메뉴 건너뛰기




Volumn 39, Issue 6, 2020, Pages 773-800

The emerging landscape of health research based on biobanks linked to electronic health records: Existing resources, statistical challenges, and potential opportunities

Author keywords

biobanks; electronic health records; Michigan Genomics Initiative; selection bias; UK Biobank

Indexed keywords

ACCESS TO INFORMATION; ARTICLE; BIOBANK; DATA PROCESSING; ELECTRONIC HEALTH RECORD; HEALTH CARE FACILITY; HEALTH CARE PERSONNEL; HEALTH CARE PLANNING; HEALTH CARE SYSTEM; HUMAN; MEDICAL RESEARCH; PRACTICE GUIDELINE; STUDY DESIGN;

EID: 85077090340     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.8445     Document Type: Article
Times cited : (64)

References (236)
  • 1
    • 84872308092 scopus 로고    scopus 로고
    • Biobanking past, present and future
    • De Souza YG, Greenspan JS. Biobanking past, present and future. AIDS. 2013;27:303-312.
    • (2013) AIDS , vol.27 , pp. 303-312
    • De Souza, Y.G.1    Greenspan, J.S.2
  • 2
    • 38449089111 scopus 로고    scopus 로고
    • The uneasy ethical and legal underpinnings of large-scale genomic biobanks
    • Greely HT. The uneasy ethical and legal underpinnings of large-scale genomic biobanks. Annu. Rev. Genomics Hum. Genet. 2007;8:343-364.
    • (2007) Annu. Rev. Genomics Hum. Genet. , vol.8 , pp. 343-364
    • Greely, H.T.1
  • 3
    • 41149088350 scopus 로고    scopus 로고
    • Definition, structure, content, use and impacts of electronic health records: a review of the research literature
    • Hayrinen K, Saranto K, Nyk P. Definition, structure, content, use and impacts of electronic health records: a review of the research literature. Int. J. Med. Inform. 2008;7:291-304.
    • (2008) Int. J. Med. Inform. , vol.7 , pp. 291-304
    • Hayrinen, K.1    Saranto, K.2    Nyk, P.3
  • 4
    • 77952822074 scopus 로고    scopus 로고
    • PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations
    • Denny JC et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics. 2010;26:1205-1210.
    • (2010) Bioinformatics , vol.26 , pp. 1205-1210
    • Denny, J.C.1
  • 5
    • 85048616382 scopus 로고    scopus 로고
    • Electronic health records: The next wave of complex disease genetics
    • Wolford BN, Willer CJ, Surakka I. Electronic health records: The next wave of complex disease genetics. Hum. Mol. Genet. 2018;27:R14-R21.
    • (2018) Hum. Mol. Genet. , vol.27 , pp. R14-R21
    • Wolford, B.N.1    Willer, C.J.2    Surakka, I.3
  • 6
    • 85048617593 scopus 로고    scopus 로고
    • The next generation of precision medicine: Observational studies, electronic health records, biobanks and continuous monitoring
    • Glicksberg BS, Johnson KW, Dudley JT. The next generation of precision medicine: Observational studies, electronic health records, biobanks and continuous monitoring. Hum. Mol. Genet. 2018;27:R56-R62.
    • (2018) Hum. Mol. Genet. , vol.27 , pp. R56-R62
    • Glicksberg, B.S.1    Johnson, K.W.2    Dudley, J.T.3
  • 7
    • 84958659058 scopus 로고    scopus 로고
    • Unravelling the human genome–phenome relationship using phenome-wide association studies
    • Bush WS, Oetjens MT, Crawford DC. Unravelling the human genome–phenome relationship using phenome-wide association studies. Nat. Rev. Genet. 2016;17:129-145.
    • (2016) Nat. Rev. Genet. , vol.17 , pp. 129-145
    • Bush, W.S.1    Oetjens, M.T.2    Crawford, D.C.3
  • 9
    • 85068046749 scopus 로고    scopus 로고
    • Genes for good: engaging the public in genetics research via social media
    • Brieger K et al. Genes for good: engaging the public in genetics research via social media. Am. J. Hum. Genet. 2019;105:65-77.
    • (2019) Am. J. Hum. Genet. , vol.105 , pp. 65-77
    • Brieger, K.1
  • 10
    • 85046878844 scopus 로고    scopus 로고
    • Association of Polygenic Risk Scores for Multiple Cancers in a Phenome-wide Study: Results from The Michigan Genomics Initiative
    • Fritsche, L. G. et al. Association of Polygenic Risk Scores for Multiple Cancers in a Phenome-wide Study: Results from The Michigan Genomics Initiative. Am. J. Hum. Genet. 2018;102:1048-1061. doi:https://doi.org/10.1016/j.ajhg.2018.04.001
    • (2018) Am. J. Hum. Genet. , vol.102 , pp. 1048-1061
    • Fritsche, L.G.1
  • 11
    • 85077026532 scopus 로고    scopus 로고
    • Michigan Genomics Initiative Website. https://www.michigangenomics.org.
  • 12
    • 85077063047 scopus 로고    scopus 로고
    • UK Biobank Website. http://www.ukbiobank.ac.uk.
  • 13
    • 84866173675 scopus 로고    scopus 로고
    • UK Biobank: current status and what it means for epidemiology
    • Allen N et al. UK Biobank: current status and what it means for epidemiology. Heal. Policy Technol. 2012;1:123-126.
    • (2012) Heal. Policy Technol. , vol.1 , pp. 123-126
    • Allen, N.1
  • 14
    • 85077078243 scopus 로고    scopus 로고
    • Estonian Genome Center. Available at: https://www.geenivaramu.ee/en/access-biobank.
  • 15
    • 84943759545 scopus 로고    scopus 로고
    • Cohort profile: estonian biobank of the Estonian genome center, university of Tartu
    • Leitsalu L et al. Cohort profile: estonian biobank of the Estonian genome center, university of Tartu. Int. J. Epidemiol. 2015;44:1137-1147.
    • (2015) Int. J. Epidemiol. , vol.44 , pp. 1137-1147
    • Leitsalu, L.1
  • 16
    • 85077077395 scopus 로고    scopus 로고
    • Danish National Biobank. http://www.biobankdenmark.dk.
  • 17
    • 85080825021 scopus 로고    scopus 로고
    • Biobank Sweden
    • Biobank Sweden. http://biobanksverige.se/research/.
  • 18
    • 85080831561 scopus 로고    scopus 로고
    • Saudi Biobank. http://kaimrc.med.sa.
  • 19
    • 85077022234 scopus 로고    scopus 로고
    • China National GeneBank. https://www.cngb.org/home.html.
  • 20
    • 85077031765 scopus 로고    scopus 로고
    • National Biobank of Korea. http://www.nih.go.kr/NIH/cms/content/eng/14/65714_view.html.
  • 21
    • 84866879293 scopus 로고    scopus 로고
    • Opening of the National Biobank of Korea as the infrastructure of future biomedical science in Korea
    • Cho SY et al. Opening of the National Biobank of Korea as the infrastructure of future biomedical science in Korea. Osong Public Heal. Res. Perspect. 2012;3:177-184.
    • (2012) Osong Public Heal. Res. Perspect. , vol.3 , pp. 177-184
    • Cho, S.Y.1
  • 22
    • 85077031063 scopus 로고    scopus 로고
    • Qatar Biobank. https://www.qatarbiobank.org.qa.
  • 23
    • 84949560863 scopus 로고    scopus 로고
    • The qatar Biobank: background and methods
    • Al Kuwari H et al. The qatar Biobank: background and methods. BMC Public Health. 2015;15:1208.
    • (2015) BMC Public Health , vol.15 , pp. 1208
    • Al Kuwari, H.1
  • 24
    • 85015270993 scopus 로고    scopus 로고
    • Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population
    • Lin E et al. Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. Oncotarget. 2017;8:24077-24087.
    • (2017) Oncotarget , vol.8 , pp. 24077-24087
    • Lin, E.1
  • 25
    • 85080822901 scopus 로고    scopus 로고
    • Taiwan Biobank
    • Taiwan Biobank. https://www.twbiobank.org.tw/new_web_en/index.php.
  • 26
    • 85016438418 scopus 로고    scopus 로고
    • Overview of the BioBank Japan Project: study design and profile
    • Nagai A et al. Overview of the BioBank Japan Project: study design and profile. J. Epidemiol. 2017;27:S2-S8.
    • (2017) J. Epidemiol. , vol.27 , pp. S2-S8
    • Nagai, A.1
  • 28
    • 85077049262 scopus 로고    scopus 로고
    • PcBaSe Sweden Website. http://www.surgsci.umu.se/english/sections/urology-and-andrology/research/pcbase/?languageId=1.
  • 29
    • 85077029624 scopus 로고    scopus 로고
    • Mayo Clinic Biobank for Bipolar Disorder Website. https://www.mayo.edu/research/centers-programs/bipolar-disorder-biobank/overview.
  • 30
    • 85064124697 scopus 로고    scopus 로고
    • Illustrating informed presence bias in electronic health records data: how patient interactions with a health system can impact inference
    • Phelan M, Bhavsar N, Goldstein BA. Illustrating informed presence bias in electronic health records data: how patient interactions with a health system can impact inference. eGEMs. 2017;5:22.
    • (2017) eGEMs , vol.5 , pp. 22
    • Phelan, M.1    Bhavsar, N.2    Goldstein, B.A.3
  • 31
    • 85015982112 scopus 로고    scopus 로고
    • Controlling for informed presence bias due to the number of health encounters in an electronic health record
    • Goldstein BA, Bhavsar NA, Phelan M, Pencina MJ. Controlling for informed presence bias due to the number of health encounters in an electronic health record. Am. J. Epidemiol. 2016;184:847-855.
    • (2016) Am. J. Epidemiol. , vol.184 , pp. 847-855
    • Goldstein, B.A.1    Bhavsar, N.A.2    Phelan, M.3    Pencina, M.J.4
  • 32
    • 84955094814 scopus 로고    scopus 로고
    • Perils and potentials of self-selected entry to epidemiological studies and surveys
    • Keiding N, Louis TA. Perils and potentials of self-selected entry to epidemiological studies and surveys. J. R. Stat. Soc. Ser. A Stat. Soc. 2016;179:319-376.
    • (2016) J. R. Stat. Soc. Ser. A Stat. Soc. , vol.179 , pp. 319-376
    • Keiding, N.1    Louis, T.A.2
  • 33
    • 85077048189 scopus 로고    scopus 로고
    • Modeling framework for exploring sampling and observation process biases in genome and phenome-wide association studies using electronic health records
    • Beesley LJ, Fritsche LG, Mukherjee BA. Modeling framework for exploring sampling and observation process biases in genome and phenome-wide association studies using electronic health records. bioRXiv. 2018;1:1-19.
    • (2018) bioRXiv , vol.1 , pp. 1-19
    • Beesley, L.J.1    Fritsche, L.G.2    Mukherjee, B.A.3
  • 35
    • 84906273890 scopus 로고    scopus 로고
    • R PheWAS: data analysis and plotting tools for phenome-wide association studies in the R environment
    • Carroll RJ, Bastarache L, Denny JC. R PheWAS: data analysis and plotting tools for phenome-wide association studies in the R environment. Bioinformatics. 2014;30:2375-2376.
