-
1
-
-
85058343928
-
-
Where do americans die?Accessed 15 Apr 2017
-
Where do americans die?Available: https://palliative.stanford.edu/home-hospice-home-care-of-the-dying-patient/where-do-americans-die/. Accessed 15 Apr 2017.
-
-
-
-
2
-
-
84952907904
-
Special Report the Growth of Palliative Care in U.S. Hospitals: A Status Report
-
Dumanovsky T, Augustin R, Rogers M, Lettang K, Meier DE, Sean Morrison R. Special Report The Growth of Palliative Care in U.S. Hospitals: A Status Report. J Palliat Med. 2016; 19(1):8-15.
-
(2016)
J Palliat Med
, vol.19
, Issue.1
, pp. 8-15
-
-
Dumanovsky, T.1
Augustin, R.2
Rogers, M.3
Lettang, K.4
Meier, D.E.5
Sean Morrison, R.6
-
3
-
-
85058265172
-
-
palliative care, report card. 2015 Accessed 15 Apr 2017
-
palliative care, report card. 2015. Available: https://web.archive.org/web/20170316014732/https://reportcard.capc.org/#key-findings. Accessed 15 Apr 2017.
-
-
-
-
4
-
-
84988419421
-
Few Hospital Palliative Care Programs Meet National Staffing Recommendations
-
Spetz J, Dudley N, Trupin L, Rogers M, Meier DE, Dumanovsky T. Few Hospital Palliative Care Programs Meet National Staffing Recommendations. Health Aff (Project Hope). 2016; 9(9):1690-7.
-
(2016)
Health Aff (Project Hope)
, vol.9
, Issue.9
, pp. 1690-1697
-
-
Spetz, J.1
Dudley, N.2
Trupin, L.3
Rogers, M.4
De, M.5
Dumanovsky, T.6
-
5
-
-
0034685236
-
Extent and determinants of error in doctors' prognoses in terminally ill patients: Prospective cohort study
-
1:STN:280:DC%2BD3c7ktlKisQ%3D%3D
-
Christakis N, Lamont E. Extent and determinants of error in doctors' prognoses in terminally ill patients: prospective cohort study. BMJ Clin Res. 2000; 320(7233):469-72.
-
(2000)
BMJ Clin Res
, vol.320
, Issue.7233
, pp. 469-472
-
-
Christakis, N.1
Lamont, E.2
-
6
-
-
85058332795
-
-
most physicians would forgo aggressive treatment for themselves at the end of life, study finds. 2014 Accessed 15 Apr 2017
-
most physicians would forgo aggressive treatment for themselves at the end of life, study finds. 2014. Available: https://med.stanford.edu/news/all-news/2014/05/most-physicians-would-forgo-aggressive-treatment-for-themselves-.html. Accessed 15 Apr 2017.
-
-
-
-
7
-
-
0032892832
-
Information needs in terminal illness
-
1:STN:280:DyaK1M3ps1WhtA%3D%3D
-
Kutner JS, Steiner JF, Corbett KK, Jahnigen DW, Barton PL. Information needs in terminal illness. Soc Sci Med. 1999; 48(10):1341-52.
-
(1999)
Soc Sci Med
, vol.48
, Issue.10
, pp. 1341-1352
-
-
Kutner, J.S.1
Steiner, J.F.2
Corbett, K.K.3
Jahnigen, D.W.4
Barton, P.L.5
-
8
-
-
0034888199
-
Preparing for the End of Life: Preferences of Patients, Families, Physicians, and Other Care Providers
-
Steinhauser KE, Christakis NA, Clipp EC, Mcneilly M, Grambow S, Parker J, Tulsky JA. Preparing for the End of Life: Preferences of Patients, Families, Physicians, and Other Care Providers. J Pain Symptom Manag J Pain Symptom Manage. 2001; 2222:727.
-
(2001)
J Pain Symptom Manag J Pain Symptom Manage
, vol.2222
, pp. 727
-
-
Steinhauser, K.E.1
Christakis, N.A.2
Clipp, E.C.3
McNeilly, M.4
Grambow, S.5
Parker, J.6
Tulsky, J.A.7
-
9
-
-
80053570812
-
Clinician Accuracy When Estimating Survival Duration: The Role of the Patient's Performance Status and Time-Based Prognostic Categories
-
Selby D, Chakraborty A, Lilien T, Stacey E, Zhang L, Myers J. Clinician Accuracy When Estimating Survival Duration: The Role of the Patient's Performance Status and Time-Based Prognostic Categories. J Pain Symptom Manag. 2011; 42(4):578-88.
