-
1
-
-
85042102875
-
Redefining hypertension — Assessing the new blood-pressure guidelines
-
Bakris G, Sorrentino M. Redefining hypertension — assessing the new blood-pressure guidelines. N Engl J Med 2018; 378:497-9.
-
(2018)
N Engl J Med
, vol.378
, pp. 497-499
-
-
Bakris, G.1
Sorrentino, M.2
-
3
-
-
85063946074
-
-
stitute for Healthcare Improvement
-
Lasic M. Case study: an insulin overdose. Institute for Healthcare Improvement (http://www.ihi.org/education/IHIOpenSchool/resources/Pages/Activities/ AnInsulinOverdose.aspx).
-
Case Study: An Insulin Overdose
-
-
Lasic, M.1
-
4
-
-
0003413171
-
-
stitute of Medicine. Washington, DC: National Academies Press
-
Institute of Medicine. To err is human: building a safer health system. Washington, DC: National Academies Press, 2000.
-
(2000)
To Err Is Human: Building A Safer Health System
-
-
-
5
-
-
85035814573
-
-
National Academies of Sciences, Engineering, and Medicine. Washington, DC: National Academies Press
-
National Academies of Sciences, Engineering, and Medicine. Improving diagnosis in health care. Washington, DC: National Academies Press, 2016.
-
(2016)
Improving Diagnosis in Health Care
-
-
-
6
-
-
85050400028
-
How HIPAA harms care, and how to stop it
-
Berwick DM, Gaines ME. How HIPAA harms care, and how to stop it. JAMA 2018;320:229-30.
-
(2018)
JAMA
, vol.320
, pp. 229-230
-
-
Berwick, D.M.1
Gaines, M.E.2
-
7
-
-
85030466573
-
Lost in thought — The limits of the human mind and the future of medicine
-
Obermeyer Z, Lee TH. Lost in thought — the limits of the human mind and the future of medicine. N Engl J Med 2017; 377:1209-11.
-
(2017)
N Engl J Med
, vol.377
, pp. 1209-1211
-
-
Obermeyer, Z.1
Lee, T.H.2
-
8
-
-
0014931845
-
Medicine and the computer — The promise and problems of change
-
Schwartz WB. Medicine and the computer — the promise and problems of change. N Engl J Med 1970;283:1257-64.
-
(1970)
N Engl J Med
, vol.283
, pp. 1257-1264
-
-
Schwartz, W.B.1
-
9
-
-
0023151888
-
Artificial intelligence in medicine — Where do we stand?
-
Schwartz WB, Patil RS, Szolovits P. Artificial intelligence in medicine — where do we stand? N Engl J Med 1987; 316:685-8.
-
(1987)
N Engl J Med
, vol.316
, pp. 685-688
-
-
Schwartz, W.B.1
Patil, R.S.2
Szolovits, P.3
-
10
-
-
84944735469
-
-
Cambridge, MA: MIT Press
-
Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep learning. Cambridge, MA: MIT Press, 2016.
-
(2016)
Deep Learning
-
-
Goodfellow, I.1
Bengio, Y.2
Courville, A.3
Bengio, Y.4
-
11
-
-
84898766195
-
Validation of the atherosclerotic cardiovascular disease Pooled Cohort risk equations
-
Muntner P, Colantonio LD, Cushman M, et al. Validation of the atherosclerotic cardiovascular disease Pooled Cohort risk equations. JAMA 2014;311:1406-15.
-
(2014)
JAMA
, vol.311
, pp. 1406-1415
-
-
Muntner, P.1
Colantonio, L.D.2
Cushman, M.3
-
12
-
-
85025708722
-
Google turning its lucrative Web search over to AI machines
-
October 26
-
Clark J. Google turning its lucrative Web search over to AI machines. Bloom-berg News. October 26, 2015 (https://www.bloomberg.com/news/articles/2015-10-26/google-turning-its-lucrative-web -search-over-to-ai-machines).
-
(2015)
Bloom-Berg News
-
-
Clark, J.1
-
15
-
-
85054954639
-
Semi-supervised learning for information extraction from dialogue
-
Baixas, France: International Speech Communication Association
-
Kannan A, Chen K, Jaunzeikare D, Rajkomar A. Semi-supervised learning for information extraction from dialogue. In: Interspeech 2018. Baixas, France: International Speech Communication Association, 2018:2077-81.