    • (2014) Bioinformatics , vol.30 , pp. 2375-2376
    • Carroll, R.J.1    Bastarache, L.2    Denny, J.C.3
  • 36
    • 85058441584 scopus 로고    scopus 로고
    • Evaluating large-scale propensity score performance through real-world and synthetic data experiments
    • Tian Y, Schuemie MJ, Suchard MA. Evaluating large-scale propensity score performance through real-world and synthetic data experiments. Int. J. Epidemiol. 2018;47:2005-2014. https://doi.org/10.1093/ije/dyy120.
    • (2018) Int. J. Epidemiol. , vol.47 , pp. 2005-2014
    • Tian, Y.1    Schuemie, M.J.2    Suchard, M.A.3
  • 37
    • 67651042983 scopus 로고    scopus 로고
    • High-dimensional propensity score adjustment in studies of treatment effects using health care claims data
    • Schneeweiss S et al. High-dimensional propensity score adjustment in studies of treatment effects using health care claims data. Epidemiology. 2009;20:512-522.
    • (2009) Epidemiology , vol.20 , pp. 512-522
    • Schneeweiss, S.1
  • 38
    • 85040528045 scopus 로고    scopus 로고
    • Genome-wide meta-analyses of stratified depression in Generation Scotland and UK Biobank
    • Hall LS et al. Genome-wide meta-analyses of stratified depression in Generation Scotland and UK Biobank. Transl. Psychiatry. 2018;8:9.
    • (2018) Transl. Psychiatry , vol.8 , pp. 9
    • Hall, L.S.1
  • 40
    • 85041946677 scopus 로고    scopus 로고
    • Use of instrumental variables in electronic health record-driven models
    • Salmasi L, Capobianco E. Use of instrumental variables in electronic health record-driven models. Stat. Methods Med. Res. 2018;27:607-621.
    • (2018) Stat. Methods Med. Res. , vol.27 , pp. 607-621
    • Salmasi, L.1    Capobianco, E.2
  • 41
    • 85049356777 scopus 로고    scopus 로고
    • MR-PheWAS: exploring the causal effect of SUA level on multiple disease outcomes by using genetic instruments in UK Biobank
    • Li X et al. MR-PheWAS: exploring the causal effect of SUA level on multiple disease outcomes by using genetic instruments in UK Biobank. Ann. Rheum. Dis. 2018;77:1039-1047.
    • (2018) Ann. Rheum. Dis. , vol.77 , pp. 1039-1047
    • Li, X.1
  • 42
  • 43
    • 0033847784 scopus 로고    scopus 로고
    • Marginal structural models and causal inference
    • Robins JM, Miguel A. Marginal structural models and causal inference. Epidemiology. 2000;11:550-560.
    • (2000) Epidemiology , vol.11 , pp. 550-560
    • Robins, J.M.1    Miguel, A.2
  • 44
    • 85052387326 scopus 로고    scopus 로고
    • Using marginal structural models to adjust for treatment drop-in when developing clinical prediction models
    • Sperrin M, Martin GP, Peek N, Buchan I, Pate A. Using marginal structural models to adjust for treatment drop-in when developing clinical prediction models. Stat. Med. 2018;37:4142-4154.
    • (2018) Stat. Med. , vol.37 , pp. 4142-4154
    • Sperrin, M.1    Martin, G.P.2    Peek, N.3    Buchan, I.4    Pate, A.5
  • 45
    • 84958776644 scopus 로고    scopus 로고
    • Assessing sensitivity to unmeasured confounding using a simulated potential confounder
    • Carnegie NB, Harada M, Hill JL. Assessing sensitivity to unmeasured confounding using a simulated potential confounder. J. Res. Educ. Eff. 2016;9:395-420.
    • (2016) J. Res. Educ. Eff. , vol.9 , pp. 395-420
    • Carnegie, N.B.1    Harada, M.2    Hill, J.L.3
  • 46
    • 84964325837 scopus 로고    scopus 로고
    • Methods to control for unmeasured confounding in pharmacoepidemiology: an overview
    • Uddin MJ et al. Methods to control for unmeasured confounding in pharmacoepidemiology: an overview. Int. J. Clin. Pharm. 2016;38:714-723.
    • (2016) Int. J. Clin. Pharm. , vol.38 , pp. 714-723
    • Uddin, M.J.1
  • 48
    • 85027461408 scopus 로고    scopus 로고
    • sensitivity analysis in observational research: introducing the e-value
    • VanderWeele TJ, Ding P. sensitivity analysis in observational research: introducing the e-value. Ann. Intern. Med. 2017;167:268.
    • (2017) Ann. Intern. Med. , vol.167 , pp. 268
    • VanderWeele, T.J.1    Ding, P.2
  • 49
    • 85077037571 scopus 로고    scopus 로고
    • ICD Code Informational Website. https://www.cdc.gov/nchs/icd/index.htm.
  • 50
    • 85077029819 scopus 로고    scopus 로고
    • Phenome-wide association studies: leveraging comprehensive phenotypic and genotypic data for discovery
    • Pendergrass SA, Ritchie MD. Phenome-wide association studies: leveraging comprehensive phenotypic and genotypic data for discovery. Curr. Genet. Med. Rep. 2016;42:407-420.
    • (2016) Curr. Genet. Med. Rep. , vol.42 , pp. 407-420
    • Pendergrass, S.A.1    Ritchie, M.D.2
  • 51
    • 85077047405 scopus 로고    scopus 로고
    • eMERGE PheKB Website. https://phekb.org.
  • 52
    • 84942898092 scopus 로고    scopus 로고
    • Methods to develop an electronic medical record phenotype algorithm to compare the risk of coronary artery disease across 3 chronic disease cohorts
    • Liao KP et al. Methods to develop an electronic medical record phenotype algorithm to compare the risk of coronary artery disease across 3 chronic disease cohorts. PLoS One. 2015;10. https://doi.org/10.1371/journal.pone.0136651.
    • (2015) PLoS One , vol.10
    • Liao, K.P.1
  • 53
    • 84930651751 scopus 로고    scopus 로고
    • Development of phenotype algorithms using electronic medical records and incorporating natural language processing
    • Liao KP et al. Development of phenotype algorithms using electronic medical records and incorporating natural language processing. BMJ. 2015;350:1-5. https://doi.org/10.1136/bmj.h1885.
    • (2015) BMJ , vol.350 , pp. 1-5
    • Liao, K.P.1
  • 54
    • 84964584033 scopus 로고    scopus 로고
    • Identification of nonresponse to treatment using narrative data in an electronic health record inflammatory bowel disease cohort
    • Ananthakrishnan AN et al. Identification of nonresponse to treatment using narrative data in an electronic health record inflammatory bowel disease cohort. Inflamm. Bowel Dis. 2016;22:151-158. https://doi.org/10.1097/MIB.0000000000000580.
    • (2016) Inflamm. Bowel Dis. , vol.22 , pp. 151-158
    • Ananthakrishnan, A.N.1
  • 55
    • 84945899251 scopus 로고    scopus 로고
    • Identification of subjects with polycystic ovary syndrome using electronic health records
    • Castro V et al. Identification of subjects with polycystic ovary syndrome using electronic health records. Reprod. Biol. Endocrinol. 2015;29:1-8. https://doi.org/10.1186/s12958-015-0115-z.
    • (2015) Reprod. Biol. Endocrinol. , vol.29 , pp. 1-8
    • Castro, V.1
  • 56
    • 85044585865 scopus 로고    scopus 로고
    • Genome-wide association study of dimensional psychopathology using electronic health records
    • McCoy TH et al. Genome-wide association study of dimensional psychopathology using electronic health records. Biol. Psychiatry. 2018;83:1005-1011. https://doi.org/10.1016/j.biopsych.2017.12.004.
    • (2018) Biol. Psychiatry , vol.83 , pp. 1005-1011
    • McCoy, T.H.1
  • 57
    • 84919418380 scopus 로고    scopus 로고
    • Improving the power of genetic association tests with imperfect phenotype derived from electronic medical records
    • Sinnott JA et al. Improving the power of genetic association tests with imperfect phenotype derived from electronic medical records. Hum. Genet. 2014;133:1369-1382.
    • (2014) Hum. Genet. , vol.133 , pp. 1369-1382
    • Sinnott, J.A.1
  • 58
    • 85040570526 scopus 로고    scopus 로고
    • Surrogate-assisted feature extraction for high-throughput phenotyping
    • Yu S et al. Surrogate-assisted feature extraction for high-throughput phenotyping. J. Am. Med. Inform. Assoc. 2017;24:e143-e149.
    • (2017) J. Am. Med. Inform. Assoc. , vol.24 , pp. e143-e149
    • Yu, S.1
  • 59
    • 85040620809 scopus 로고    scopus 로고
    • Enabling phenotypic big data with PheNorm
    • Yu S et al. Enabling phenotypic big data with PheNorm. J. Am. Med. Informatics Assoc. 2018;25:54-60.
    • (2018) J. Am. Med. Informatics Assoc. , vol.25 , pp. 54-60
    • Yu, S.1
  • 60
    • 85009080828 scopus 로고    scopus 로고
    • Large-scale identification of patients with cerebral aneurysms using natural language processing
    • Castro VM et al. Large-scale identification of patients with cerebral aneurysms using natural language processing. Neurology. 2017;88:164-168.
    • (2017) Neurology , vol.88 , pp. 164-168
    • Castro, V.M.1
  • 61
    • 85042389905 scopus 로고    scopus 로고
    • Identifying medical diagnoses and treatable diseases by image-based deep learning
    • Kermany DS et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell. 2018;172:1122-1131.e9.
    • (2018) Cell , vol.172 , pp. 1122-1131
    • Kermany, D.S.1
  • 62
    • 85014746171 scopus 로고    scopus 로고
    • Evaluating electronic health record data sources and algorithmic approaches to identify hypertensive individuals
    • Teixeira PL et al. Evaluating electronic health record data sources and algorithmic approaches to identify hypertensive individuals. J. Am. Med. Informatics Assoc. 2017;24:162-171.
    • (2017) J. Am. Med. Informatics Assoc. , vol.24 , pp. 162-171
    • Teixeira, P.L.1
  • 63
    • 85029752725 scopus 로고    scopus 로고
    • Mimvec: a deep learning approach for analyzing the human phenome
    • Gan M, Li W, Zeng W, Wang X, Jiang R. Mimvec: a deep learning approach for analyzing the human phenome. BMC Syst. Biol. 2017;11:76.
    • (2017) BMC Syst. Biol. , vol.11 , pp. 76
    • Gan, M.1    Li, W.2    Zeng, W.3    Wang, X.4    Jiang, R.5
  • 64
    • 85052927246 scopus 로고    scopus 로고
    • A Bayesian latent class approach for EHR-based phenotyping
    • Hubbard RA et al. A Bayesian latent class approach for EHR-based phenotyping. Stat Me. 2019;38:74-87.
    • (2019) Stat Me , vol.38 , pp. 74-87
    • Hubbard, R.A.1
  • 66
    • 85060531623 scopus 로고    scopus 로고
    • Learning from longitudinal data in electronic health record and genetic data to improve cardiovascular event prediction
    • Zhao J et al. Learning from longitudinal data in electronic health record and genetic data to improve cardiovascular event prediction. Sci. Rep. 2019;9:1-10.
