-
1
-
-
84872308092
-
Biobanking past, present and future
-
De Souza YG, Greenspan JS. Biobanking past, present and future. AIDS. 2013;27:303-312.
-
(2013)
AIDS
, vol.27
, pp. 303-312
-
-
De Souza, Y.G.1
Greenspan, J.S.2
-
2
-
-
38449089111
-
The uneasy ethical and legal underpinnings of large-scale genomic biobanks
-
Greely HT. The uneasy ethical and legal underpinnings of large-scale genomic biobanks. Annu. Rev. Genomics Hum. Genet. 2007;8:343-364.
-
(2007)
Annu. Rev. Genomics Hum. Genet.
, vol.8
, pp. 343-364
-
-
Greely, H.T.1
-
3
-
-
41149088350
-
Definition, structure, content, use and impacts of electronic health records: a review of the research literature
-
Hayrinen K, Saranto K, Nyk P. Definition, structure, content, use and impacts of electronic health records: a review of the research literature. Int. J. Med. Inform. 2008;7:291-304.
-
(2008)
Int. J. Med. Inform.
, vol.7
, pp. 291-304
-
-
Hayrinen, K.1
Saranto, K.2
Nyk, P.3
-
4
-
-
77952822074
-
PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations
-
Denny JC et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics. 2010;26:1205-1210.
-
(2010)
Bioinformatics
, vol.26
, pp. 1205-1210
-
-
Denny, J.C.1
-
5
-
-
85048616382
-
Electronic health records: The next wave of complex disease genetics
-
Wolford BN, Willer CJ, Surakka I. Electronic health records: The next wave of complex disease genetics. Hum. Mol. Genet. 2018;27:R14-R21.
-
(2018)
Hum. Mol. Genet.
, vol.27
, pp. R14-R21
-
-
Wolford, B.N.1
Willer, C.J.2
Surakka, I.3
-
6
-
-
85048617593
-
The next generation of precision medicine: Observational studies, electronic health records, biobanks and continuous monitoring
-
Glicksberg BS, Johnson KW, Dudley JT. The next generation of precision medicine: Observational studies, electronic health records, biobanks and continuous monitoring. Hum. Mol. Genet. 2018;27:R56-R62.
-
(2018)
Hum. Mol. Genet.
, vol.27
, pp. R56-R62
-
-
Glicksberg, B.S.1
Johnson, K.W.2
Dudley, J.T.3
-
7
-
-
84958659058
-
Unravelling the human genome–phenome relationship using phenome-wide association studies
-
Bush WS, Oetjens MT, Crawford DC. Unravelling the human genome–phenome relationship using phenome-wide association studies. Nat. Rev. Genet. 2016;17:129-145.
-
(2016)
Nat. Rev. Genet.
, vol.17
, pp. 129-145
-
-
Bush, W.S.1
Oetjens, M.T.2
Crawford, D.C.3
-
8
-
-
85048643883
-
Genomics and electronic health record systems
-
Ohno-Machado L, Kim J, Gabriel RA, Kuo GM, Hogarth MA. Genomics and electronic health record systems. Hum. Mol. Genet. 2018;27:R48-R55.
-
(2018)
Hum. Mol. Genet.
, vol.27
, pp. R48-R55
-
-
Ohno-Machado, L.1
Kim, J.2
Gabriel, R.A.3
Kuo, G.M.4
Hogarth, M.A.5
-
9
-
-
85068046749
-
Genes for good: engaging the public in genetics research via social media
-
Brieger K et al. Genes for good: engaging the public in genetics research via social media. Am. J. Hum. Genet. 2019;105:65-77.
-
(2019)
Am. J. Hum. Genet.
, vol.105
, pp. 65-77
-
-
Brieger, K.1
-
10
-
-
85046878844
-
Association of Polygenic Risk Scores for Multiple Cancers in a Phenome-wide Study: Results from The Michigan Genomics Initiative
-
Fritsche, L. G. et al. Association of Polygenic Risk Scores for Multiple Cancers in a Phenome-wide Study: Results from The Michigan Genomics Initiative. Am. J. Hum. Genet. 2018;102:1048-1061. doi:https://doi.org/10.1016/j.ajhg.2018.04.001
-
(2018)
Am. J. Hum. Genet.
, vol.102
, pp. 1048-1061
-
-
Fritsche, L.G.1
-
11
-
-
85077026532
-
-
Michigan Genomics Initiative Website. https://www.michigangenomics.org.