-
(2018)
Interspeech 2018
, pp. 2077-2081
-
-
Kannan, A.1
Chen, K.2
Jaunzeikare, D.3
Rajkomar, A.4
-
17
-
-
84994172098
-
Piloting electronic medical record-based early detection of inpatient deterioration in community hospitals
-
Escobar GJ, Turk BJ, Ragins A, et al. Piloting electronic medical record-based early detection of inpatient deterioration in community hospitals. J Hosp Med 2016; 11:Suppl 1:S18-S24.
-
(2016)
J Hosp Med
, vol.11
, pp. S18-S24
-
-
Escobar, G.J.1
Turk, B.J.2
Ragins, A.3
-
18
-
-
85054773608
-
Classification and personalized prognosis in myeloproliferative neoplasms
-
Grinfeld J, Nangalia J, Baxter EJ, et al. Classification and personalized prognosis in myeloproliferative neoplasms. N Engl J Med 2018;379:1416-30.
-
(2018)
N Engl J Med
, vol.379
, pp. 1416-1430
-
-
Grinfeld, J.1
Nangalia, J.2
Baxter, E.J.3
-
19
-
-
85059811921
-
High-performance medicine: The convergence of human and artificial intelligence
-
Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med 2019;25(1):44-56.
-
(2019)
Nat Med
, vol.25
, Issue.1
, pp. 44-56
-
-
Topol, E.J.1
-
20
-
-
85062259477
-
Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: A prospective randomised controlled study
-
February 27 Epub ahead of print
-
Wang P, Berzin TM, Glissen Brown JR, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study. Gut 2019 February 27 (Epub ahead of print).
-
(2019)
Gut
-
-
Wang, P.1
Berzin, T.M.2
Glissen Brown, J.R.3
-
21
-
-
85043470011
-
Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy
-
Krause J, Gulshan V, Rahimy E, et al. Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology 2018;125:1264-72.
-
(2018)
Ophthalmology
, vol.125
, pp. 1264-1272
-
-
Krause, J.1
Gulshan, V.2
Rahimy, E.3
-
22
-
-
85007529863
-
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
-
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016;316:2402-10.
-
(2016)
JAMA
, vol.316
, pp. 2402-2410
-
-
Gulshan, V.1
Peng, L.2
Coram, M.3
-
23
-
-
85038438910
-
Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes
-
Ting DSW, Cheung CY-L, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 2017;318:2211-23.
-
(2017)
JAMA
, vol.318
, pp. 2211-2223
-
-
Ting, D.S.W.1
Cheung, C.Y.-L.2
Lim, G.3
-
24
-
-
85042389905
-
Identifying medical diagnoses and treatable diseases by image-based deep learning
-
Kermany DS, Goldbaum M, Cai W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018;172(5):1122-1131.e9.
-
(2018)
Cell
, vol.172
, Issue.5
-
-
Kermany, D.S.1
Goldbaum, M.2
Cai, W.3
-
25
-
-
85042201755
-
Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
-
Poplin R, Varadarajan AV, Blumer K, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng 2018; 2:158-64.
-
(2018)
Nat Biomed Eng
, vol.2
, pp. 158-164
-
-
Poplin, R.1
Varadarajan, A.V.2
Blumer, K.3
-
26
-
-
85056358333
-
Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer
-
Steiner DF, MacDonald R, Liu Y, et al. Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer. Am J Surg Pathol 2018;42:1636-46.
-
(2018)
Am J Surg Pathol
, vol.42
, pp. 1636-1646
-
-
Steiner, D.F.1
MacDonald, R.2
Liu, Y.3
-
27
-
-
85061351913
-
Artificial intelligence-based breast cancer nodal metastasis detection
-
October 8 Epub ahead of print
-
Liu Y, Kohlberger T, Norouzi M, et al. Artificial intelligence-based breast cancer nodal metastasis detection. Arch Pathol Lab Med 2018 October 8 (Epub ahead of print).
-
(2018)
Arch Pathol Lab Med
-
-
Liu, Y.1
Kohlberger, T.2
Norouzi, M.3
-
28
-
-
85038431889
-
Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
-
Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 2017; 318:2199-210.