-
(2011)
J Pain Symptom Manag
, vol.42
, Issue.4
, pp. 578-588
-
-
Selby, D.1
Chakraborty, A.2
Lilien, T.3
Stacey, E.4
Zhang, L.5
Myers, J.6
-
10
-
-
0033168454
-
The Relative Accuracy of the Clinical Estimation of the Duration of Life for Patients with End of Life Cancer
-
Vigano A, Dorgan M, Bruera E, Suarez-Almazor ME. The Relative Accuracy of the Clinical Estimation of the Duration of Life for Patients with End of Life Cancer. Cancer. 1999; 86(1):170-6.
-
(1999)
Cancer
, vol.86
, Issue.1
, pp. 170-176
-
-
Vigano, A.1
Dorgan, M.2
Bruera, E.3
Suarez-Almazor, M.E.4
-
11
-
-
85058306439
-
-
Glare P, Sinclair C, Downing M, Stone P, Maltoni M, Vigano A. Predicting survival in patients with advanced disease. 2008; 4:2.
-
(2008)
Predicting Survival in Patients with Advanced Disease
, vol.4
, pp. 2
-
-
Glare, P.1
Sinclair, C.2
Downing, M.3
Stone, P.4
Maltoni, M.5
Vigano, A.6
-
12
-
-
84990892300
-
A Systematic Review of Predictions of Survival in Palliative Care: How Accurate Are Clinicians and Who Are the Experts?
-
White N, Reid F, Harris A, Harries P, Stone P, Pulenzas N. A Systematic Review of Predictions of Survival in Palliative Care: How Accurate Are Clinicians and Who Are the Experts?PLoS ONE. 2016; 11(8):e0161407.
-
(2016)
PLoS ONE
, vol.11
, Issue.8
, pp. e0161407
-
-
White, N.1
Reid, F.2
Harris, A.3
Harries, P.4
Stone, P.5
Pulenzas, N.6
-
13
-
-
0000375599
-
Accuracy of prediction of survival by different professional groups in a hospice
-
Macmillan DO. Accuracy of prediction of survival by different professional groups in a hospice. Palliat Med. 1998; 12:117-8.
-
(1998)
Palliat Med
, vol.12
, pp. 117-118
-
-
Macmillan, D.O.1
-
14
-
-
33751060167
-
Use of Palliative Performance Scale in End-of-Life Prognostication
-
Lau F, Downing GM, Lesperance M, Shaw J, Kuziemsky C. Use of Palliative Performance Scale in End-of-Life Prognostication. J Palliat Med. 2006; 9(5):1066-75.
-
(2006)
J Palliat Med
, vol.9
, Issue.5
, pp. 1066-1075
-
-
Lau, F.1
Downing, G.M.2
Lesperance, M.3
Shaw, J.4
Kuziemsky, C.5
-
15
-
-
84961250245
-
The use of the nitrogen mustards in the palliative treatment of carcinoma.With particular reference to bronchogenic carcinoma
-
Karnofsky DA, Abelmann WH, Craver LF, Burchenal JH. The use of the nitrogen mustards in the palliative treatment of carcinoma.With particular reference to bronchogenic carcinoma. Cancer. 1948; 1(4):634-56.
-
(1948)
Cancer
, vol.1
, Issue.4
, pp. 634-656
-
-
Karnofsky, D.A.1
Abelmann, W.H.2
Craver, L.F.3
Burchenal, J.H.4
-
16
-
-
0032902866
-
A New Palliative Prognostic Score: A First Step for the Staging of Terminally Ill Cancer Patients for the Italian Multicenter and Study Group on Palliative Care
-
Pirovano M, Maltoni M, Nanni O, Marinari M, Indelli M, Zaninetta G, Petrella V, Barni S, Zecca E, Scarpi E, Labianca R, Amadori D, Luporini G. A New Palliative Prognostic Score: A First Step for the Staging of Terminally Ill Cancer Patients for the Italian Multicenter and Study Group on Palliative Care. J Pain Symptom Manag Pirovano et al. 1997;17(4):231-9.
-
(1997)
J Pain Symptom Manag Pirovano et Al.
