메뉴 건너뛰기




Volumn 15, Issue 12, 2018, Pages

Artificial intelligence and big data in public health

Author keywords

Algorithms; Big Data; Data mining; Deep learning; Epidemiology; Machine learning; Precision medicine; Predictive analytics; Vision; Visualization; Wearable AI

Indexed keywords

ARTIFICIAL INTELLIGENCE; DATA MINING; HUMAN; MACHINE LEARNING; NOTE; PERSONALIZED MEDICINE; PUBLIC HEALTH; VISION; DEVICES; PROCEDURES; STATISTICS AND NUMERICAL DATA;

EID: 85058346391     PISSN: 16617827     EISSN: 16604601     Source Type: Journal    
DOI: 10.3390/ijerph15122796     Document Type: Note
Times cited : (196)

References (37)
  • 1
    • 85017635736 scopus 로고    scopus 로고
    • Uncertainties in Big Data when using Internet Surveillance Tools and Social Media for determination of Patterns in Disease Incidence
    • Benke, K.K. Uncertainties in Big Data when using Internet Surveillance Tools and Social Media for determination of Patterns in Disease Incidence. JAMA Ophthalmol. 2017, 135, 402. [CrossRef]
    • (2017) JAMA Ophthalmol , vol.135 , pp. 402
    • Benke, K.K.1
  • 2
    • 85006127167 scopus 로고    scopus 로고
    • A. Precision Medicine Approach to Clinical Trials
    • Rubin, R.A. Precision Medicine Approach to Clinical Trials. JAMA 2016, 316, 1953–1955. [CrossRef] [PubMed]
    • (2016) JAMA , vol.316 , pp. 1953-1955
    • Rubin, R.1
  • 3
    • 84925884673 scopus 로고    scopus 로고
    • Precision Medicine: The Future or Simply Politics?
    • Rubin, R. Precision Medicine: The Future or Simply Politics? JAMA 2015, 313, 1089–1091. [CrossRef] [PubMed]
    • (2015) JAMA , vol.313 , pp. 1089-1091
    • Rubin, R.1
  • 4
    • 84982270082 scopus 로고    scopus 로고
    • Towards Precision Medicine
    • Ashley, E.A. Towards Precision Medicine. Nat. Rev. Genet. 2016, 17, 507–522. [CrossRef] [PubMed]
    • (2016) Nat. Rev. Genet. , vol.17 , pp. 507-522
    • Ashley, E.A.1
  • 5
    • 84997531276 scopus 로고    scopus 로고
    • Confounding by Indication in Clinical Research
    • Kyriacos, D.N.; Lewis, R.J. Confounding by Indication in Clinical Research. JAMA 2016, 316, 1818–1819. [CrossRef] [PubMed]
    • (2016) JAMA , vol.316 , pp. 1818-1819
    • Kyriacos, D.N.1    Lewis, R.J.2
  • 6
    • 85007529863 scopus 로고    scopus 로고
    • Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
    • Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J.; et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016, 316, 2402–2410. [CrossRef]
    • (2016) JAMA , vol.316 , pp. 2402-2410
    • Gulshan, V.1    Peng, L.2    Coram, M.3    Stumpe, M.C.4    Wu, D.5    Narayanaswamy, A.6    Venugopalan, S.7    Widner, K.8    Madams, T.9    Cuadros, J.10
  • 7
    • 85007597269 scopus 로고    scopus 로고
    • Artificial Intelligence with Deep Learning Technology Looks into Diabetic Retinopathy Screening
    • Wong, T.Y.; Bressler, N.M. Artificial Intelligence with Deep Learning Technology Looks into Diabetic Retinopathy Screening. JAMA 2016, 316, 2366–2367. [CrossRef]
    • (2016) JAMA , vol.316 , pp. 2366-2367
    • Wong, T.Y.1    Bressler, N.M.2
  • 8
    • 85007559018 scopus 로고    scopus 로고
    • Translating Artificial Intelligence into Clinical Care