-
(2017)
JAMA
, vol.318
, pp. 2199-2210
-
-
Ehteshami Bejnordi, B.1
Veta, M.2
Johannes van Diest, P.3
-
29
-
-
85058466258
-
Deep learning algorithms for detection of critical findings in head CT scans: A retrospective study
-
Chilamkurthy S, Ghosh R, Tanamala S, et al. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet 2018; 392:2388-96.
-
(2018)
Lancet
, vol.392
, pp. 2388-2396
-
-
Chilamkurthy, S.1
Ghosh, R.2
Tanamala, S.3
-
30
-
-
85053542469
-
Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy: A prospective study
-
Mori Y, Kudo SE, Misawa M, et al. Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy: a prospective study. Ann Intern Med 2018;169:357-66.
-
(2018)
Ann Intern Med
, vol.169
, pp. 357-366
-
-
Mori, Y.1
Kudo, S.E.2
Misawa, M.3
-
31
-
-
85045577663
-
Passive detection of atrial fibrillation using a commercially available smart-watch
-
Tison GH, Sanchez JM, Ballinger B, et al. Passive detection of atrial fibrillation using a commercially available smart-watch. JAMA Cardiol 2018;3:409-16.
-
(2018)
JAMA Cardiol
, vol.3
, pp. 409-416
-
-
Tison, G.H.1
Sanchez, J.M.2
Ballinger, B.3
-
32
-
-
85063023995
-
Non-invasive detection of hyperkalemia with a smartphone electrocardiogram and artificial intelligence
-
abstract
-
Galloway CD, Valys AV, Petterson FL, et al. Non-invasive detection of hyperkalemia with a smartphone electrocardiogram and artificial intelligence. J Am Coll Cardiol 2018;71:Suppl:A272. abstract.
-
(2018)
J Am Coll Cardiol
, vol.71
, pp. A272
-
-
Galloway, C.D.1
Valys, A.V.2
Petterson, F.L.3
-
33
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017;542:115-8.
-
(2017)
Nature
, vol.542
, pp. 115-118
-
-
Esteva, A.1
Kuprel, B.2
Novoa, R.A.3
-
34
-
-
85057246930
-
Weighting primary care patient panel size: A novel electronic health record-derived measure using machine learning
-
Rajkomar A, Yim JWL, Grumbach K, Parekh A. Weighting primary care patient panel size: a novel electronic health record-derived measure using machine learning. JMIR Med Inform 2016;4(4):e29.
-
(2016)
JMIR Med Inform
, vol.4
, Issue.4
, pp. e29
-
-
Rajkomar, A.1
Yim, J.W.L.2
Grumbach, K.3
Parekh, A.4
-
35
-
-
85031318320
-
Measuring the cost of quality measurement: A missing link in quality strategy
-
Schuster MA, Onorato SE, Meltzer DO. Measuring the cost of quality measurement: a missing link in quality strategy. JAMA 2017;318:1219-20.
-
(2017)
JAMA
, vol.318
, pp. 1219-1220
-
-
Schuster, M.A.1
Onorato, S.E.2
Meltzer, D.O.3
-
36
-
-
85044927780
-
Big data and machine learning in health care
-
Beam AL, Kohane IS. Big data and machine learning in health care. JAMA 2018;319:1317-8.
-
(2018)
JAMA
, vol.319
, pp. 1317-1318
-
-
Beam, A.L.1
Kohane, I.S.2
-
38
-
-
85053009378
-
Deep learning — A technology with the potential to transform health care
-
Hinton G. Deep learning — a technology with the potential to transform health care. JAMA 2018;320:1101-2.
-
(2018)
JAMA
, vol.320
, pp. 1101-1102
-
-
Hinton, G.1
-
40
-
-
84905990877
-
Big data in health care: Using analytics to identify and manage high-risk and high-cost patients
-
Bates DW, Saria S, Ohno-Machado L, Shah A, Escobar G. Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Aff (Millwood) 2014;33:1123-31.