    • (2019) Sci. Rep. , vol.9 , pp. 1-10
    • Zhao, J.1
  • 67
    • 84944169855 scopus 로고    scopus 로고
    • GWAS with longitudinal phenotypes: performance of approximate procedures
    • Sikorska K et al. GWAS with longitudinal phenotypes: performance of approximate procedures. Eur. J. Hum. Genet. 2015;23:1384-1391.
    • (2015) Eur. J. Hum. Genet. , vol.23 , pp. 1384-1391
    • Sikorska, K.1
  • 68
    • 84956653867 scopus 로고    scopus 로고
    • Longitudinal analytical approaches to genetic data
    • Chiu Y, Justice AE, Melton PE. Longitudinal analytical approaches to genetic data. BMC Genet. 2016;17:25-32.
    • (2016) BMC Genet. , vol.17 , pp. 25-32
    • Chiu, Y.1    Justice, A.E.2    Melton, P.E.3
  • 69
    • 84953342203 scopus 로고    scopus 로고
    • Automated methods for the summarization of electronic health records
    • Pivovarov R. Automated methods for the summarization of electronic health records. J. Am. Med. Informatics Assoc. 2015;22:938-947. https://doi.org/10.1093/jamia/ocv032.
    • (2015) J. Am. Med. Informatics Assoc. , vol.22 , pp. 938-947
    • Pivovarov, R.1
  • 70
    • 85041422758 scopus 로고    scopus 로고
    • Estimating summary statistics for electronic health record laboratory data for use in high-throughout phenotyping algorithms
    • Albers DJ et al. Estimating summary statistics for electronic health record laboratory data for use in high-throughout phenotyping algorithms. J. Biomed. Inform. 2018;78:87-101.
    • (2018) J. Biomed. Inform. , vol.78 , pp. 87-101
    • Albers, D.J.1
  • 71
    • 84866458870 scopus 로고    scopus 로고
    • From phenotype to genotype: an association study of longitudinal phenotypic markers to Alzheimer ' s disease relevant SNPs
    • Wang H et al. From phenotype to genotype: an association study of longitudinal phenotypic markers to Alzheimer ' s disease relevant SNPs. Bioinformatics. 2012;28:619-625.
    • (2012) Bioinformatics , vol.28 , pp. 619-625
    • Wang, H.1
  • 72
    • 84905472519 scopus 로고    scopus 로고
    • Longitudinal analysis is more powerful than cross-sectional analysis in detecting genetic association with neuroimaging phenotypes
    • Xu Z, Shen X, Pan W, Neuroimaging D. Longitudinal analysis is more powerful than cross-sectional analysis in detecting genetic association with neuroimaging phenotypes. PLoS One. 2014;9:1-13.
    • (2014) PLoS One , vol.9 , pp. 1-13
    • Xu, Z.1    Shen, X.2    Pan, W.3    Neuroimaging, D.4
  • 73
    • 85046254953 scopus 로고    scopus 로고
    • Biases in electronic health record data due to processes within the healthcare system: retrospective observational study
    • Agniel D, Kohane IS, Weber GM. Biases in electronic health record data due to processes within the healthcare system: retrospective observational study. BMJ Open. 2018;361:1-9.
    • (2018) BMJ Open , vol.361 , pp. 1-9
    • Agniel, D.1    Kohane, I.S.2    Weber, G.M.3
  • 74
    • 84961317223 scopus 로고    scopus 로고
    • A joint model for multistate disease processes and random informative observation times, with applications to electronic medical records data
    • Lange JM, Hubbard RA, Inoue LYT, Minin VN. A joint model for multistate disease processes and random informative observation times, with applications to electronic medical records data. Biometrics. 2015;71:90-101. https://doi.org/10.1111/biom.12252.
    • (2015) Biometrics , vol.71 , pp. 90-101
    • Lange, J.M.1    Hubbard, R.A.2    Inoue, L.Y.T.3    Minin, V.N.4
  • 75
    • 49549125409 scopus 로고    scopus 로고
    • Covariate bias induced by length-biased sampling of failure times
    • Bergeron PJ, Asgharian M, Wolfson DB. Covariate bias induced by length-biased sampling of failure times. J. Am. Stat. Assoc. 2008;103:737-742.
    • (2008) J. Am. Stat. Assoc. , vol.103 , pp. 737-742
    • Bergeron, P.J.1    Asgharian, M.2    Wolfson, D.B.3
  • 76
    • 84961290792 scopus 로고    scopus 로고
    • Validation of electronic health record phenotyping of bipolar disorder cases and controls
    • Castro VM et al. Validation of electronic health record phenotyping of bipolar disorder cases and controls. Am. J. Psychiatry. 2015;172:363-372.
    • (2015) Am. J. Psychiatry , vol.172 , pp. 363-372
    • Castro, V.M.1
  • 78
    • 77950338000 scopus 로고    scopus 로고
    • Robust replication of genotype-phenotype associations across multiple diseases in an electronic medical record
    • Ritchie MD et al. Robust replication of genotype-phenotype associations across multiple diseases in an electronic medical record. Am. J. Hum. Genet. 2010;86:560-572.
    • (2010) Am. J. Hum. Genet. , vol.86 , pp. 560-572
    • Ritchie, M.D.1
  • 79
    • 85055699625 scopus 로고    scopus 로고
    • Inflation of type I error rates due to differential misclassification in EHR—derived outcomes: empirical illustration using breast cancer recurrence
    • Chen Y, Wang J, Chubak J, Hubbard RA. Inflation of type I error rates due to differential misclassification in EHR—derived outcomes: empirical illustration using breast cancer recurrence. Pharmacoepidemiol. Drug Saf. 2019;28:264-268.
    • (2019) Pharmacoepidemiol. Drug Saf. , vol.28 , pp. 264-268
    • Chen, Y.1    Wang, J.2    Chubak, J.3    Hubbard, R.A.4
  • 80
    • 21844448883 scopus 로고    scopus 로고
    • Does it always help to adjust for misclassiÿcation of a binary outcome in logistic regression?
    • Luan X, Pan W, Gerberich SG, Carlin BP. Does it always help to adjust for misclassiÿcation of a binary outcome in logistic regression? Stat. Med. 2005;24:2221-2234.
    • (2005) Stat. Med. , vol.24 , pp. 2221-2234
    • Luan, X.1    Pan, W.2    Gerberich, S.G.3    Carlin, B.P.4
  • 82
    • 85043315236 scopus 로고    scopus 로고
    • PIE: A prior knowledge guided integrated likelihood estimation method for bias reduction in association studies using electronic health records data
    • [Epub ahead of print]
    • Huang J et al. PIE: A prior knowledge guided integrated likelihood estimation method for bias reduction in association studies using electronic health records data. J. Am. Med. Informatics Assoc. 2018. https://doi.org/10.1093/jamia/ocx137 [Epub ahead of print].
    • (2018) J. Am. Med. Informatics Assoc.
    • Huang, J.1
  • 83
    • 84915778509 scopus 로고    scopus 로고
    • Classification accuracy of claims-based methods for identifying providers failing to meet performance targets
    • Hubbard RA et al. Classification accuracy of claims-based methods for identifying providers failing to meet performance targets. Stat. Med. 2015;34:93-105. https://doi.org/10.1002/sim.6318.
    • (2015) Stat. Med. , vol.34 , pp. 93-105
    • Hubbard, R.A.1
  • 84
    • 85016440836 scopus 로고    scopus 로고
    • Phenome-wide association study of autoantibodies to citrullinated and noncitrullinated epitopes in rheumatoid arthritis
    • Liao KP et al. Phenome-wide association study of autoantibodies to citrullinated and noncitrullinated epitopes in rheumatoid arthritis. Arthritis Rheumatol. 2017;69:742-749. https://doi.org/10.1002/art.39974.
    • (2017) Arthritis Rheumatol. , vol.69 , pp. 742-749
    • Liao, K.P.1
  • 85
    • 85031103336 scopus 로고    scopus 로고
    • Phenotype validation in electronic health records based genetic association studies
    • Wang L et al. Phenotype validation in electronic health records based genetic association studies. Genet Epidemiol. 2017;41:790-800.
    • (2017) Genet Epidemiol. , vol.41 , pp. 790-800
    • Wang, L.1
  • 86
    • 3543025789 scopus 로고    scopus 로고
    • A simple model for potential use with a misclassified binary outcome in epidemiology
    • Duffy SW et al. A simple model for potential use with a misclassified binary outcome in epidemiology. J. Epidemiol. Community Health. 2004;58:712-717.
    • (2004) J. Epidemiol. Community Health , vol.58 , pp. 712-717
    • Duffy, S.W.1
  • 87
    • 85025447339 scopus 로고    scopus 로고
    • IL-6 variant is associated with metastasis in breast cancer patients
    • Abana CO et al. IL-6 variant is associated with metastasis in breast cancer patients. PLoS One. 2017;12:e0181725.
    • (2017) PLoS One , vol.12
    • Abana, C.O.1
  • 88
    • 84890095736 scopus 로고    scopus 로고
    • Unified analysis of secondary traits in case-control association studies
    • Ghosh A, Wright FA, Zou F. Unified analysis of secondary traits in case-control association studies. J. Am. Stat. Assoc. 2013;108:566-576.
    • (2013) J. Am. Stat. Assoc. , vol.108 , pp. 566-576
    • Ghosh, A.1    Wright, F.A.2    Zou, F.3
  • 89
    • 33646128932 scopus 로고    scopus 로고
    • Secondary analysis of case-control data
    • Jiang Y, Scott AJ, Wild CJ. Secondary analysis of case-control data. Stat. Med. 2006;25:1323-1339.
    • (2006) Stat. Med. , vol.25 , pp. 1323-1339
    • Jiang, Y.1    Scott, A.J.2    Wild, C.J.3
  • 90
    • 84890482720 scopus 로고    scopus 로고
    • A general regression framework for a secondary outcome in case—control studies
    • Tchetgen EJT. A general regression framework for a secondary outcome in case—control studies. Biostatistics. 2014;15:117-128.
    • (2014) Biostatistics , vol.15 , pp. 117-128
    • Tchetgen, E.J.T.1
  • 91
    • 79952526688 scopus 로고    scopus 로고
    • Estimation of odds ratios of genetic variants for the secondary phenotypes associated with primary disease
    • Wang J, Shete S. Estimation of odds ratios of genetic variants for the secondary phenotypes associated with primary disease. Genet. Epidemiol. 2012;35:190-200.
    • (2012) Genet. Epidemiol. , vol.35 , pp. 190-200
    • Wang, J.1    Shete, S.2
  • 92
    • 84903315871 scopus 로고    scopus 로고
    • Hidden in plain sight: Bias towards sick patients when sampling patients with sufficient electronic health record data for research
    • Rusanov A, Weiskopf NG, Wang S, Weng C. Hidden in plain sight: Bias towards sick patients when sampling patients with sufficient electronic health record data for research. BMC Med. Inform. Decis. Mak. 2014;14:1-9.
    • (2014) BMC Med. Inform. Decis. Mak. , vol.14 , pp. 1-9
    • Rusanov, A.1    Weiskopf, N.G.2    Wang, S.3    Weng, C.4
  • 93
    • 84973818707 scopus 로고
    • A multiplist strategy for strengthening nonequivalent control group designs
    • Reynolds KIMD, West SG. A multiplist strategy for strengthening nonequivalent control group designs. Evluation Rev. 1987;11:691-714.