    • Beam, A.L.; Kohane, I.S. Translating Artificial Intelligence into Clinical Care. JAMA 2016, 316, 2368–2369. [CrossRef]
    • (2016) JAMA , vol.316 , pp. 2368-2369
    • Beam, A.L.1    Kohane, I.S.2
  • 9
    • 85007524689 scopus 로고    scopus 로고
    • Adapting to Artificial Intelligence: Radiologists and Pathologists as Information Specialists
    • Jha, S.; Topol, E.J. Adapting to Artificial Intelligence: Radiologists and Pathologists as Information Specialists. JAMA 2016, 316, 2353–2354. [CrossRef]
    • (2016) JAMA , vol.316 , pp. 2353-2354
    • Jha, S.1    Topol, E.J.2
  • 10
    • 84978485315 scopus 로고    scopus 로고
    • Evaluation of a Portable Artificial Vision Device among Patients with Low Vision
    • Moisseiev, E.; Mannis, M.J. Evaluation of a Portable Artificial Vision Device among Patients with Low Vision. JAMA Ophthalmol. 2016, 134, 748–752. [CrossRef]
    • (2016) JAMA Ophthalmol , vol.134 , pp. 748-752
    • Moisseiev, E.1    Mannis, M.J.2
  • 12
    • 85017006468 scopus 로고    scopus 로고
    • SAS. Big Data—What It Is and Why It Matters. Available online: http://www.sas.com/en_us/insights/big-data/what-is-big-data.html (accessed on 6 September 2017).
    • Big Data—What It is and Why It Matters
  • 13
    • 84998854174 scopus 로고    scopus 로고
    • Surveillance tools emerging from search engines and social media data for determining eye disease patterns
    • Deiner, M.S.; Lietman, T.M.; McLeod, D.; Chodosh, J.; Porco, T.C. Surveillance tools emerging from search engines and social media data for determining eye disease patterns. JAMA Ophthalmol. 2016, 134, 1024–1029. [CrossRef] [PubMed]
    • (2016) JAMA Ophthalmol , vol.134 , pp. 1024-1029
    • Deiner, M.S.1    Lietman, T.M.2    McLeod, D.3    Chodosh, J.4    Porco, T.C.5
  • 14
    • 85058265604 scopus 로고    scopus 로고
    • That ‘Precision Medicine’ Initiative? A Reality Check
    • Powledge, T.M. That ‘Precision Medicine’ Initiative? A Reality Check. Genetic Literacy Project. Available online: https://www.geneticliteracyproject.org/2015/02/03/that-precision-medicine-initiative-a-reality-check/(accessed on 7 November 2016).
    • Genetic Literacy Project
    • Powledge, T.M.1
  • 15
    • 84954152042 scopus 로고    scopus 로고
    • The Right to Know and the Right Not to Know: Genetic Privacy and Responsibility
    • Chadwick, R.; Levitt, M.; Shickle, D. (Eds.) The Right to Know and the Right Not to Know: Genetic Privacy and Responsibility; Cambridge University Press: Cambridge, UK, 2014.
    • (2014) Cambridge University Press
    • Chadwick, R.1    Levitt, M.2    Shickle, D.3
  • 16
    • 0042904852 scopus 로고
    • Artificial Intelligence: A Modern Approach; Prentice Hall
    • Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach; Prentice Hall: Englewood Cliffs, NJ, USA, 1995.
    • (1995) Englewood Cliffs
    • Russell, S.J.1    Norvig, P.2
  • 18
    • 85050110267 scopus 로고    scopus 로고
    • The role of artificial intelligence in precision medicine
    • Bertalan, M. The role of artificial intelligence in precision medicine. Expert Rev. Precis. Med. Drug Dev. 2017, 2, 239–241.
    • (2017) Expert Rev. Precis. Med. Drug Dev. , vol.2 , pp. 239-241
    • Bertalan, M.1
  • 21
    • 85058281974 scopus 로고    scopus 로고