-
(2014)
Health Aff (Millwood)
, vol.33
, pp. 1123-1131
-
-
Bates, D.W.1
Saria, S.2
Ohno-Machado, L.3
Shah, A.4
Escobar, G.5
-
41
-
-
85127431078
-
Scalable and accurate deep learning with electronic health records
-
Rajkomar A, Oren E, Chen K, et al. Scalable and accurate deep learning with electronic health records. npj Digital Medicine 2018;1(1):18.
-
(2018)
Npj Digital Medicine
, vol.1
, Issue.1
, pp. 18
-
-
Rajkomar, A.1
Oren, E.2
Chen, K.3
-
42
-
-
85052522615
-
Clinically applicable deep learning for diagnosis and referral in retinal disease
-
De Fauw J, Ledsam JR, Romera-Pare-des B, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med 2018;24:1342-50.
-
(2018)
Nat Med
, vol.24
, pp. 1342-1350
-
-
De Fauw, J.1
Ledsam, J.R.2
Romera-Pare-Des, B.3
-
43
-
-
0035798841
-
Public standards and patients’ control: How to keep electronic medical records accessible but private
-
Mandl KD, Szolovits P, Kohane IS. Public standards and patients’ control: how to keep electronic medical records accessible but private. BMJ 2001;322:283-7.
-
(2001)
BMJ
, vol.322
, pp. 283-287
-
-
Mandl, K.D.1
Szolovits, P.2
Kohane, I.S.3
-
44
-
-
84996564374
-
Time for a patient-driven health information economy?
-
Mandl KD, Kohane IS. Time for a patient-driven health information economy? N Engl J Med 2016;374:205-8.
-
(2016)
N Engl J Med
, vol.374
, pp. 205-208
-
-
Mandl, K.D.1
Kohane, I.S.2
-
45
-
-
84995784013
-
SMART on FHIR: A standards-based, interoperable apps platform for electronic health records
-
Mandel JC, Kreda DA, Mandl KD, Kohane IS, Ramoni RB. SMART on FHIR: a standards-based, interoperable apps platform for electronic health records. J Am Med Inform Assoc 2016;23:899-908.
-
(2016)
J Am Med Inform Assoc
, vol.23
, pp. 899-908
-
-
Mandel, J.C.1
Kreda, D.A.2
Mandl, K.D.3
Kohane, I.S.4
Ramoni, R.B.5
-
46
-
-
84879885267
-
Caveats for the use of operational electronic health record data in comparative effectiveness research
-
Hersh WR, Weiner MG, Embi PJ, et al. Caveats for the use of operational electronic health record data in comparative effectiveness research. Med Care 2013;51: Suppl 3:S30-S37.
-
(2013)
Med Care
, vol.51
, pp. S30-S37
-
-
Hersh, W.R.1
Weiner, M.G.2
Embi, P.J.3
-
47
-
-
84950110026
-
Measurement is essential for improving diagnosis and reducing diagnostic error: A report from the Institute of Medicine
-
McGlynn EA, McDonald KM, Cassel CK. Measurement is essential for improving diagnosis and reducing diagnostic error: a report from the Institute of Medicine. JAMA 2015;314:2501-2.
-
(2015)
JAMA
, vol.314
, pp. 2501-2502
-
-
McGlynn, E.A.1
McDonald, K.M.2
Cassel, C.K.3
-
48
-
-
85035814573
-
-
stitute of Medicine, National Academies of Sciences, Engineering, and Medicine. Washington, DC: National Academies Press
-
Institute of Medicine, National Academies of Sciences, Engineering, and Medicine. Improving diagnosis in health care. Washington, DC: National Academies Press, 2016.
-
(2016)
Improving Diagnosis in Health Care
-
-
-
49
-
-
85047299779
-
Rethinking assumptions about delivery of healthcare: Implications for universal health coverage
-
Das J, Woskie L, Rajbhandari R, Ab-basi K, Jha A. Rethinking assumptions about delivery of healthcare: implications for universal health coverage. BMJ 2018; 361:k1716.
-
(2018)
BMJ
, vol.361
, pp. k1716
-
-
Das, J.1
Woskie, L.2
Rajbhandari, R.3
Abbasi, K.4
Jha, A.5
-
50
-
-
70349869210
-
Longitudinal histories as predictors of future diagnoses of domestic abuse: Modelling study
-
Reis BY, Kohane IS, Mandl KD. Longitudinal histories as predictors of future diagnoses of domestic abuse: modelling study. BMJ 2009;339:b3677.