    • (1987) Evluation Rev. , vol.11 , pp. 691-714
    • Reynolds, K.I.M.D.1    West, S.G.2
  • 94
    • 48749107496 scopus 로고    scopus 로고
    • Alternatives to the randomized controlled trial
    • West SG et al. Alternatives to the randomized controlled trial. Res. Innov. Recomm. 2008;98:1359-1366.
    • (2008) Res. Innov. Recomm. , vol.98 , pp. 1359-1366
    • West, S.G.1
  • 95
    • 84905009853 scopus 로고    scopus 로고
    • Aldehyde dehydrogenase 2—a potential genetic risk factor for lung function among southern Chinese: evidence from the Guangzhou Biobank Cohort Study
    • Au Yeung SL et al. Aldehyde dehydrogenase 2—a potential genetic risk factor for lung function among southern Chinese: evidence from the Guangzhou Biobank Cohort Study. Ann. Epidemiol. 2014;24:606-611.
    • (2014) Ann. Epidemiol. , vol.24 , pp. 606-611
    • Au Yeung, S.L.1
  • 96
    • 79951715417 scopus 로고    scopus 로고
    • A modified self-controlled case series method to examine association between multidose vaccinations and death
    • Kuhnert R et al. A modified self-controlled case series method to examine association between multidose vaccinations and death. Stat. Med. 2011;30:666-677.
    • (2011) Stat. Med. , vol.30 , pp. 666-677
    • Kuhnert, R.1
  • 97
    • 85040363582 scopus 로고    scopus 로고
    • Signal detection for recently approved products: adapting and evaluating self-controlled case series method using a us claims and uk electronic medical records database
    • Zhou X, Douglas IJ, Shen R, Bate A. Signal detection for recently approved products: adapting and evaluating self-controlled case series method using a us claims and uk electronic medical records database. Drug Saf. 2018;41:523-536.
    • (2018) Drug Saf. , vol.41 , pp. 523-536
    • Zhou, X.1    Douglas, I.J.2    Shen, R.3    Bate, A.4
  • 98
    • 84995771908 scopus 로고    scopus 로고
    • Detecting adverse drug reactions following long-term exposure in longitudinal observational data: the exposure-adjusted self-controlled case series
    • Schumie MJ, Trifiro G, Coloma PM, Ryan PB, Madigan D. Detecting adverse drug reactions following long-term exposure in longitudinal observational data: the exposure-adjusted self-controlled case series. Stat. Methods Med. Res. 2016;25:2577-2592.
    • (2016) Stat. Methods Med. Res. , vol.25 , pp. 2577-2592
    • Schumie, M.J.1    Trifiro, G.2    Coloma, P.M.3    Ryan, P.B.4    Madigan, D.5
  • 99
    • 84856034103 scopus 로고    scopus 로고
    • When should case-only designs be used for safety monitoring of medical products?
    • Maclure M et al. When should case-only designs be used for safety monitoring of medical products? Pharmacoepidemiol. Drug Saf. 2012;21:50-61. https://doi.org/10.1002/pds.2330.
    • (2012) Pharmacoepidemiol. Drug Saf. , vol.21 , pp. 50-61
    • Maclure, M.1
  • 100
    • 84890314090 scopus 로고    scopus 로고
    • Multiple self-controlled case series for large-scale longitudinal observational databases
    • Simpson SE et al. Multiple self-controlled case series for large-scale longitudinal observational databases. Biometrics. 2013;69:893-902. https://doi.org/10.1111/biom.12078.
    • (2013) Biometrics , vol.69 , pp. 893-902
    • Simpson, S.E.1
  • 101
    • 85015328989 scopus 로고    scopus 로고
    • Self controlled case series methods: an alternative to standard epidemiological study designs
    • Petersen I, Douglas I, Whitaker H. Self controlled case series methods: an alternative to standard epidemiological study designs. BMJ. 2016;354:i4515.
    • (2016) BMJ , vol.354 , pp. i4515
    • Petersen, I.1    Douglas, I.2    Whitaker, H.3
  • 102
    • 85019055480 scopus 로고    scopus 로고
    • Exposure enriched outcome dependent designs for longitudinal studies of gene–environment interaction
    • Sun Z, Mukherjee B, Estes JP, Vokonas PS, Park SK. Exposure enriched outcome dependent designs for longitudinal studies of gene–environment interaction. Stat. Med. 2017;36:2947-2960.
    • (2017) Stat. Med. , vol.36 , pp. 2947-2960
    • Sun, Z.1    Mukherjee, B.2    Estes, J.P.3    Vokonas, P.S.4    Park, S.K.5
  • 103
    • 84938511927 scopus 로고    scopus 로고
    • Biased sampling designs to improve research efficiency: Factors influencing pulmonary function over time in children with asthma
    • Schildcrout JS, Rathouz PJ, Zelnick LR, Garbett SP, Heagerty PJ. Biased sampling designs to improve research efficiency: Factors influencing pulmonary function over time in children with asthma. Ann. Appl. Stat. 2015;9:731-753.
    • (2015) Ann. Appl. Stat. , vol.9 , pp. 731-753
    • Schildcrout, J.S.1    Rathouz, P.J.2    Zelnick, L.R.3    Garbett, S.P.4    Heagerty, P.J.5
  • 104
    • 85044272678 scopus 로고    scopus 로고
    • Extending the case-control design to longitudinal data: stratified sampling based on repeated binary outcomes
    • Schildcrout JS, Schisterman EF, Mercaldo ND, Rathouz PJ, Heagerty PJ. Extending the case-control design to longitudinal data: stratified sampling based on repeated binary outcomes. Epidemiology. 2018;29:67-75.
    • (2018) Epidemiology , vol.29 , pp. 67-75
    • Schildcrout, J.S.1    Schisterman, E.F.2    Mercaldo, N.D.3    Rathouz, P.J.4    Heagerty, P.J.5
  • 105
    • 82355169007 scopus 로고    scopus 로고
    • Using extreme phenotype sampling to identify the rare causal variants of quantitative traits in association studies
    • Li D, Lewinger JP, Gauderman WJ, Murcray CE, Conti D. Using extreme phenotype sampling to identify the rare causal variants of quantitative traits in association studies. Genet. Epidemiol. 2011;35:790-799.
    • (2011) Genet. Epidemiol. , vol.35 , pp. 790-799
    • Li, D.1    Lewinger, J.P.2    Gauderman, W.J.3    Murcray, C.E.4    Conti, D.5
  • 106
    • 85077051705 scopus 로고    scopus 로고
    • Improving power of genetic association studies by extreme phenotype sampling: a review and some new results
    • Bjørnland T, Bye A, Ryeng E. Improving power of genetic association studies by extreme phenotype sampling: a review and some new results. arXiv. 2017;1-26.
    • (2017) arXiv , pp. 1-26
    • Bjørnland, T.1    Bye, A.2    Ryeng, E.3
  • 107
    • 78149265272 scopus 로고    scopus 로고
    • Robust relationship inference in genome-wide association studies
    • Manichaikul A et al. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010;26:2867-2873.
    • (2010) Bioinformatics , vol.26 , pp. 2867-2873
    • Manichaikul, A.1
  • 108
    • 85052701392 scopus 로고    scopus 로고
    • Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies
    • Zhou W et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 2018;50:1335-1341.
    • (2018) Nat. Genet. , vol.50 , pp. 1335-1341
    • Zhou, W.1
  • 111
    • 84880405711 scopus 로고    scopus 로고
    • Does design matter? Systematic evaluation of the impact of analytical choices on effect esitmates in observational studies
    • Madigan D, Ryan PB, Schuemie MJ. Does design matter? Systematic evaluation of the impact of analytical choices on effect esitmates in observational studies. Ther. Adv. Drug Saf. 2013;4:53-62.
    • (2013) Ther. Adv. Drug Saf. , vol.4 , pp. 53-62
    • Madigan, D.1    Ryan, P.B.2    Schuemie, M.J.3
  • 112
    • 85017476407 scopus 로고    scopus 로고
    • A general framework for considering selection bias in ehr-based studies: what data are observed and why?
    • Haneuse S, Chan HTH, Daniels M. A general framework for considering selection bias in ehr-based studies: what data are observed and why? EGEMS (Wash DC). 2016;4(1):1203. https://doi.org/10.13063/2327-9214.1203.
    • (2016) EGEMS (Wash DC) , vol.4 , Issue.1 , pp. 1203
    • Haneuse, S.1    Chan, H.T.H.2    Daniels, M.3
  • 113
    • 0037322022 scopus 로고    scopus 로고
    • ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease?
    • Smith GD, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 2003;32:1-22.
    • (2003) Int. J. Epidemiol. , vol.32 , pp. 1-22
    • Smith, G.D.1    Ebrahim, S.2
  • 114
    • 71249102316 scopus 로고    scopus 로고
    • Genetic association studies and the effect of misclassification and selection bias in putative confounders
    • Avery CL, Monda KL, North KE. Genetic association studies and the effect of misclassification and selection bias in putative confounders. BMC Proc. 2009;3:S48.
    • (2009) BMC Proc. , vol.3 , pp. S48
    • Avery, C.L.1    Monda, K.L.2    North, K.E.3
  • 116
    • 84890240053 scopus 로고    scopus 로고
    • Interpreting observational studies: Why empirical calibration is needed to correct p-values
    • Schuemie MJ, Ryan PB, Dumouchel W, Suchard MA, Madigan D. Interpreting observational studies: Why empirical calibration is needed to correct p-values. Stat. Med. 2014;33:209-218.
    • (2014) Stat. Med. , vol.33 , pp. 209-218
    • Schuemie, M.J.1    Ryan, P.B.2    Dumouchel, W.3    Suchard, M.A.4    Madigan, D.5
  • 117
    • 85043763175 scopus 로고    scopus 로고
    • Empirical confidence interval calibration for population-level effect estimation studies in observational healthcare data
    • Schuemie MJ, Hripcsak G, Ryan PB, Madigan D, Suchard MA. Empirical confidence interval calibration for population-level effect estimation studies in observational healthcare data. Proc. Natl. Acad. Sci. USA. 2018;115:2571-2577.
    • (2018) Proc. Natl. Acad. Sci. USA , vol.115 , pp. 2571-2577
    • Schuemie, M.J.1    Hripcsak, G.2    Ryan, P.B.3    Madigan, D.4    Suchard, M.A.5
  • 118
    • 85047505470 scopus 로고    scopus 로고
    • Causal inference on electronic health records to assess blood pressure treatment targets: an application of the parametric g formula
    • Johnson KW, Glicksberg BS, Hodos RA, Shameer K, Dudley JT. Causal inference on electronic health records to assess blood pressure treatment targets: an application of the parametric g formula. Biocomputing. 2018;23:180-191.
    • (2018) Biocomputing , vol.23 , pp. 180-191
    • Johnson, K.W.1    Glicksberg, B.S.2    Hodos, R.A.3    Shameer, K.4    Dudley, J.T.5
  • 119
    • 84855951317 scopus 로고    scopus 로고
    • A review of causal inference for biomedical informatics
    • Kleinberg S, Hripcsak G. A review of causal inference for biomedical informatics. J. Biomed. Inform. 2011;44:1102-1112.
    • (2011) J. Biomed. Inform. , vol.44 , pp. 1102-1112
    • Kleinberg, S.1    Hripcsak, G.2
  • 120
    • 84907674933 scopus 로고    scopus 로고
    • Estimating causal effects in observational studies using electronic health data: challenges and (some) solutions
    • Stuart EA, DuGof E, Abrams M, Salkever D, Steinwachs D. Estimating causal effects in observational studies using electronic health data: challenges and (some) solutions. eGEMs. 2013;1:4.