-
-
-
-
12
-
-
85077063047
-
-
UK Biobank Website. http://www.ukbiobank.ac.uk.
-
-
-
-
13
-
-
84866173675
-
UK Biobank: current status and what it means for epidemiology
-
Allen N et al. UK Biobank: current status and what it means for epidemiology. Heal. Policy Technol. 2012;1:123-126.
-
(2012)
Heal. Policy Technol.
, vol.1
, pp. 123-126
-
-
Allen, N.1
-
14
-
-
85077078243
-
-
Estonian Genome Center. Available at: https://www.geenivaramu.ee/en/access-biobank.
-
-
-
-
15
-
-
84943759545
-
Cohort profile: estonian biobank of the Estonian genome center, university of Tartu
-
Leitsalu L et al. Cohort profile: estonian biobank of the Estonian genome center, university of Tartu. Int. J. Epidemiol. 2015;44:1137-1147.
-
(2015)
Int. J. Epidemiol.
, vol.44
, pp. 1137-1147
-
-
Leitsalu, L.1
-
16
-
-
85077077395
-
-
Danish National Biobank. http://www.biobankdenmark.dk.
-
-
-
-
17
-
-
85080825021
-
-
Biobank Sweden
-
Biobank Sweden. http://biobanksverige.se/research/.
-
-
-
-
18
-
-
85080831561
-
-
Saudi Biobank. http://kaimrc.med.sa.
-
-
-
-
19
-
-
85077022234
-
-
China National GeneBank. https://www.cngb.org/home.html.
-
-
-
-
20
-
-
85077031765
-
-
National Biobank of Korea. http://www.nih.go.kr/NIH/cms/content/eng/14/65714_view.html.
-
-
-
-
21
-
-
84866879293
-
Opening of the National Biobank of Korea as the infrastructure of future biomedical science in Korea
-
Cho SY et al. Opening of the National Biobank of Korea as the infrastructure of future biomedical science in Korea. Osong Public Heal. Res. Perspect. 2012;3:177-184.
-
(2012)
Osong Public Heal. Res. Perspect.
, vol.3
, pp. 177-184
-
-
Cho, S.Y.1
-
22
-
-
85077031063
-
-
Qatar Biobank. https://www.qatarbiobank.org.qa.
-
-
-
-
23
-
-
84949560863
-
The qatar Biobank: background and methods
-
Al Kuwari H et al. The qatar Biobank: background and methods. BMC Public Health. 2015;15:1208.
-
(2015)
BMC Public Health
, vol.15
, pp. 1208
-
-
Al Kuwari, H.1
-
24
-
-
85015270993
-
Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population
-
Lin E et al. Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. Oncotarget. 2017;8:24077-24087.
-
(2017)
Oncotarget
, vol.8
, pp. 24077-24087
-
-
Lin, E.1
-
25
-
-
85080822901
-
-
Taiwan Biobank
-
Taiwan Biobank. https://www.twbiobank.org.tw/new_web_en/index.php.
-
-
-
-
26
-
-
85016438418
-
Overview of the BioBank Japan Project: study design and profile
-
Nagai A et al. Overview of the BioBank Japan Project: study design and profile. J. Epidemiol. 2017;27:S2-S8.
-
(2017)
J. Epidemiol.
, vol.27
, pp. S2-S8
-
-
Nagai, A.1
-
28
-
-
85077049262
-
-
PcBaSe Sweden Website. http://www.surgsci.umu.se/english/sections/urology-and-andrology/research/pcbase/?languageId=1.
-
-
-
-
29
-
-
85077029624
-
-
Mayo Clinic Biobank for Bipolar Disorder Website. https://www.mayo.edu/research/centers-programs/bipolar-disorder-biobank/overview.
-
-
-
-
30
-
-
85064124697
-
Illustrating informed presence bias in electronic health records data: how patient interactions with a health system can impact inference
-
Phelan M, Bhavsar N, Goldstein BA. Illustrating informed presence bias in electronic health records data: how patient interactions with a health system can impact inference. eGEMs. 2017;5:22.
-
(2017)
eGEMs
, vol.5
, pp. 22
-
-
Phelan, M.1
Bhavsar, N.2
Goldstein, B.A.3
-
31
-
-
85015982112
-
Controlling for informed presence bias due to the number of health encounters in an electronic health record
-
Goldstein BA, Bhavsar NA, Phelan M, Pencina MJ. Controlling for informed presence bias due to the number of health encounters in an electronic health record. Am. J. Epidemiol. 2016;184:847-855.