-
(2009)
BMJ
, vol.339
, pp. b3677
-
-
Reis, B.Y.1
Kohane, I.S.2
Mandl, K.D.3
-
51
-
-
85051571708
-
Overdiagnosis in primary care: Framing the problem and finding solutions
-
Kale MS, Korenstein D. Overdiagnosis in primary care: framing the problem and finding solutions. BMJ 2018;362:k2820.
-
(2018)
BMJ
, vol.362
, pp. k2820
-
-
Kale, M.S.1
Korenstein, D.2
-
52
-
-
84859406106
-
Association of diagnostic coding with trends in hospitalizations and mortality of patients with pneumonia, 2003-2009
-
Lindenauer PK, Lagu T, Shieh M-S, Pekow PS, Rothberg MB. Association of diagnostic coding with trends in hospitalizations and mortality of patients with pneumonia, 2003-2009. JAMA 2012;307: 1405-13.
-
(2012)
JAMA
, vol.307
, pp. 1405-1413
-
-
Lindenauer, P.K.1
Lagu, T.2
Shieh, M.-S.3
Pekow, P.S.4
Rothberg, M.B.5
-
54
-
-
84982175156
-
Pragmatic trials
-
Ford I, Norrie J. Pragmatic trials. N Engl J Med 2016;375:454-63.
-
(2016)
N Engl J Med
, vol.375
, pp. 454-463
-
-
Ford, I.1
Norrie, J.2
-
55
-
-
85026800348
-
Evidence for health decision making — Beyond randomized, controlled trials
-
Frieden TR. Evidence for health decision making — beyond randomized, controlled trials. N Engl J Med 2017;377:465-75.
-
(2017)
N Engl J Med
, vol.377
, pp. 465-475
-
-
Frieden, T.R.1
-
57
-
-
84973386990
-
Integrating randomized comparative effectiveness research with patient care
-
Fiore LD, Lavori PW. Integrating randomized comparative effectiveness research with patient care. N Engl J Med 2016;374:2152-8.
-
(2016)
N Engl J Med
, vol.374
, pp. 2152-2158
-
-
Fiore, L.D.1
Lavori, P.W.2
-
58
-
-
84901794133
-
Learning from big health care data
-
Schneeweiss S. Learning from big health care data. N Engl J Med 2014;370: 2161-3.
-
(2014)
N Engl J Med
, vol.370
, pp. 2161-2163
-
-
Schneeweiss, S.1
-
59
-
-
85063939094
-
-
stitute of Medicine. Washington, DC: National Academies Press
-
Institute of Medicine. The learning healthcare system: workshop summary. Washington, DC: National Academies Press, 2007.
-
(2007)
The Learning Healthcare System: Workshop Summary
-
-
-
60
-
-
85020706563
-
Putting patients first by reducing administrative tasks in health care: A position paper of the American College of Physicians
-
Erickson SM, Rockwern B, Koltov M, McLean RM. Putting patients first by reducing administrative tasks in health care: a position paper of the American College of Physicians. Ann Intern Med 2017;166: 659-61.
-
(2017)
Ann Intern Med
, vol.166
, pp. 659-661
-
-
Erickson, S.M.1
Rockwern, B.2
Koltov, M.3
McLean, R.M.4
-
61
-
-
84887244957
-
4000 Clicks: A productivity analysis of electronic medical records in a community hospital ED
-
Hill RG Jr, Sears LM, Melanson SW. 4000 Clicks: a productivity analysis of electronic medical records in a community hospital ED. Am J Emerg Med 2013; 31:1591-4.
-
(2013)
Am J Emerg Med
, vol.31
, pp. 1591-1594
-
-
Hill, R.G.1
Sears, L.M.2
Melanson, S.W.3
-
62
-
-
84940391901
-
Graphical display of diagnostic test results in electronic health records: A comparison of 8 systems
-
Sittig DF, Murphy DR, Smith MW, Russo E, Wright A, Singh H. Graphical display of diagnostic test results in electronic health records: a comparison of 8 systems. J Am Med Inform Assoc 2015; 22:900-4.