    • (2013) eGEMs , vol.1 , pp. 4
    • Stuart, E.A.1    DuGof, E.2    Abrams, M.3    Salkever, D.4    Steinwachs, D.5
  • 121
    • 85041549951 scopus 로고    scopus 로고
    • Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics
    • Beaumont RN et al. Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics. Hum. Mol. Genet. 2018;27:742-756.
    • (2018) Hum. Mol. Genet. , vol.27 , pp. 742-756
    • Beaumont, R.N.1
  • 122
    • 85028691716 scopus 로고    scopus 로고
    • Genetic analysis in UK Biobank links insulin resistance and transendothelial migration pathways to coronary artery disease
    • Klarin D et al. Genetic analysis in UK Biobank links insulin resistance and transendothelial migration pathways to coronary artery disease. Nat. Genet. 2017;49:1392-1397.
    • (2017) Nat. Genet. , vol.49 , pp. 1392-1397
    • Klarin, D.1
  • 123
    • 84895801913 scopus 로고    scopus 로고
    • Advantages and pitfalls in the application of mized model association methods
    • Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price A. Advantages and pitfalls in the application of mized model association methods. Nat. Genet. 2014;46:100-106.
    • (2014) Nat. Genet. , vol.46 , pp. 100-106
    • Yang, J.1    Zaitlen, N.A.2    Goddard, M.E.3    Visscher, P.M.4    Price, A.5
  • 124
    • 85077026788 scopus 로고    scopus 로고
    • Exploring various polygenic risk scores for basal cell carcinoma, cutaneous squamous cell carcinoma and melanoma in the phenomes of the michigan genomics initiative and the UK Biobank
    • Fritsche LG et al. Exploring various polygenic risk scores for basal cell carcinoma, cutaneous squamous cell carcinoma and melanoma in the phenomes of the michigan genomics initiative and the UK Biobank. bioRxiv. 2018;1-44. https://doi.org/10.1101/384909.
    • (2018) bioRxiv , pp. 1-44
    • Fritsche, L.G.1
  • 125
    • 85020254440 scopus 로고    scopus 로고
    • A fast and accurate algorithm to test for binary phenotypes and its application to pheWAS
    • Dey R, Schmidt EM, Abecasis GR, Lee S. A fast and accurate algorithm to test for binary phenotypes and its application to pheWAS. Am. J. Hum. Genet. 2017;101:37-49.
    • (2017) Am. J. Hum. Genet. , vol.101 , pp. 37-49
    • Dey, R.1    Schmidt, E.M.2    Abecasis, G.R.3    Lee, S.4
  • 126
    • 84923946495 scopus 로고    scopus 로고
    • LD score regression distinguishes confounding from polygenicity in genome-wide association studies
    • Bulik-Sullivan B et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 2015;47:291-295.
    • (2015) Nat. Genet. , vol.47 , pp. 291-295
    • Bulik-Sullivan, B.1
  • 127
    • 68449086236 scopus 로고    scopus 로고
    • Common polygenic variation contributes to risk of schizophrenia and bipolar disorder
    • Purcell SM et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460:748-752.
    • (2009) Nature , vol.460 , pp. 748-752
    • Purcell, S.M.1
  • 128
    • 84992212817 scopus 로고    scopus 로고
    • Shared genetic aetiology between cognitive functions and physical and mental health in UK Biobank (N=112 151) and 24 GWAS consortia
    • Hagenaars SP et al. Shared genetic aetiology between cognitive functions and physical and mental health in UK Biobank (N=112 151) and 24 GWAS consortia. Mol. Psychiatry. 2016;21:1624-1632.
    • (2016) Mol. Psychiatry , vol.21 , pp. 1624-1632
    • Hagenaars, S.P.1
  • 130
    • 78650197952 scopus 로고    scopus 로고
    • A commentary on ‘common SNPs explain a large proportion of the heritability for human height’ by Yang et al. (2010)
    • Yang J et al. A commentary on ‘common SNPs explain a large proportion of the heritability for human height’ by Yang et al. (2010). Twin Res. Hum. Genet. 2010;13:517-524.
    • (2010) Twin Res. Hum. Genet. , vol.13 , pp. 517-524
    • Yang, J.1
  • 131
    • 85047270381 scopus 로고    scopus 로고
    • The personal and clinical utility of polygenic risk scores
    • Torkamani A, Wineinger NE, Topol EJ. The personal and clinical utility of polygenic risk scores. Nat Rev Genet. 2018;19:581-590.
    • (2018) Nat Rev Genet , vol.19 , pp. 581-590
    • Torkamani, A.1    Wineinger, N.E.2    Topol, E.J.3
  • 132
    • 85077046820 scopus 로고    scopus 로고
    • Polygenic prediction via bayesian regression and continuous shrinkage priors
    • Ge T, Chen C, Ni Y, Feng YA, Smoller JW. Polygenic prediction via bayesian regression and continuous shrinkage priors. bioRXiv. 2018;1-30.
    • (2018) bioRXiv , pp. 1-30
    • Ge, T.1    Chen, C.2    Ni, Y.3    Feng, Y.A.4    Smoller, J.W.5
  • 133
    • 85077026048 scopus 로고    scopus 로고
    • Genome analysis PRSice: polygenic risk score software
    • Euesden J, Lewis CM, Reilly PFO. Genome analysis PRSice: polygenic risk score software. Bioinformatics. 2018;31:1466-1468.
    • (2018) Bioinformatics , vol.31 , pp. 1466-1468
    • Euesden, J.1    Lewis, C.M.2    Reilly, P.F.O.3
  • 134
    • 84939176188 scopus 로고    scopus 로고
    • The current and future use of ridge regression for prediction in quantitative genetics
    • De Vlaming R, Groenen PJF. The current and future use of ridge regression for prediction in quantitative genetics. Biomed Res Int. 2015;2015:1-19.
    • (2015) Biomed Res Int , vol.2015 , pp. 1-19
    • De Vlaming, R.1    Groenen, P.J.F.2
  • 135
    • 85011416878 scopus 로고    scopus 로고
    • Improving polygenic risk prediction from summary statistics by an empirical Bayes approach
    • So H, Sham PC. Improving polygenic risk prediction from summary statistics by an empirical Bayes approach. Sci. Rep. 2017;7:1-11.
    • (2017) Sci. Rep. , vol.7 , pp. 1-11
    • So, H.1    Sham, P.C.2
  • 136
    • 85030656412 scopus 로고    scopus 로고
    • A machine-learning heuristic to improve gene score prediction of polygenic traits
    • Paré G, Mao S, Deng WQ. A machine-learning heuristic to improve gene score prediction of polygenic traits. Sci. Rep. 2017;7:12665.
    • (2017) Sci. Rep. , vol.7 , pp. 12665
    • Paré, G.1    Mao, S.2    Deng, W.Q.3
  • 137
    • 84953439419 scopus 로고    scopus 로고
    • Local true discovery rate weighted polygenic scores using GWAS summary data
    • Mak TSH, Sheung J, Kwan H, Dedalus D. Local true discovery rate weighted polygenic scores using GWAS summary data. Behav. Genet. 2016;46:573-582.
    • (2016) Behav. Genet. , vol.46 , pp. 573-582
    • Mak, T.S.H.1    Sheung, J.2    Kwan, H.3    Dedalus, D.4
  • 138
    • 85071508483 scopus 로고    scopus 로고
    • Improved polygenic prediction by Bayesian multiple regression on summary statistics
    • Lloyd-Jones LR et al. Improved polygenic prediction by Bayesian multiple regression on summary statistics. bioRXiv. 2019;1-39.
    • (2019) bioRXiv , pp. 1-39
    • Lloyd-Jones, L.R.1
  • 140
    • 84876007072 scopus 로고    scopus 로고
    • Power and predictive accuracy of polygenic risk scores
    • Dudbridge F. Power and predictive accuracy of polygenic risk scores. PLoS Genet. 2013;9:e1003348.
    • (2013) PLoS Genet , vol.9
    • Dudbridge, F.1
  • 142
    • 84952665106 scopus 로고    scopus 로고
    • Modeling linkage disequilibrium increases accuracy of polygenic risk scores
    • Vihjalmsson BJ et al. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am. J. Hum. Genet. 2015;97:576-592.
    • (2015) Am. J. Hum. Genet. , vol.97 , pp. 576-592
    • Vihjalmsson, B.J.1
  • 144
    • 85062660828 scopus 로고    scopus 로고
    • A guide to performing polygenic risk score analyses
    • Choi SW, Shin T, Mak H, Reilly PFO. A guide to performing polygenic risk score analyses. bioRXiv. 2018;1-22.
    • (2018) bioRXiv , pp. 1-22
    • Choi, S.W.1    Shin, T.2    Mak, H.3    Reilly, P.F.O.4
  • 145
    • 85042767167 scopus 로고    scopus 로고
    • Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits
    • Wu Y et al. Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. Nat. Commun. 2018;9:1-14.
    • (2018) Nat. Commun. , vol.9 , pp. 1-14
    • Wu, Y.1
  • 146
    • 85071508483 scopus 로고    scopus 로고
    • Improved polygenic prediction by Bayesian multiple regression on summary statistics
    • Lloyd-Jones LR et al. Improved polygenic prediction by Bayesian multiple regression on summary statistics. bioRxiv. 2019;1-41. https://doi.org/10.1101/522961.
    • (2019) bioRxiv , pp. 1-41
    • Lloyd-Jones, L.R.1
  • 147
    • 85031498677 scopus 로고    scopus 로고
    • Bayesian large-scale multiple regression with summary statistics from genome-wide association studies
    • Zhu X, Stephens M. Bayesian large-scale multiple regression with summary statistics from genome-wide association studies. Ann. Appl. Stat. 2017;11:1561-1592.
    • (2017) Ann. Appl. Stat. , vol.11 , pp. 1561-1592
    • Zhu, X.1    Stephens, M.2
  • 148
    • 85039801269 scopus 로고    scopus 로고
    • Multi-trait analysis of genome-wide association summary statistics using MTAG
    • Turley P et al. Multi-trait analysis of genome-wide association summary statistics using MTAG. Nat. Genet. 2017;50:229-237.
    • (2017) Nat. Genet. , vol.50 , pp. 229-237
    • Turley, P.1
  • 149
    • 85048198000 scopus 로고    scopus 로고
    • Improving genetic prediction by leveraging genetic correlations among human diseases and traits
    • Maier RM et al. Improving genetic prediction by leveraging genetic correlations among human diseases and traits. Nat. Commun. 2018;9:1-17.
    • (2018) Nat. Commun. , vol.9 , pp. 1-17
    • Maier, R.M.1
  • 150
    • 84978540343 scopus 로고    scopus 로고
    • Hierarchical models for multiple, rare outcomes using massive observational databases
    • Shaddox TR, Ryan PB, Schuemie MJ, Madigan D, Suchard MA. Hierarchical models for multiple, rare outcomes using massive observational databases. Stat Anal Data Min. 2016;2(9):260-268.