, vol.17
, Issue.4
, pp. 231-239
-
-
Pirovano, M.1
Maltoni, M.2
Nanni, O.3
Marinari, M.4
Indelli, M.5
Zaninetta, G.6
Petrella, V.7
Barni, S.8
Zecca, E.9
Scarpi, E.10
Labianca, R.11
Amadori, D.12
Luporini, G.13
-
17
-
-
0022256529
-
APACHE II: A severity of disease classification system
-
1:STN:280:DyaL2M3otlyqtQ%3D%3D
-
Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985; 13(10):818-29.
-
(1985)
Crit Care Med
, vol.13
, Issue.10
, pp. 818-829
-
-
Knaus, W.A.1
Draper, E.A.2
Wagner, D.P.3
Zimmerman, J.E.4
-
18
-
-
0026409568
-
The APACHE III Prognostic System
-
1:STN:280:DyaK38%2FntVWrtg%3D%3D
-
Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Bergner M, Bastos PG, Sirio CA, Murphy DJ, Lotring T, Damiano A, Harrell FE. The APACHE III Prognostic System. Chest. 1991; 100(6):1619-36.
-
(1991)
Chest
, vol.100
, Issue.6
, pp. 1619-1636
-
-
Knaus, W.A.1
Wagner, D.P.2
Draper, E.A.3
Zimmerman, J.E.4
Bergner, M.5
Bastos, P.G.6
Sirio, C.A.7
Murphy, D.J.8
Lotring, T.9
Damiano, A.10
Harrell, F.E.11
-
19
-
-
0027132478
-
A New Simplified Acute Physiology Score (SAPS II) Based on a European/North American Multicenter Study
-
Le Gall J-R, Lemeshow S, Saulnier F. A New Simplified Acute Physiology Score (SAPS II) Based on a European/North American Multicenter Study. J Am Med Assoc. 1993; 12(24):2957.
-
(1993)
J Am Med Assoc
, vol.12
, Issue.24
, pp. 2957
-
-
Le Gall, J.-R.1
Lemeshow, S.2
Saulnier, F.3
-
20
-
-
84930512028
-
Development of a tool for defining and identifying the dying patient in hospital: Criteria for Screening and Triaging to Appropriate aLternative care (CriSTAL)
-
Cardona-Morrell M, Hillman K. Development of a tool for defining and identifying the dying patient in hospital: Criteria for Screening and Triaging to Appropriate aLternative care (CriSTAL). BMJ Support Palliat Care. 2015; 3(1):78-90.
-
(2015)
BMJ Support Palliat Care
, vol.3
, Issue.1
, pp. 78-90
-
-
Cardona-Morrell, M.1
Hillman, K.2
-
21
-
-
33646066274
-
A Practical Tool to Identify Patients Who May Benefit from a Palliative Approach: The CARING Criteria
-
Fischer SM, Gozansky WS, Sauaia A, Min S-J, Kutner JS, Kramer A. A Practical Tool to Identify Patients Who May Benefit from a Palliative Approach: The CARING Criteria. J Pain Symptom Manag. 2006; 31(4):285-92.
-
(2006)
J Pain Symptom Manag
, vol.31
, Issue.4
, pp. 285-292
-
-
Fischer, S.M.1
Gozansky, W.S.2
Sauaia, A.3
Min, S.-J.4
Kutner, J.S.5
Kramer, A.6
-
22
-
-
84919479557
-
PREDICT: A diagnostic accuracy study of a tool for predicting mortality within one year: Who should have an advance healthcare directive?
-
Richardson P, Greenslade J, Shanmugathasan S, Doucet K, Widdicombe N, Chu K, Brown A. PREDICT: a diagnostic accuracy study of a tool for predicting mortality within one year: Who should have an advance healthcare directive?Palliat Med. 2015; 29(1):31-7.
-
(2015)
Palliat Med
, vol.29
, Issue.1
, pp. 31-37
-
-
Richardson, P.1
Greenslade, J.2
Shanmugathasan, S.3
Doucet, K.4
Widdicombe, N.5
Chu, K.6
Brown, A.7
-
23
-
-
66149156500
-
Exceptional Mortality Prediction by Risk Scores from Common Laboratory Tests
-
Horne BD, May HT, Muhlestein JB, Ronnow BS, Lappe DL, Renlund DG, Kfoury AG, Carlquist JF, Fisher PW, Pearson RR, Bair TL, Anderson JL. Exceptional Mortality Prediction by Risk Scores from Common Laboratory Tests. AJM. 2009; 122:550-8.