-
(2015)
J Am Med Inform Assoc
, vol.22
, pp. 900-904
-
-
Sittig, D.F.1
Murphy, D.R.2
Smith, M.W.3
Russo, E.4
Wright, A.5
Singh, H.6
-
63
-
-
84961944014
-
How do residents spend their shift time? A time and motion study with a particular focus on the use of computers
-
Mamykina L, Vawdrey DK, Hripcsak G. How do residents spend their shift time? A time and motion study with a particular focus on the use of computers. Acad Med 2016;91:827-32.
-
(2016)
Acad Med
, vol.91
, pp. 827-832
-
-
Mamykina, L.1
Vawdrey, D.K.2
Hripcsak, G.3
-
64
-
-
77949901712
-
Time spent on clinical documentation: A survey of internal medicine residents and program directors
-
Oxentenko AS, West CP, Popkave C, Weinberger SE, Kolars JC. Time spent on clinical documentation: a survey of internal medicine residents and program directors. Arch Intern Med 2010;170:377-80.
-
(2010)
Arch Intern Med
, vol.170
, pp. 377-380
-
-
Oxentenko, A.S.1
West, C.P.2
Popkave, C.3
Weinberger, S.E.4
Kolars, J.C.5
-
65
-
-
85029413665
-
Tethered to the EHR: Primary care physician workload assessment using EHR event log data and time-motion observations
-
Arndt BG, Beasley JW, Watkinson MD, et al. Tethered to the EHR: primary care physician workload assessment using EHR event log data and time-motion observations. Ann Fam Med 2017;15:419-26.
-
(2017)
Ann Fam Med
, vol.15
, pp. 419-426
-
-
Arndt, B.G.1
Beasley, J.W.2
Watkinson, M.D.3
-
66
-
-
85003038967
-
Allocation of physician time in ambulatory practice: A time and motion study in 4 specialties
-
Sinsky C, Colligan L, Li L, et al. Allocation of physician time in ambulatory practice: a time and motion study in 4 specialties. Ann Intern Med 2016;165: 753-60.
-
(2016)
Ann Intern Med
, vol.165
, pp. 753-760
-
-
Sinsky, C.1
Colligan, L.2
Li, L.3
-
67
-
-
85044480242
-
Electronic health record usability issues and potential contribution to patient harm
-
Howe JL, Adams KT, Hettinger AZ, Ratwani RM. Electronic health record usability issues and potential contribution to patient harm. JAMA 2018;319:1276-8.
-
(2018)
JAMA
, vol.319
, pp. 1276-1278
-
-
Howe, J.L.1
Adams, K.T.2
Hettinger, A.Z.3
Ratwani, R.M.4
-
68
-
-
85042273587
-
Disentangling health care billing: For patients’ physical and financial health
-
Lee VS, Blanchfield BB. Disentangling health care billing: for patients’ physical and financial health. JAMA 2018;319:661-3.
-
(2018)
JAMA
, vol.319
, pp. 661-663
-
-
Lee, V.S.1
Blanchfield, B.B.2
-
69
-
-
59449089116
-
A surgical safety checklist to reduce morbidity and mortality in a global population
-
Haynes AB, Weiser TG, Berry WR, et al. A surgical safety checklist to reduce morbidity and mortality in a global population. N Engl J Med 2009;360:491-9.
-
(2009)
N Engl J Med
, vol.360
, pp. 491-499
-
-
Haynes, A.B.1
Weiser, T.G.2
Berry, W.R.3
-
71
-
-
85041018165
-
Exploring entertainment medicine and professionalization of self-care: Interview study among doctors on the potential effects of digital self-tracking
-
Gabriels K, Moerenhout T. Exploring entertainment medicine and professionalization of self-care: interview study among doctors on the potential effects of digital self-tracking. J Med Internet Res 2018;20(1):e10.
-
(2018)
J Med Internet Res
, vol.20
, Issue.1
, pp. e10
-
-
Gabriels, K.1
Moerenhout, T.2
-
72
-
-
85048773310
-
Association of a smartphone application with medication adherence and blood pressure control: The MedISAFE-BP randomized clinical trial
-
Morawski K, Ghazinouri R, Krumme A, et al. Association of a smartphone application with medication adherence and blood pressure control: the MedISAFE-BP randomized clinical trial. JAMA Intern Med 2018;178:802-9.