    • (2016) Stat Anal Data Min , vol.2 , Issue.9 , pp. 260-268
    • Shaddox, T.R.1    Ryan, P.B.2    Schuemie, M.J.3    Madigan, D.4    Suchard, M.A.5
  • 151
    • 85020753023 scopus 로고    scopus 로고
    • A statistical methods for studying correlated rare events and their risk factors
    • Xue X, Kim MY, Wang T, Kuniholm MH, Strickler HD. A statistical methods for studying correlated rare events and their risk factors. Stat Methods Med Res. 2017;26:1416-1428.
    • (2017) Stat Methods Med Res , vol.26 , pp. 1416-1428
    • Xue, X.1    Kim, M.Y.2    Wang, T.3    Kuniholm, M.H.4    Strickler, H.D.5
  • 152
    • 85044062518 scopus 로고    scopus 로고
    • Phenotype risk scores identify pations with unrecognized Mendelian disease patterns
    • Bastarache L et al. Phenotype risk scores identify pations with unrecognized Mendelian disease patterns. Science (80-.). 2018;359:1233-1239.
    • (2018) Science (80-.) , vol.359 , pp. 1233-1239
    • Bastarache, L.1
  • 153
    • 85061025010 scopus 로고    scopus 로고
    • Automated feature selection of predictors in electronic medical records data
    • Gronsbell J, Minnier J, Yu S, Liao K, Cai T. Automated feature selection of predictors in electronic medical records data. Biometrics. 2018;75:268-277.
    • (2018) Biometrics , vol.75 , pp. 268-277
    • Gronsbell, J.1    Minnier, J.2    Yu, S.3    Liao, K.4    Cai, T.5
  • 154
    • 85029533726 scopus 로고    scopus 로고
    • Selecting relevant features from the electronic health record for clinical code prediction
    • Scheurwegs E, Cule B, Luyckx K, Luyten L, Daelemans W. Selecting relevant features from the electronic health record for clinical code prediction. J. Biomed. Inform. 2017;74:92-103.
    • (2017) J. Biomed. Inform. , vol.74 , pp. 92-103
    • Scheurwegs, E.1    Cule, B.2    Luyckx, K.3    Luyten, L.4    Daelemans, W.5
  • 155
    • 85053035044 scopus 로고    scopus 로고
    • Machine learning models in electronic health records can outperform conventional survival models for predicting patient mortality in coronary artery disease
    • Steele AJ, Denaxas SC, Shah AD, Hemingway H. Machine learning models in electronic health records can outperform conventional survival models for predicting patient mortality in coronary artery disease. PLoS One. 2018;13:1-20.
    • (2018) PLoS One , vol.13 , pp. 1-20
    • Steele, A.J.1    Denaxas, S.C.2    Shah, A.D.3    Hemingway, H.4
  • 156
    • 85047868687 scopus 로고    scopus 로고
    • Quantifying predictive capability of electronic health records for the most harmful breast cancer
    • Wu Y et al. Quantifying predictive capability of electronic health records for the most harmful breast cancer. Proceedings of SPIE—The International Society for Optical Engineering; 2018:1-15. https://doi.org/10.1117/12.2293954.Quantifying.
    • (2018) Proceedings of SPIE—The International Society for Optical Engineering , pp. 1-15
    • Wu, Y.1
  • 157
    • 77953635924 scopus 로고    scopus 로고
    • Prediction modeling using EHR data challenges, strategies, and a comparison of machine learning approaches
    • Wu J et al. Prediction modeling using EHR data challenges, strategies, and a comparison of machine learning approaches. Med. Care. 2010;48:S106-S113.
    • (2010) Med. Care , vol.48 , pp. S106-S113
    • Wu, J.1
  • 158
    • 85051727540 scopus 로고    scopus 로고
    • Deep EHR: a survey of recent advances in deep learning techniques for electronic health record
    • Shickel B, Tighe PJ, Bihorac A, Rashidi P. Deep EHR: a survey of recent advances in deep learning techniques for electronic health record. arXiv. 2018;1-16.
    • (2018) arXiv , pp. 1-16
    • Shickel, B.1    Tighe, P.J.2    Bihorac, A.3    Rashidi, P.4
  • 159
    • 85127431078 scopus 로고    scopus 로고
    • Scalable and accurate deep learning with electronic health records
    • Rajkomar A et al. Scalable and accurate deep learning with electronic health records. Digit. Med. 2018;18:1-10.
    • (2018) Digit. Med. , vol.18 , pp. 1-10
    • Rajkomar, A.1
  • 160
    • 85011570357 scopus 로고    scopus 로고
    • Machine learning and electronic health records: a paradigm shift
    • Adkins DE. Machine learning and electronic health records: a paradigm shift. Am. J. Psychiatry. 2018;174:93-94.
    • (2018) Am. J. Psychiatry , vol.174 , pp. 93-94
    • Adkins, D.E.1
  • 161
    • 85020622841 scopus 로고    scopus 로고
    • A bootstrap machine learning approach to identify rare disease patients from electronic health records
    • Garg R, Dong S, Shah S, Jonnalagadda SR. A bootstrap machine learning approach to identify rare disease patients from electronic health records. arXiv. 2016;1-8.
    • (2016) arXiv , pp. 1-8
    • Garg, R.1    Dong, S.2    Shah, S.3    Jonnalagadda, S.R.4
  • 162
    • 85077083492 scopus 로고    scopus 로고
    • Towards principled uncertainty estimation for deep neural networks
    • Harang R, Rudd EM. Towards principled uncertainty estimation for deep neural networks. arXiv. 2018;1-11.
    • (2018) arXiv , pp. 1-11
    • Harang, R.1    Rudd, E.M.2
  • 163
    • 85058011589 scopus 로고    scopus 로고
    • Parallel computing in genome-wide association studies journal of biometrics & biostatistics
    • Thompson K, Charnigo R. Parallel computing in genome-wide association studies journal of biometrics & biostatistics. J. Biometrics Biostat. 2015;6:1-3.
    • (2015) J. Biometrics Biostat. , vol.6 , pp. 1-3
    • Thompson, K.1    Charnigo, R.2
  • 164
    • 85054984910 scopus 로고    scopus 로고
    • Efficient analysis of large-scale genome-wide data with two R packages : bigstatsr and bigsnpr
    • Prive F, Aschard H, Ziyatdinov A, Blum MGB, Timc-imag L. Efficient analysis of large-scale genome-wide data with two R packages: bigstatsr and bigsnpr. Bioinformatics. 2018;34:2781-2787.
    • (2018) Bioinformatics , vol.34 , pp. 2781-2787
    • Prive, F.1    Aschard, H.2    Ziyatdinov, A.3    Blum, M.G.B.4    Timc-imag, L.5
  • 165
    • 84876576325 scopus 로고    scopus 로고
    • Computational solutions for omics data
    • Berger B, Peng J, Singh M. Computational solutions for omics data. Nat. Rev. Genet. 2013;14:333-346.
    • (2013) Nat. Rev. Genet. , vol.14 , pp. 333-346
    • Berger, B.1    Peng, J.2    Singh, M.3
  • 167
    • 84989871804 scopus 로고    scopus 로고
    • Imputing phenotypes for genome-wide association studies
    • Hormozdiari F et al. Imputing phenotypes for genome-wide association studies. Am. J. Hum. Genet. 2016;99:89-103.
    • (2016) Am. J. Hum. Genet. , vol.99 , pp. 89-103
    • Hormozdiari, F.1
  • 168
    • 85021860204 scopus 로고    scopus 로고
    • Missing data imputation in the electronic health record using deeply learned autoencoders
    • Beaulieu-Jones BK, Moore JH. Missing data imputation in the electronic health record using deeply learned autoencoders. Biocomput. 2017;2017:207-218. https://doi.org/10.1142/9789813207813_0021.
    • (2017) Biocomput. , vol.2017 , pp. 207-218
    • Beaulieu-Jones, B.K.1    Moore, J.H.2
  • 169
    • 85058033600 scopus 로고    scopus 로고
    • Characterizing and managing missing structured data in electronic health records: data analysis
    • Beaulieu-Jones BK et al. Characterizing and managing missing structured data in electronic health records: data analysis. JMIR Med. Informatics. 2018;e11:6.
    • (2018) JMIR Med. Informatics , vol.e11 , pp. 6
    • Beaulieu-Jones, B.K.1
  • 171
    • 85077018110 scopus 로고    scopus 로고
    • Diagnostic methods for uncovering outcome dependent visit processes
    • [Epub ahead of print]
    • Mcculloch CE, Neuhaus JM. Diagnostic methods for uncovering outcome dependent visit processes. Biostatistics. 2018;1-16. https://doi.org/10.1093/biostatistics/kxy068. [Epub ahead of print]
    • (2018) Biostatistics , pp. 1-16
    • Mcculloch, C.E.1    Neuhaus, J.M.2
  • 172
    • 84949625917 scopus 로고    scopus 로고
    • Learning about missing data mechanisms in electronic health records-based research: a survey-based approach
    • Haneuse S et al. Learning about missing data mechanisms in electronic health records-based research: a survey-based approach. Epidemiology. 2016;27:82-90.
    • (2016) Epidemiology , vol.27 , pp. 82-90
    • Haneuse, S.1
  • 173
    • 85008425474 scopus 로고    scopus 로고
    • Controlling the rate of gwas false discoveries
    • Brzyski D et al. Controlling the rate of gwas false discoveries. Genetics. 2017;205:61-75.
    • (2017) Genetics , vol.205 , pp. 61-75
    • Brzyski, D.1
  • 174
    • 84862260334 scopus 로고    scopus 로고
    • Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets
    • Li MX, Yeung JMY, Cherny SS, Sham PC. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum. Genet. 2012;131:747-756.
    • (2012) Hum. Genet. , vol.131 , pp. 747-756
    • Li, M.X.1    Yeung, J.M.Y.2    Cherny, S.S.3    Sham, P.C.4
  • 176
    • 43249090541 scopus 로고    scopus 로고
    • A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms
    • Gao X, Starmer J, Martin ER. A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet. Epidemiol. 2008;32:361-369.
    • (2008) Genet. Epidemiol. , vol.32 , pp. 361-369
    • Gao, X.1    Starmer, J.2    Martin, E.R.3
  • 177
    • 84899144478 scopus 로고    scopus 로고
    • Identifying large sets of unrelated individuals and unrelated markers
    • Abraham KJ, Diaz C. Identifying large sets of unrelated individuals and unrelated markers. Source Code Biol. Med. 2014;9:1-8.
    • (2014) Source Code Biol. Med. , vol.9 , pp. 1-8
    • Abraham, K.J.1    Diaz, C.2
  • 178
    • 66349103652 scopus 로고    scopus 로고
    • Rapid and accurate multiple testing correction and power estimation for millions of correlated markers
    • Han B, Kang HM, Eskin E. Rapid and accurate multiple testing correction and power estimation for millions of correlated markers. PLoS Genet. 2009;5:1-13.
    • (2009) PLoS Genet. , vol.5 , pp. 1-13
    • Han, B.1    Kang, H.M.2    Eskin, E.3
  • 179
    • 15944388957 scopus 로고    scopus 로고
    • An efficient Monte Carlo approach to assessing statistical significance in genomic studies
    • Lin DY. An efficient Monte Carlo approach to assessing statistical significance in genomic studies. Bioinformatics. 2005;21:781-787.