    • OrCam. See for Yourself. Available online: http://www.orcam.com (accessed on 29 August 2016).
    • See for Yourself
  • 22
    • 84978522821 scopus 로고    scopus 로고
    • High tech aids low vision: A review of image processing for the visually impaired
    • Moshtael, H.; Aslam, T.; Underwood, I.; Dhillon, B. High tech aids low vision: A review of image processing for the visually impaired. Trans. Vis. Sci. Technol. 2015, 4, 6. [CrossRef] [PubMed]
    • (2015) Trans. Vis. Sci. Technol. , vol.4 , pp. 6
    • Moshtael, H.1    Aslam, T.2    Underwood, I.3    Dhillon, B.4
  • 23
    • 85058312391 scopus 로고    scopus 로고
    • Greget, M.; Moore, J. NuEyes. Available online: https://nueyes.com/product/(accessed on 2 September 2016).
    • Nueyes
    • Greget, M.1    Moore, J.2
  • 28
    • 84861235431 scopus 로고    scopus 로고
    • Mining electronic health records: Towards better research applications and clinical care
    • Jensen, P.B.; Jensen, L.J.; Brunak, S. Mining electronic health records: Towards better research applications and clinical care. Nat. Rev. Genet. 2012, 13, 395–405. [CrossRef]
    • (2012) Nat. Rev. Genet. , vol.13 , pp. 395-405
    • Jensen, P.B.1    Jensen, L.J.2    Brunak, S.3
  • 29
    • 85044729649 scopus 로고    scopus 로고
    • Radiofrequency Electromagnetic Radiation and Memory Performance: Sources of Uncertainty in Epidemiological Cohort Studies
    • Brzozek, C.; Benke, K.; Zeleke, B.; Abramson, M.; Benke, G. Radiofrequency Electromagnetic Radiation and Memory Performance: Sources of Uncertainty in Epidemiological Cohort Studies. Int. J. Environ. Res. Public Health 2018, 15, 592. [CrossRef]
    • (2018) Int. J. Environ. Res. Public Health , vol.15 , pp. 592
    • Brzozek, C.1    Benke, K.2    Zeleke, B.3    Abramson, M.4    Benke, G.5
  • 30
    • 0002490026 scopus 로고    scopus 로고
    • Data Cleaning: Problems and Current Approaches
    • Rahm, E.; Do, H. Data Cleaning: Problems and Current Approaches. IEEE Data Eng. Bull. 2000, 23, 3–13.
    • (2000) IEEE Data Eng. Bull. , vol.23 , pp. 3-13
    • Rahm, E.1    Do, H.2
  • 31
    • 0013331361 scopus 로고    scopus 로고
    • Real-world data is dirty: Data cleansing and the merge/purge problem
    • Hernández, M.A.; Stolfo, S.J. Real-world data is dirty: Data cleansing and the merge/purge problem. Data Min. Knowl. Discov. 1998, 2, 9–37.
    • (1998) Data Min. Knowl. Discov. , vol.2 , pp. 9-37
    • Hernández, M.A.1    Stolfo, S.J.2
  • 36
    • 85058346180 scopus 로고    scopus 로고
    • ableCurve 3D Ver. 4
    • SYSTAT Software Inc. TableCurve 3D Ver. 4. 2002. Available online: systatsoftware.com (accessed on 10 September 2018).
    • (2002)
  • 37
    • 84930172682 scopus 로고    scopus 로고
    • Automation of diagnostics by new disruptive technologies supports local general practice and medical screening in the third world
    • Benke, K.E.; Benke, K.K. Automation of diagnostics by new disruptive technologies supports local general practice and medical screening in the third world. Aust. Med. J. 2015, 8, 174–177. [CrossRef] [PubMed]
    • (2015) Aust. Med. J. , vol.8 , pp. 174-177
    • Benke, K.E.1    Benke, K.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.