-
(2018)
JAMA Intern Med
, vol.178
, pp. 802-809
-
-
Morawski, K.1
Ghazinouri, R.2
Krumme, A.3
-
73
-
-
85023773744
-
Telemedi-cine for management of inflammatory bowel disease (myIBDcoach): A pragmatic, multicentre, randomised controlled trial
-
de Jong MJ, van der Meulen-de Jong AE, Romberg-Camps MJ, et al. Telemedi-cine for management of inflammatory bowel disease (myIBDcoach): a pragmatic, multicentre, randomised controlled trial. Lancet 2017;390:959-68.
-
(2017)
Lancet
, vol.390
, pp. 959-968
-
-
De Jong, M.J.1
Van Der Meulen-De Jong, A.E.2
Romberg-Camps, M.J.3
-
74
-
-
85060233746
-
Two-year survival comparing web-based symptom monitoring vs routine surveillance following treatment for lung cancer
-
Denis F, Basch E, Septans AL, et al. Two-year survival comparing web-based symptom monitoring vs routine surveillance following treatment for lung cancer. JAMA 2019;321(3):306-7.
-
(2019)
JAMA
, vol.321
, Issue.3
, pp. 306-307
-
-
Denis, F.1
Basch, E.2
Septans, A.L.3
-
75
-
-
85057555423
-
Safety of patient-facing digital symptom checkers
-
Fraser H, Coiera E, Wong D. Safety of patient-facing digital symptom checkers. Lancet 2018;392:2263-4.
-
(2018)
Lancet
, vol.392
, pp. 2263-2264
-
-
Fraser, H.1
Coiera, E.2
Wong, D.3
-
76
-
-
85021663116
-
Pathologists’ diagnosis of invasive melanoma and melanocytic proliferations: Observer accuracy and reproducibility study
-
Elmore JG, Barnhill RL, Elder DE, et al. Pathologists’ diagnosis of invasive melanoma and melanocytic proliferations: observer accuracy and reproducibility study. BMJ 2017;357:j2813.
-
(2017)
BMJ
, vol.357
, pp. j2813
-
-
Elmore, J.G.1
Barnhill, R.L.2
Elder, D.E.3
-
77
-
-
85053019174
-
Potential biases in machine learning algorithms using electronic health record data
-
Gianfrancesco MA, Tamang S, Yaz-dany J, Schmajuk G. Potential biases in machine learning algorithms using electronic health record data. JAMA Intern Med 2018;178:1544-7.
-
(2018)
JAMA Intern Med
, vol.178
, pp. 1544-1547
-
-
Gianfrancesco, M.A.1
Tamang, S.2
Yazdany, J.3
Schmajuk, G.4
-
78
-
-
85058771359
-
Ensuring fairness in machine learning to advance health equity
-
Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH. Ensuring fairness in machine learning to advance health equity. Ann Intern Med 2018;169:866-72.
-
(2018)
Ann Intern Med
, vol.169
, pp. 866-872
-
-
Rajkomar, A.1
Hardt, M.2
Howell, M.D.3
Corrado, G.4
Chin, M.H.5
-
80
-
-
84999025038
-
Need for a national evaluation system for health technology
-
Shuren J, Califf RM. Need for a national evaluation system for health technology. JAMA 2016;316:1153-4.
-
(2016)
JAMA
, vol.316
, pp. 1153-1154
-
-
Shuren, J.1
Califf, R.M.2
-
81
-
-
84855698737
-
Clinical decision support systems could be modified to reduce ‘alert fatigue’ while still minimizing the risk of litigation
-
Kesselheim AS, Cresswell K, Phansal-kar S, Bates DW, Sheikh A. Clinical decision support systems could be modified to reduce ‘alert fatigue’ while still minimizing the risk of litigation. Health Aff (Millwood) 2011;30:2310-7.
-
(2011)
Health Aff (Millwood)
, vol.30
, pp. 2310-2317
-
-
Kesselheim, A.S.1
Cresswell, K.2
Phansalkar, S.3
Bates, D.W.4
Sheikh, A.5
-
82
-
-
85047308922
-
Balancing innovation and safety when integrating digital tools into health care
-
Auerbach AD, Neinstein A, Khanna R. Balancing innovation and safety when integrating digital tools into health care. Ann Intern Med 2018;168:733-4.