-
(2016)
Am. J. Epidemiol.
, vol.184
, pp. 847-855
-
-
Goldstein, B.A.1
Bhavsar, N.A.2
Phelan, M.3
Pencina, M.J.4
-
32
-
-
84955094814
-
Perils and potentials of self-selected entry to epidemiological studies and surveys
-
Keiding N, Louis TA. Perils and potentials of self-selected entry to epidemiological studies and surveys. J. R. Stat. Soc. Ser. A Stat. Soc. 2016;179:319-376.
-
(2016)
J. R. Stat. Soc. Ser. A Stat. Soc.
, vol.179
, pp. 319-376
-
-
Keiding, N.1
Louis, T.A.2
-
33
-
-
85077048189
-
Modeling framework for exploring sampling and observation process biases in genome and phenome-wide association studies using electronic health records
-
Beesley LJ, Fritsche LG, Mukherjee BA. Modeling framework for exploring sampling and observation process biases in genome and phenome-wide association studies using electronic health records. bioRXiv. 2018;1:1-19.
-
(2018)
bioRXiv
, vol.1
, pp. 1-19
-
-
Beesley, L.J.1
Fritsche, L.G.2
Mukherjee, B.A.3
-
35
-
-
84906273890
-
R PheWAS: data analysis and plotting tools for phenome-wide association studies in the R environment
-
Carroll RJ, Bastarache L, Denny JC. R PheWAS: data analysis and plotting tools for phenome-wide association studies in the R environment. Bioinformatics. 2014;30:2375-2376.
-
(2014)
Bioinformatics
, vol.30
, pp. 2375-2376
-
-
Carroll, R.J.1
Bastarache, L.2
Denny, J.C.3
-
36
-
-
85058441584
-
Evaluating large-scale propensity score performance through real-world and synthetic data experiments
-
Tian Y, Schuemie MJ, Suchard MA. Evaluating large-scale propensity score performance through real-world and synthetic data experiments. Int. J. Epidemiol. 2018;47:2005-2014. https://doi.org/10.1093/ije/dyy120.
-
(2018)
Int. J. Epidemiol.
, vol.47
, pp. 2005-2014
-
-
Tian, Y.1
Schuemie, M.J.2
Suchard, M.A.3
-
37
-
-
67651042983
-
High-dimensional propensity score adjustment in studies of treatment effects using health care claims data
-
Schneeweiss S et al. High-dimensional propensity score adjustment in studies of treatment effects using health care claims data. Epidemiology. 2009;20:512-522.
-
(2009)
Epidemiology
, vol.20
, pp. 512-522
-
-
Schneeweiss, S.1
-
38
-
-
85040528045
-
Genome-wide meta-analyses of stratified depression in Generation Scotland and UK Biobank
-
Hall LS et al. Genome-wide meta-analyses of stratified depression in Generation Scotland and UK Biobank. Transl. Psychiatry. 2018;8:9.
-
(2018)
Transl. Psychiatry
, vol.8
, pp. 9
-
-
Hall, L.S.1
-
40
-
-
85041946677
-
Use of instrumental variables in electronic health record-driven models
-
Salmasi L, Capobianco E. Use of instrumental variables in electronic health record-driven models. Stat. Methods Med. Res. 2018;27:607-621.
-
(2018)
Stat. Methods Med. Res.
, vol.27
, pp. 607-621
-
-
Salmasi, L.1
Capobianco, E.2
-
41
-
-
85049356777
-
MR-PheWAS: exploring the causal effect of SUA level on multiple disease outcomes by using genetic instruments in UK Biobank
-
Li X et al. MR-PheWAS: exploring the causal effect of SUA level on multiple disease outcomes by using genetic instruments in UK Biobank. Ann. Rheum. Dis. 2018;77:1039-1047.
-
(2018)
Ann. Rheum. Dis.
, vol.77
, pp. 1039-1047
-
-
Li, X.1
-
43
-
-
0033847784
-
Marginal structural models and causal inference
-
Robins JM, Miguel A. Marginal structural models and causal inference. Epidemiology. 2000;11:550-560.
-
(2000)
Epidemiology
, vol.11
, pp. 550-560
-
-
Robins, J.M.1
Miguel, A.2
-
44
-
-
85052387326
-
Using marginal structural models to adjust for treatment drop-in when developing clinical prediction models
-
Sperrin M, Martin GP, Peek N, Buchan I, Pate A. Using marginal structural models to adjust for treatment drop-in when developing clinical prediction models. Stat. Med. 2018;37:4142-4154.