    • (2005) Bioinformatics , vol.21 , pp. 781-787
    • Lin, D.Y.1
  • 180
    • 13844262641 scopus 로고    scopus 로고
    • Rapid simulation of P values for product methods and multiple-testing adjustment in association studies
    • Seaman SR, Müller-Myhsok B. Rapid simulation of P values for product methods and multiple-testing adjustment in association studies. Am. J. Hum. Genet. 2005;76:399-408.
    • (2005) Am. J. Hum. Genet. , vol.76 , pp. 399-408
    • Seaman, S.R.1    Müller-Myhsok, B.2
  • 181
    • 58249124501 scopus 로고    scopus 로고
    • Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies
    • Duggal P, Gillanders EM, Holmes TN, Bailey-Wilson JE. Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies. BMC Genomics. 2008;9:1-8.
    • (2008) BMC Genomics , vol.9 , pp. 1-8
    • Duggal, P.1    Gillanders, E.M.2    Holmes, T.N.3    Bailey-Wilson, J.E.4
  • 182
    • 78650353878 scopus 로고    scopus 로고
    • A. Accounting for multiple comparisons in a genome-wide association study (GWAS)
    • Johnson RC, Nelson GW, Troyer JL, Lautenberger JA, Winkler C. A. Accounting for multiple comparisons in a genome-wide association study (GWAS). BMC Genomics. 2010;11:724. https://doi.org/10.1186/1471-2164-11-724.
    • (2010) BMC Genomics , vol.11 , pp. 724
    • Johnson, R.C.1    Nelson, G.W.2    Troyer, J.L.3    Lautenberger, J.A.4    Winkler, C.5
  • 183
    • 84859641368 scopus 로고    scopus 로고
    • Rapid and robust resampling-based multiple-testing correction with application in a genome-wide expression quantitative trait loci study
    • Zhang X, Huang S, Sun W, Wang W. Rapid and robust resampling-based multiple-testing correction with application in a genome-wide expression quantitative trait loci study. Genetics. 2012;190:1511-1520.
    • (2012) Genetics , vol.190 , pp. 1511-1520
    • Zhang, X.1    Huang, S.2    Sun, W.3    Wang, W.4
  • 184
    • 85044062518 scopus 로고    scopus 로고
    • Phenotype risk scores identify patients with unrecognized Mendelian disease patterns
    • Bastarache L et al. Phenotype risk scores identify patients with unrecognized Mendelian disease patterns. Science (80-.). 2018;359:1233-1239.
    • (2018) Science (80-.) , vol.359 , pp. 1233-1239
    • Bastarache, L.1
  • 185
    • 53849093458 scopus 로고    scopus 로고
    • What do we mean by ‘replication’ and ‘validation’ in genome-wide association studies?
    • Inke BI, Andreas RK. What do we mean by ‘replication’ and ‘validation’ in genome-wide association studies? Hum. Hered. 2009;67:66-68.
    • (2009) Hum. Hered. , vol.67 , pp. 66-68
    • Inke, B.I.1    Andreas, R.K.2
  • 186
    • 85077018158 scopus 로고    scopus 로고
    • NHGRI-EBI GWAS catalog. https://www.ebi.ac.uk/gwas/.
  • 187
    • 74749107322 scopus 로고    scopus 로고
    • Robust statistical methods for analysis of biomarkers measured with batch/experiment specific errors
    • Long Q, Flanders WD, Fedirko V, Bostick RM. Robust statistical methods for analysis of biomarkers measured with batch/experiment specific errors. Stat. Med. 2010;29:361-370.
    • (2010) Stat. Med. , vol.29 , pp. 361-370
    • Long, Q.1    Flanders, W.D.2    Fedirko, V.3    Bostick, R.M.4
  • 188
    • 0028152471 scopus 로고
    • Systematic Review: Why sources of heterogeneity in meta-analysis should be investigated
    • Thompson SG. Systematic Review: Why sources of heterogeneity in meta-analysis should be investigated. BMJ. 1994;309:1351-1355.
    • (1994) BMJ , vol.309 , pp. 1351-1355
    • Thompson, S.G.1
  • 189
    • 33846279812 scopus 로고    scopus 로고
    • What is heterogeneity and is it important?
    • Fletcher J. What is heterogeneity and is it important? British Medical Journal. 2007;334:94-96. https://doi.org/10.1136/bmj.39057.406644.68.
    • (2007) British Medical Journal , vol.334 , pp. 94-96
    • Fletcher, J.1
  • 190
    • 0041876133 scopus 로고    scopus 로고
    • Measuring inconsistency in meta-analyses Need for consistency
    • Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses Need for consistency. BMJ. 2003;327:557-560.
    • (2003) BMJ , vol.327 , pp. 557-560
    • Higgins, J.P.T.1    Thompson, S.G.2    Deeks, J.J.3    Altman, D.G.4
  • 191
    • 84875614691 scopus 로고    scopus 로고
    • Dealing with clinical heterogeneity in meta-analysis. Assumptions, methods, interpretation
    • Kriston L. Dealing with clinical heterogeneity in meta-analysis. Assumptions, methods, interpretation. Int. J. Methods Psychiatr. Res. 2013;22:1-15.
    • (2013) Int. J. Methods Psychiatr. Res. , vol.22 , pp. 1-15
    • Kriston, L.1
  • 192
    • 84859092568 scopus 로고    scopus 로고
    • Assumption weighting for incorporating heterogeneity into meta-analysis of genomic data
    • Li Y, Ghosh D. Assumption weighting for incorporating heterogeneity into meta-analysis of genomic data. Bioinformatics. 2012;28:807-814.
    • (2012) Bioinformatics , vol.28 , pp. 807-814
    • Li, Y.1    Ghosh, D.2
  • 193
    • 85047191160 scopus 로고    scopus 로고
    • estimating heterogeneous treatment effects and the effects of heterogeneous treatments with ensemble methods
    • Grimmer J, Messing S, Westwood SJ. estimating heterogeneous treatment effects and the effects of heterogeneous treatments with ensemble methods. Polit. Anal. 2017;25:413-434.
    • (2017) Polit. Anal. , vol.25 , pp. 413-434
    • Grimmer, J.1    Messing, S.2    Westwood, S.J.3
  • 194
    • 84875365439 scopus 로고    scopus 로고
    • An empirical study using permutation-based resampling in meta-regression
    • Gagnier JJ, Moher D, Boon H, Bombardier C, Beyene J. An empirical study using permutation-based resampling in meta-regression. Syst. Rev. 2012;1:1-9.
    • (2012) Syst. Rev. , vol.1 , pp. 1-9
    • Gagnier, J.J.1    Moher, D.2    Boon, H.3    Bombardier, C.4    Beyene, J.5
  • 195
    • 84925286056 scopus 로고    scopus 로고
    • Using “big data” to dissect clinical heterogeneity
    • Altman RB, Ashley EA. Using “big data” to dissect clinical heterogeneity. Circulation. 2015;131:232-233.
    • (2015) Circulation , vol.131 , pp. 232-233
    • Altman, R.B.1    Ashley, E.A.2
  • 196
    • 85077081101 scopus 로고    scopus 로고
    • Spherical regression under mismatch corruption with application to automated knowledge translation
    • Shi X, Li X, Cai T. Spherical regression under mismatch corruption with application to automated knowledge translation. arXiv. 2018;1-45.
    • (2018) arXiv , pp. 1-45
    • Shi, X.1    Li, X.2    Cai, T.3
  • 198
    • 85034840974 scopus 로고    scopus 로고
    • An electronic health record-based algorithm to ascertain the date of second breast cancer events
    • Chubak J, Onega T, Zhu W, Buist DSM, Hubbard RA. An electronic health record-based algorithm to ascertain the date of second breast cancer events. Med. Care. 2017;55:81-87. https://doi.org/10.1097/MLR.0000000000000352.
    • (2017) Med. Care , vol.55 , pp. 81-87
    • Chubak, J.1    Onega, T.2    Zhu, W.3    Buist, D.S.M.4    Hubbard, R.A.5
  • 199
    • 85017186712 scopus 로고    scopus 로고
    • Informatics and data analytics to support exposome-based discovery for public health
    • Manrai AK et al. Informatics and data analytics to support exposome-based discovery for public health. Annu. Rev. Public Heal. 2017;38:279-294.
    • (2017) Annu. Rev. Public Heal. , vol.38 , pp. 279-294
    • Manrai, A.K.1
  • 200
    • 85029786365 scopus 로고    scopus 로고
    • Semantic modeling for exposomics with exploratory evaluation in clinical context
    • Fan JW, Li J, Lussier YA. Semantic modeling for exposomics with exploratory evaluation in clinical context. J. Healthc. Eng. 2017;1-10. https://doi.org/10.1155/2017/3818302.
    • (2017) J. Healthc. Eng. , pp. 1-10
    • Fan, J.W.1    Li, J.2    Lussier, Y.A.3
  • 201
    • 85011277834 scopus 로고    scopus 로고
    • Methods to study variation in associations between food store availability and body mass in the multi-ethnic study of atherosclerosis
    • Baek J et al. Methods to study variation in associations between food store availability and body mass in the multi-ethnic study of atherosclerosis. Epidemiology. 2017;28:403-411.
    • (2017) Epidemiology , vol.28 , pp. 403-411
    • Baek, J.1
  • 202
    • 84963772539 scopus 로고    scopus 로고
    • ‘Community vital signs’: Incorporating geocoded social determinants into electronic records to promote patient and population health
    • Bazemore AW et al. ‘Community vital signs’: Incorporating geocoded social determinants into electronic records to promote patient and population health. J. Am. Med. Informatics Assoc. 2016;23:407-412.
    • (2016) J. Am. Med. Informatics Assoc. , vol.23 , pp. 407-412
    • Bazemore, A.W.1
  • 203
    • 85021145639 scopus 로고    scopus 로고
    • Exposure to neighborhood foreclosures and changes in cardiometabolic health: results from MESA
    • Christine PJ et al. Exposure to neighborhood foreclosures and changes in cardiometabolic health: results from MESA. Am. J. Epidemiol. 2017;185:106-114.
    • (2017) Am. J. Epidemiol. , vol.185 , pp. 106-114
    • Christine, P.J.1
  • 204
  • 205
    • 84862505652 scopus 로고    scopus 로고
    • Differential associations between the food environment near schools and childhood overweight across race/ethnicity, gender, and grade
    • Sánchez BN, Sanchez-Vaznaugh EV, Uscilka A, Baek J, Zhang L. Differential associations between the food environment near schools and childhood overweight across race/ethnicity, gender, and grade. Am. J. Epidemiol. 2012;175:1284-1293.
    • (2012) Am. J. Epidemiol. , vol.175 , pp. 1284-1293
    • Sánchez, B.N.1    Sanchez-Vaznaugh, E.V.2    Uscilka, A.3    Baek, J.4    Zhang, L.5
  • 207
    • 85053358651 scopus 로고    scopus 로고
    • The eICU Collaborative Research Database, a freely available multi-center database for critical care research
    • Pollard TJ et al. The eICU Collaborative Research Database, a freely available multi-center database for critical care research. Sci. Data. 2018;180178:5.
    • (2018) Sci. Data , pp. 5
    • Pollard, T.J.1
  • 208
    • 85046730837 scopus 로고    scopus 로고
    • Integration of wearable technologies into patients' electronic medical records
    • Al-Azwani IK, Aziz HA. Integration of wearable technologies into patients' electronic medical records. Qual. Prim. Care. 2016;24:151-155.