-
(2018)
Ann Intern Med
, vol.168
, pp. 733-734
-
-
Auerbach, A.D.1
Neinstein, A.2
Khanna, R.3
-
83
-
-
84905973448
-
Implementing electronic health care predictive analytics: Considerations and challenges
-
Amarasingham R, Patzer RE, Huesch M, Nguyen NQ, Xie B. Implementing electronic health care predictive analytics: considerations and challenges. Health Aff (Millwood) 2014;33:1148-54.
-
(2014)
Health Aff (Millwood)
, vol.33
, pp. 1148-1154
-
-
Amarasingham, R.1
Patzer, R.E.2
Huesch, M.3
Nguyen, N.Q.4
Xie, B.5
-
84
-
-
84937212736
-
The role of physicians in the era of predictive analytics
-
Sniderman AD, D’Agostino RB Sr, Pencina MJ. The role of physicians in the era of predictive analytics. JAMA 2015; 314:25-6.
-
(2015)
JAMA
, vol.314
, pp. 25-26
-
-
Sniderman, A.D.1
D’Agostino, R.B.2
Pencina, M.J.3
-
85
-
-
84905965765
-
Big data and new knowledge in medicine: The thinking, training, and tools needed for a learning health system
-
Krumholz HM. Big data and new knowledge in medicine: the thinking, training, and tools needed for a learning health system. Health Aff (Millwood) 2014;33:1163-70.
-
(2014)
Health Aff (Millwood)
, vol.33
, pp. 1163-1170
-
-
Krumholz, H.M.1
-
86
-
-
85016430011
-
Automation bias and verification complexity: A systematic review
-
Lyell D, Coiera E. Automation bias and verification complexity: a systematic review. J Am Med Inform Assoc 2017;24: 423-31.
-
(2017)
J Am Med Inform Assoc
, vol.24
, pp. 423-431
-
-
Lyell, D.1
Coiera, E.2
-
87
-
-
85027869169
-
Unintended consequences of machine learning in medicine
-
Cabitza F, Rasoini R, Gensini GF. Unintended consequences of machine learning in medicine. JAMA 2017;318:517-8.
-
(2017)
JAMA
, vol.318
, pp. 517-518
-
-
Cabitza, F.1
Rasoini, R.2
Gensini, G.F.3
-
88
-
-
84990235978
-
Can we open the black box of AI?
-
Castelvecchi D. Can we open the black box of AI? Nature 2016;538:20-3.
-
(2016)
Nature
, vol.538
, pp. 20-23
-
-
Castelvecchi, D.1
-
89
-
-
85063928915
-
To trust or not to trust a classifier
-
Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R, eds. New York: Curran Associates
-
Jiang H, Kim B, Guan M, Gupta M. To trust or not to trust a classifier. In: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R, eds. Advances in neural information processing systems 31. New York: Curran Associates, 2018: 5541-52.
-
(2018)
Advances in Neural Information Processing Systems
, vol.31
, pp. 5541-5552
-
-
Jiang, H.1
Kim, B.2
Guan, M.3
Gupta, M.4
-
90
-
-
84905994854
-
The legal and ethical concerns that arise from using complex predictive analytics in health care
-
Cohen IG, Amarasingham R, Shah A, Xie B, Lo B. The legal and ethical concerns that arise from using complex predictive analytics in health care. Health Aff (Millwood) 2014;33:1139-47.
-
(2014)
Health Aff (Millwood)
, vol.33
, pp. 1139-1147
-
-
Cohen, I.G.1
Amarasingham, R.2
Shah, A.3
Xie, B.4
Lo, B.5
-
91
-
-
85063943981
-
-
Home
-
arXiv.org Home page (https://arxiv.org/).
-
-
-
-
92
-
-
85078471188
-
-
Copyright © 2019 Massachusetts Medical Society
-
bioRxiv. bioRxiv: The preprint server for biology (https://www.biorxiv.org/). Copyright © 2019 Massachusetts Medical Society.
-
bioRxiv: The Preprint Server for Biology
-
-
|