-
(2018)
Stat. Med.
, vol.37
, pp. 4142-4154
-
-
Sperrin, M.1
Martin, G.P.2
Peek, N.3
Buchan, I.4
Pate, A.5
-
45
-
-
84958776644
-
Assessing sensitivity to unmeasured confounding using a simulated potential confounder
-
Carnegie NB, Harada M, Hill JL. Assessing sensitivity to unmeasured confounding using a simulated potential confounder. J. Res. Educ. Eff. 2016;9:395-420.
-
(2016)
J. Res. Educ. Eff.
, vol.9
, pp. 395-420
-
-
Carnegie, N.B.1
Harada, M.2
Hill, J.L.3
-
46
-
-
84964325837
-
Methods to control for unmeasured confounding in pharmacoepidemiology: an overview
-
Uddin MJ et al. Methods to control for unmeasured confounding in pharmacoepidemiology: an overview. Int. J. Clin. Pharm. 2016;38:714-723.
-
(2016)
Int. J. Clin. Pharm.
, vol.38
, pp. 714-723
-
-
Uddin, M.J.1
-
47
-
-
85041205020
-
Addressing unmeasured confounding in comparative observational research
-
Zhang X, Faries DE, Li H, Stamey JD, Imbens GW. Addressing unmeasured confounding in comparative observational research. Pharmacoepidemiol. Drug Saf. 2018;27:373-382.
-
(2018)
Pharmacoepidemiol. Drug Saf.
, vol.27
, pp. 373-382
-
-
Zhang, X.1
Faries, D.E.2
Li, H.3
Stamey, J.D.4
Imbens, G.W.5
-
48
-
-
85027461408
-
sensitivity analysis in observational research: introducing the e-value
-
VanderWeele TJ, Ding P. sensitivity analysis in observational research: introducing the e-value. Ann. Intern. Med. 2017;167:268.
-
(2017)
Ann. Intern. Med.
, vol.167
, pp. 268
-
-
VanderWeele, T.J.1
Ding, P.2
-
49
-
-
85077037571
-
-
ICD Code Informational Website. https://www.cdc.gov/nchs/icd/index.htm.
-
-
-
-
50
-
-
85077029819
-
Phenome-wide association studies: leveraging comprehensive phenotypic and genotypic data for discovery
-
Pendergrass SA, Ritchie MD. Phenome-wide association studies: leveraging comprehensive phenotypic and genotypic data for discovery. Curr. Genet. Med. Rep. 2016;42:407-420.
-
(2016)
Curr. Genet. Med. Rep.
, vol.42
, pp. 407-420
-
-
Pendergrass, S.A.1
Ritchie, M.D.2
-
51
-
-
85077047405
-
-
eMERGE PheKB Website. https://phekb.org.
-
-
-
-
52
-
-
84942898092
-
Methods to develop an electronic medical record phenotype algorithm to compare the risk of coronary artery disease across 3 chronic disease cohorts
-
Liao KP et al. Methods to develop an electronic medical record phenotype algorithm to compare the risk of coronary artery disease across 3 chronic disease cohorts. PLoS One. 2015;10. https://doi.org/10.1371/journal.pone.0136651.
-
(2015)
PLoS One
, vol.10
-
-
Liao, K.P.1
-
53
-
-
84930651751
-
Development of phenotype algorithms using electronic medical records and incorporating natural language processing
-
Liao KP et al. Development of phenotype algorithms using electronic medical records and incorporating natural language processing. BMJ. 2015;350:1-5. https://doi.org/10.1136/bmj.h1885.
-
(2015)
BMJ
, vol.350
, pp. 1-5
-
-
Liao, K.P.1
-
54
-
-
84964584033
-
Identification of nonresponse to treatment using narrative data in an electronic health record inflammatory bowel disease cohort
-
Ananthakrishnan AN et al. Identification of nonresponse to treatment using narrative data in an electronic health record inflammatory bowel disease cohort. Inflamm. Bowel Dis. 2016;22:151-158. https://doi.org/10.1097/MIB.0000000000000580.
-
(2016)
Inflamm. Bowel Dis.