-
(2009)
AJM
, vol.122
, pp. 550-558
-
-
Horne, B.D.1
May, H.T.2
Muhlestein, J.B.3
Ronnow, B.S.4
Lappe, D.L.5
Renlund, D.G.6
Kfoury, A.G.7
Carlquist, J.F.8
Fisher, P.W.9
Pearson, R.R.10
Bair, T.L.11
Anderson, J.L.12
-
24
-
-
84877670149
-
Mortality predictions on admission as a context for organizing care activities
-
Cowen ME, Strawderman RL, Czerwinski JL, Smith MJ, Halasyamani LK, Cowen ME. Mortality predictions on admission as a context for organizing care activities. J Hosp Med. 2013; 5(5):229-35.
-
(2013)
J Hosp Med
, vol.5
, Issue.5
, pp. 229-235
-
-
Cowen, M.E.1
Strawderman, R.L.2
Czerwinski, J.L.3
Smith, M.J.4
Halasyamani, L.K.5
Cowen, M.E.6
-
25
-
-
84959010652
-
Identification of hospital patients in need of palliative care-a predictive score
-
Meffert C, Rucker G, Hatami I, Becker G. Identification of hospital patients in need of palliative care-a predictive score. BMC Palliat Care. 2016;15. https://doi.org/10.1186/s12904-016-0094-7.
-
(2016)
BMC Palliat Care.
, vol.15
-
-
Meffert, C.1
Rucker, G.2
Hatami, I.3
Becker, G.4
-
26
-
-
84878017967
-
A predictive model to identify hospitalized cancer patients at risk for 30-day mortality based on admission criteria via the electronic medical record
-
Ramchandran KJ, Shega JW, Von Roenn J, Schumacher M, Szmuilowicz E, Rademaker A, Weitner BB, Loftus PD, Chu IM, Weitzman S. A predictive model to identify hospitalized cancer patients at risk for 30-day mortality based on admission criteria via the electronic medical record. Cancer. 2013; 6(11):2074-80.
-
(2013)
Cancer
, vol.6
, Issue.11
, pp. 2074-2080
-
-
Ramchandran, K.J.1
Shega, J.W.2
Von Roenn, J.3
Schumacher, M.4
Szmuilowicz, E.5
Rademaker, A.6
Weitner, B.B.7
Loftus, P.D.8
Chu, I.M.9
Weitzman, S.10
-
27
-
-
78049334037
-
An Automated Model to Identify Heart Failure Patients at Risk for 30-Day Readmission or Death Using Electronic Medical Record Data
-
Amarasingham R, Moore BJ, Tabak YP, Drazner MH, Clark CA, Zhang S, Reed WG, Swanson TS, Ma Y, Halm EA. An Automated Model to Identify Heart Failure Patients at Risk for 30-Day Readmission or Death Using Electronic Medical Record Data. Med Care. 2010; 48(11):981-8.
-
(2010)
Med Care
, vol.48
, Issue.11
, pp. 981-988
-
-
Amarasingham, R.1
Moore, B.J.2
Tabak, Y.P.3
Drazner, M.H.4
Clark, C.A.5
Zhang, S.6
Reed, W.G.7
Swanson, T.S.8
Ma, Y.9
Halm, E.A.10
-
28
-
-
34547566315
-
Using Automated Clinical Data for Risk Adjustment
-
Tabak YP, Johannes RS, Silber JH. Using Automated Clinical Data for Risk Adjustment. Medical Care. 2007; 45(8):789-805.
-
(2007)
Medical Care
, vol.45
, Issue.8
, pp. 789-805
-
-
Tabak, Y.P.1
Johannes, R.S.2
Silber, J.H.3
-
29
-
-
84983219407
-
Short-Term Mortality Prediction for Elderly Patients Using Medicare Claims Data
-
Makar M, Ghassemi M, Cutler D, Obermeyer Z. Short-Term Mortality Prediction for Elderly Patients Using Medicare Claims Data. Int J Mach Learn Comput. 2015; 5(3):192-7.