    • (2016) Qual. Prim. Care , vol.24 , pp. 151-155
    • Al-Azwani, I.K.1    Aziz, H.A.2
  • 209
    • 85033467966 scopus 로고    scopus 로고
    • A structured analysis of smartphone applications to early diagnose alzheimer's disease or dementia
    • Polzer N, Gewald H. A structured analysis of smartphone applications to early diagnose alzheimer's disease or dementia. Procedia Comput. Sci. 2017;113:448-453.
    • (2017) Procedia Comput. Sci. , vol.113 , pp. 448-453
    • Polzer, N.1    Gewald, H.2
  • 210
    • 81355127388 scopus 로고    scopus 로고
    • Temporal pattern discovery in longitudinal electronic patient records
    • Norén GN, Hopstadius J, Bate A, Star K, Edwards IR. Temporal pattern discovery in longitudinal electronic patient records. Data Min. Knowl. Discov. 2010;20:361-387. https://doi.org/10.1007/s10618-009-0152-3.
    • (2010) Data Min. Knowl. Discov. , vol.20 , pp. 361-387
    • Norén, G.N.1    Hopstadius, J.2    Bate, A.3    Star, K.4    Edwards, I.R.5
  • 211
    • 84892944187 scopus 로고    scopus 로고
    • Empirical performance of the calibrated self-controlled cohort analysis within temporal pattern discovery: Lessons for developing a risk identification and analysis system
    • Norén GN et al. Empirical performance of the calibrated self-controlled cohort analysis within temporal pattern discovery: Lessons for developing a risk identification and analysis system. Drug Saf. 2013;36:107-121. https://doi.org/10.1007/s40264-013-0095-x.
    • (2013) Drug Saf. , vol.36 , pp. 107-121
    • Norén, G.N.1
  • 213
    • 84876692093 scopus 로고    scopus 로고
    • Comparative analysis of pharmacovigilance methods in the detection of adverse drug reactions using electronic medical records
    • Liu M et al. Comparative analysis of pharmacovigilance methods in the detection of adverse drug reactions using electronic medical records. J Am Med Inf. Assoc. 2013;20:420-426.
    • (2013) J Am Med Inf. Assoc , vol.20 , pp. 420-426
    • Liu, M.1
  • 214
    • 84863229218 scopus 로고    scopus 로고
    • Predicting warfarin dosage in European-Americans and African-Americans using DNA samples linked to an electronic health record
    • Ramirez AH et al. Predicting warfarin dosage in European-Americans and African-Americans using DNA samples linked to an electronic health record. Pharmacogenomics. 2012;13:407-418. https://doi.org/10.2217/pgs.11.164.
    • (2012) Pharmacogenomics , vol.13 , pp. 407-418
    • Ramirez, A.H.1
  • 215
    • 84885101900 scopus 로고    scopus 로고
    • Electronic health record design and implementation for pharmacogenomics: a local perspective HHS Public access
    • Peterson JF et al. Electronic health record design and implementation for pharmacogenomics: a local perspective HHS Public access. Genet Med. 2013;15109:833-841.
    • (2013) Genet Med , vol.15109 , pp. 833-841
    • Peterson, J.F.1
  • 216
    • 85067494190 scopus 로고    scopus 로고
    • Drospirenone-containing oral contraceptives and venous thromboembolism: an analysis of the FAERS database
    • Madigan D, Shin J. Drospirenone-containing oral contraceptives and venous thromboembolism: an analysis of the FAERS database. Open Access J. Contracept. 2018;9:29-32.
    • (2018) Open Access J. Contracept. , vol.9 , pp. 29-32
    • Madigan, D.1    Shin, J.2
  • 217
    • 84880727398 scopus 로고    scopus 로고
    • The pharmacogenomics research network translational pharmacogenetics program: Overcoming challenges of real-world implementation
    • Shuldiner AR et al. The pharmacogenomics research network translational pharmacogenetics program: Overcoming challenges of real-world implementation. Clin. Pharmacol. Ther. 2013;94:207-210.
    • (2013) Clin. Pharmacol. Ther. , vol.94 , pp. 207-210
    • Shuldiner, A.R.1
  • 218
    • 84985034308 scopus 로고    scopus 로고
    • Computational drug repositioning using continuous self-controlled case series
    • Kuang Z et al. Computational drug repositioning using continuous self-controlled case series. KDD. 2017;491-500. https://doi.org/10.1145/2939672.2939715.
    • (2017) KDD , pp. 491-500
    • Kuang, Z.1
  • 219
    • 85051422123 scopus 로고    scopus 로고
    • Landmark models for optimizing the use of repeated measurements of risk factors in electronic health records to predict future disease risk
    • Paige E et al. Landmark models for optimizing the use of repeated measurements of risk factors in electronic health records to predict future disease risk. Am. J. Epidemiol. 2018;187:1530-1538.
    • (2018) Am. J. Epidemiol. , vol.187 , pp. 1530-1538
    • Paige, E.1
  • 220
    • 85014666740 scopus 로고    scopus 로고
    • Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review
    • Goldstein BA, Navar AM, Pencina MJ, Ioannidis JPA. Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review. J. Am. Med. Informatics Assoc. 2017;24:198-208.
    • (2017) J. Am. Med. Informatics Assoc. , vol.24 , pp. 198-208
    • Goldstein, B.A.1    Navar, A.M.2    Pencina, M.J.3    Ioannidis, J.P.A.4
  • 221
    • 85031318677 scopus 로고    scopus 로고
    • Dynamic estimation of the probability of patient readmission to the ICU using electronic medical records
    • Caballero K, Akella R. Dynamic estimation of the probability of patient readmission to the ICU using electronic medical records. AMIA Annu. Symp. Proc. 2015;2015:1831-1840.
    • (2015) AMIA Annu. Symp. Proc. , vol.2015 , pp. 1831-1840
    • Caballero, K.1    Akella, R.2
  • 222
    • 85032335480 scopus 로고    scopus 로고
    • Dynamic Mortality Risk Predictions in Pediatric Critical Care Using Recurrent
    • Aczon M et al. Dynamic Mortality Risk Predictions in Pediatric Critical Care Using Recurrent. Neural Networks arXiv. 2017;1-18.
    • (2017) Neural Networks arXiv. , pp. 1-18
    • Aczon, M.1
  • 223
    • 85010651464 scopus 로고    scopus 로고
    • A bayesian approach to graphical record linkage and deduplication
    • Steorts RC, Hall R, Fienberg SE. A bayesian approach to graphical record linkage and deduplication. J. Am. Stat. Assoc. 2016;111:1660-1672.
    • (2016) J. Am. Stat. Assoc. , vol.111 , pp. 1660-1672
    • Steorts, R.C.1    Hall, R.2    Fienberg, S.E.3
  • 225
    • 84889599807 scopus 로고    scopus 로고
    • A taxonomy of privacy-preserving record linkage techniques
    • Vatsalan D, Christen P, Verykios VS. A taxonomy of privacy-preserving record linkage techniques. Inf. Syst. 2013;38:946-969.
    • (2013) Inf. Syst. , vol.38 , pp. 946-969
    • Vatsalan, D.1    Christen, P.2    Verykios, V.S.3
  • 226
    • 84974633011 scopus 로고    scopus 로고
    • Efficient record linkage algorithms using complete linkage clustering
    • Al Mamun A, Aseltine R, Rajasekaran S. Efficient record linkage algorithms using complete linkage clustering. PLoS One. 2016;11:1-21.
    • (2016) PLoS One , vol.11 , pp. 1-21
    • Al Mamun, A.1    Aseltine, R.2    Rajasekaran, S.3
  • 227
    • 84931088109 scopus 로고    scopus 로고
    • Privacy preserving probabilistic record linkage (P3RL): a novel method for linking existing health-related data and maintaining participant confidentiality
    • Schmidlin K, Clough-Gorr KM, Spoerri A. Privacy preserving probabilistic record linkage (P3RL): a novel method for linking existing health-related data and maintaining participant confidentiality. BMC Med. Res. Methodol. 2015;15:1-10.
    • (2015) BMC Med. Res. Methodol. , vol.15 , pp. 1-10
    • Schmidlin, K.1    Clough-Gorr, K.M.2    Spoerri, A.3
  • 228
    • 85077052239 scopus 로고    scopus 로고
    • Statistical methods for handling missing data in distributed health data networks
    • Long Q. Statistical methods for handling missing data in distributed health data networks. Joint Statistical Meetings; 2018.
    • (2018) Joint Statistical Meetings
    • Long, Q.1
  • 230
    • 85042539657 scopus 로고    scopus 로고
    • Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits
    • Yang J et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat Genet. 2013;44:1-22.
    • (2013) Nat Genet , vol.44 , pp. 1-22
    • Yang, J.1
  • 231
    • 84977265918 scopus 로고    scopus 로고
    • Characterizing treatment pathways at scale using the OHDSI network
    • Hripcsak G et al. Characterizing treatment pathways at scale using the OHDSI network. Proc. Natl. Acad. Sci. USA. 2016;113:7329-7336. https://doi.org/10.1073/pnas.1510502113.
    • (2016) Proc. Natl. Acad. Sci. USA , vol.113 , pp. 7329-7336
    • Hripcsak, G.1
  • 232
    • 84875370304 scopus 로고    scopus 로고
    • Is treatment adherence consistent across time, across different treatments and across diagnoses?
    • Simon GE, Peterson D, Hubbard R. Is treatment adherence consistent across time, across different treatments and across diagnoses? Gen. Hosp. Psychiatry. 2013;35:195-201. https://doi.org/10.1016/j.genhosppsych.2012.10.001.
    • (2013) Gen. Hosp. Psychiatry , vol.35 , pp. 195-201
    • Simon, G.E.1    Peterson, D.2    Hubbard, R.3
  • 233
    • 84966333746 scopus 로고    scopus 로고
    • Cloud-based electronic health records for real-time, region-specific influenza surveillance
    • Santillana M et al. Cloud-based electronic health records for real-time, region-specific influenza surveillance. Sci. Rep. 2016;25732:1-8.
    • (2016) Sci. Rep. , vol.25732 , pp. 1-8
    • Santillana, M.1
  • 234
    • 85018433836 scopus 로고    scopus 로고
    • Using electronic health records and Internet search information for accurate influenza forecasting
    • Yang S et al. Using electronic health records and Internet search information for accurate influenza forecasting. BMC Infect. Dis. 2017;17:1-9.
    • (2017) BMC Infect. Dis. , vol.17 , pp. 1-9
    • Yang, S.1
  • 235
    • 85015845840 scopus 로고    scopus 로고
    • Epidemic forecasting is messier than weather forecasting: the role of human behavior and internet data streams in epidemic forecast
    • Moran KR et al. Epidemic forecasting is messier than weather forecasting: the role of human behavior and internet data streams in epidemic forecast. J. Infect. Dis. 2016;214:404-408.
    • (2016) J. Infect. Dis. , vol.214 , pp. 404-408
    • Moran, K.R.1
  • 236
    • 85050915200 scopus 로고    scopus 로고
    • Statistical paradises and paradoxes in big data (I): Law of large populations, big data paradox, and the 2016 us presidential election
    • Meng XL. Statistical paradises and paradoxes in big data (I): Law of large populations, big data paradox, and the 2016 us presidential election. Ann. Appl. Stat. 2018;12:685-726.
    • (2018) Ann. Appl. Stat. , vol.12 , pp. 685-726
    • Meng, X.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.