threshold-free measures for assessing the performance of medical screening tests. Front Public Health. 2015; 3:57.
    • (2015) Front Public Health , vol.3 , pp. 57
    • Yuan, Y.1    Su, W.2    Zhu, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.