-
(2015)
Int J Mach Learn Comput
, vol.5
, Issue.3
, pp. 192-197
-
-
Makar, M.1
Ghassemi, M.2
Cutler, D.3
Obermeyer, Z.4
-
30
-
-
84964490237
-
Two Ways of Knowing: Big Data and Evidence-Based Medicine
-
Sim I, FH Z, SM T, SY H, N Z, Y H, M N. Two Ways of Knowing: Big Data and Evidence-Based Medicine. Ann Intern Med. 2016; 164(8):562.
-
(2016)
Ann Intern Med
, vol.164
, Issue.8
, pp. 562
-
-
Sim, I.1
Fh, Z.2
Sm, T.3
Sy, H.4
-
31
-
-
84990046464
-
Predicting the Future - Big Data, Machine Learning, and Clinical Medicine
-
Obermeyer Z, Emanuel EJ. Predicting the Future - Big Data, Machine Learning, and Clinical Medicine. N Engl J Med. 2016; 9(13):1216-9.
-
(2016)
N Engl J Med
, vol.9
, Issue.13
, pp. 1216-1219
-
-
Obermeyer, Z.1
Emanuel, E.J.2
-
32
-
-
84874773224
-
Mortality Risk Score Prediction in an Elderly Population Using Machine Learning
-
Rose S. Mortality Risk Score Prediction in an Elderly Population Using Machine Learning. Am J Epidemiol. 2013; 3(5):443-52.
-
(2013)
Am J Epidemiol
, vol.3
, Issue.5
, pp. 443-452
-
-
Rose, S.1
-
33
-
-
85046284125
-
Predicting 30-day mortality in hospitalized patients with community-acquired pneumonia using statistical and machine learning approaches
-
Wiemken TL, Furmanek SP, Mattingly WA, Guinn BE, Cavallazzi R, Fernandez-Botran R, Wolf LA, English CL, Ramirez JA. Predicting 30-day mortality in hospitalized patients with community-acquired pneumonia using statistical and machine learning approaches. J Respir Infect. 2017; 1(3):5.
-
(2017)
J Respir Infect
, vol.1
, Issue.3
, pp. 5
-
-
Wiemken, T.L.1
Furmanek, S.P.2
Mattingly, W.A.3
Guinn, B.E.4
Cavallazzi, R.5
Fernandez-Botran, R.6
Wolf, L.A.7
English, C.L.8
Ramirez, J.A.9
-
34
-
-
85016207381
-
Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: A 5-year multicentre prospective registry analysis
-
Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH, Andreini D, Budoff MJ, Cademartiri F, Callister TQ, Chang H-J, Chinnaiyan K, Chow BJ, Cury RC, Delago A, Gomez M, Gransar H, Hadamitzky M, Hausleiter J, Hindoyan N, Feuchtner G, Kaufmann PA, Kim Y-J, Leipsic J, Lin FY, Maffei E, Marques H, Pontone G, Raff G, Rubinshtein R, Shaw LJ, Stehli J, Villines TC, Dunning A, Min JK, Slomka PJ. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J. 2016; 25(7):ehw188.
-
(2016)
Eur Heart J
, vol.25
, Issue.7
, pp. ehw188
-
-
Motwani, M.1
Dey, D.2
Berman, D.S.3
Germano, G.4
Achenbach, S.5
Al-Mallah, M.H.6
Andreini, D.7
Budoff, M.J.8
Cademartiri, F.9
Callister, T.Q.10
Chang, H.-J.11
Chinnaiyan, K.12
Chow, B.J.13
Cury, R.C.14
Delago, A.15
Gomez, M.16
Gransar, H.17
Hadamitzky, M.18
Hausleiter, J.19
Hindoyan, N.20
Feuchtner, G.21
Kaufmann, P.A.22
Kim, Y.-J.23
Leipsic, J.24
Lin, F.Y.25
Maffei, E.26
Marques, H.27
Pontone, G.28
Raff, G.29
Rubinshtein, R.30
Shaw, L.J.31
Stehli, J.32
Villines, T.C.33
Dunning, A.34
Min, J.K.35
Slomka, P.J.36
more..
-
35
-
-
0031080885
-
An Evaluation of Machine-Learning Methods for Predicting Pneumonia Mortality
-
1:STN:280:DyaK2s7ptlejsA%3D%3D
-
Cooper GF, Aliferis CF, Ambrosino R, Aronis J, Buchanon BG. An Evaluation of Machine-Learning Methods for Predicting Pneumonia Mortality. Artif Intell Med. 1997; 9(2):107-38.
-
(1997)
Artif Intell Med
, vol.9
, Issue.2
, pp. 107-138
-
-
Cooper, G.F.1
Aliferis, C.F.2
Ambrosino, R.3
Aronis, J.4
Buchanon, B.G.5
-
36
-
-
84938137070
-
Machine Learning Methods for Mortality Prediction in Patients with ST Elevation Myocardial Infarction
-
Vomlel J, Kružík H, Tma P, Přeček J, Hutyra M. Machine Learning Methods for Mortality Prediction in Patients with ST Elevation Myocardial Infarction. In the Proceedings of The Nineth Workshop on Uncertainty Processing WUPES'12, Mariánské Lázně, Czech Republic. 2012. p. 204-213.
-
(2012)
Proceedings of the Nineth Workshop on Uncertainty Processing WUPES'12, Mariánské Lázně, Czech Republic
, pp. 204-213
-
-
Vomlel, J.1
Kružík, H.2
Tma, P.3
Přeček, J.4
Hutyra, M.5
-
37
-
-
85040222789
-
Improving palliative care with deep learning
-
Avati A, Jung K, Harman S, Downing L, Ng A, Shah NH. Improving palliative care with deep learning. IEEE; 2017. pp. 311-316. Available: http://ieeexplore.ieee.org/document/8217669/.
-
(2017)
IEEE
, pp. 311-316
-
-
Avati, A.1
Jung, K.2
Harman, S.3
Downing, L.4
Ng, A.5
Shah, N.H.6
-
38
-
-
77958007735
-
STRIDE - An Integrated Standards-Based Translational Research Informatics Platform
-
Conference paper (AMIA Symposium)
-
Lowe HJ, Ferris TA, Hernandez Nd PM, Weber SC. STRIDE - An Integrated Standards-Based Translational Research Informatics Platform. In: AMIA Annual Symposium Proceedings.2009. p. 391-5. Conference paper (AMIA Symposium).
-
(2009)
AMIA Annual Symposium Proceedings
, pp. 391-395
-
-
Lowe, H.J.1
Ferris, T.A.2
Hernandez Nd, P.M.3
Weber, S.C.4
-
39
-
-
84930630277
-
Deep Learning
-
1:CAS:528:DC%2BC2MXht1WlurzP
-
LeCun Y, Bengio Y, Hinton G. Deep Learning. Nature. 2015; 521:436-44.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
Lecun, Y.1
Bengio, Y.2
Hinton, G.3
-
40
-
-
85039743275
-
-
Curran Associates, Inc. Accessed 2 Nov 2018
-
Klambauer G, Unterthiner T, Mayr A, Hochreiter S Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett R, (eds).Self-normalizing neural networks; 2017. pp. 972-981. Curran Associates, Inc. Available: http://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf. Accessed 2 Nov 2018.
-
(2017)
Self-normalizing Neural Networks
, pp. 972-981
-
-
Klambauer, G.1
Unterthiner, T.2
Mayr, A.3
Hochreiter Guyon, S.I.4
Luxburg, U.V.5
Bengio, S.6
Wallach, H.7
Fergus, R.8
Vishwanathan, S.9
Garnett, R.10
-
42
-
-
85058326098
-
-
Pytorch Accessed 2 Nov
-
Pytorch. Available: https://pytorch.org. Accessed 2 Nov 2018.
-
(2018)
-
-
-
43
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: Machine learning in Python. J Mach Learn Res. 2011; 12:2825-30.
-
(2011)
J Mach Learn Res
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
Vanderplas, J.11
Passos, A.12
Cournapeau, D.13
Brucher, M.14
Perrot, M.15
Duchesnay, E.16
-
44
-
-
68549133155
-
Learning from Imbalanced Data
-
He H, Garcia E. Learning from Imbalanced Data. IEEE Trans Knowl Data Eng. 2009; 9(9):1263-84.
-
(2009)
IEEE Trans Knowl Data Eng
, vol.9
, Issue.9
, pp. 1263-1284
-
-
He, H.1
Garcia, E.2
-
47
-
-
85045254050
-
Threshold-free measures for assessing the performance of medical screening tests
-
Yuan Y, Su W, Zhu M. Threshold-free measures for assessing the performance of medical screening tests. Front Public Health. 2015; 3:57.
-
(2015)
Front Public Health
, vol.3
, pp. 57
-
-
Yuan, Y.1
Su, W.2
Zhu, M.3
|