, vol.22
, pp. 151-158
-
-
Ananthakrishnan, A.N.1
-
55
-
-
84945899251
-
Identification of subjects with polycystic ovary syndrome using electronic health records
-
Castro V et al. Identification of subjects with polycystic ovary syndrome using electronic health records. Reprod. Biol. Endocrinol. 2015;29:1-8. https://doi.org/10.1186/s12958-015-0115-z.
-
(2015)
Reprod. Biol. Endocrinol.
, vol.29
, pp. 1-8
-
-
Castro, V.1
-
56
-
-
85044585865
-
Genome-wide association study of dimensional psychopathology using electronic health records
-
McCoy TH et al. Genome-wide association study of dimensional psychopathology using electronic health records. Biol. Psychiatry. 2018;83:1005-1011. https://doi.org/10.1016/j.biopsych.2017.12.004.
-
(2018)
Biol. Psychiatry
, vol.83
, pp. 1005-1011
-
-
McCoy, T.H.1
-
57
-
-
84919418380
-
Improving the power of genetic association tests with imperfect phenotype derived from electronic medical records
-
Sinnott JA et al. Improving the power of genetic association tests with imperfect phenotype derived from electronic medical records. Hum. Genet. 2014;133:1369-1382.
-
(2014)
Hum. Genet.
, vol.133
, pp. 1369-1382
-
-
Sinnott, J.A.1
-
58
-
-
85040570526
-
Surrogate-assisted feature extraction for high-throughput phenotyping
-
Yu S et al. Surrogate-assisted feature extraction for high-throughput phenotyping. J. Am. Med. Inform. Assoc. 2017;24:e143-e149.
-
(2017)
J. Am. Med. Inform. Assoc.
, vol.24
, pp. e143-e149
-
-
Yu, S.1
-
59
-
-
85040620809
-
Enabling phenotypic big data with PheNorm
-
Yu S et al. Enabling phenotypic big data with PheNorm. J. Am. Med. Informatics Assoc. 2018;25:54-60.
-
(2018)
J. Am. Med. Informatics Assoc.
, vol.25
, pp. 54-60
-
-
Yu, S.1
-
60
-
-
85009080828
-
Large-scale identification of patients with cerebral aneurysms using natural language processing
-
Castro VM et al. Large-scale identification of patients with cerebral aneurysms using natural language processing. Neurology. 2017;88:164-168.
-
(2017)
Neurology
, vol.88
, pp. 164-168
-
-
Castro, V.M.1
-
61
-
-
85042389905
-
Identifying medical diagnoses and treatable diseases by image-based deep learning
-
Kermany DS et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell. 2018;172:1122-1131.e9.
-
(2018)
Cell
, vol.172
, pp. 1122-1131
-
-
Kermany, D.S.1
-
62
-
-
85014746171
-
Evaluating electronic health record data sources and algorithmic approaches to identify hypertensive individuals
-
Teixeira PL et al. Evaluating electronic health record data sources and algorithmic approaches to identify hypertensive individuals. J. Am. Med. Informatics Assoc. 2017;24:162-171.
-
(2017)
J. Am. Med. Informatics Assoc.
, vol.24
, pp. 162-171
-
-
Teixeira, P.L.1
-
63
-
-
85029752725
-
Mimvec: a deep learning approach for analyzing the human phenome
-
Gan M, Li W, Zeng W, Wang X, Jiang R. Mimvec: a deep learning approach for analyzing the human phenome. BMC Syst. Biol. 2017;11:76.
-
(2017)
BMC Syst. Biol.
, vol.11
, pp. 76
-
-
Gan, M.1
Li, W.2
Zeng, W.3
Wang, X.4
Jiang, R.5
-
64
-
-
85052927246
-
A Bayesian latent class approach for EHR-based phenotyping
-
Hubbard RA et al. A Bayesian latent class approach for EHR-based phenotyping. Stat Me. 2019;38:74-87.
-
(2019)
Stat Me
, vol.38
, pp. 74-87
-
-
Hubbard, R.A.1
-
66
-
-
85060531623
-
Learning from longitudinal data in electronic health record and genetic data to improve cardiovascular event prediction
-
Zhao J et al. Learning from longitudinal data in electronic health record and genetic data to improve cardiovascular event prediction. Sci. Rep. 2019;9:1-10.
-
(2019)
Sci. Rep.
, vol.9
, pp. 1-10
-
-
Zhao, J.1
-
67
-
-
84944169855
-
GWAS with longitudinal phenotypes: performance of approximate procedures
-
Sikorska K et al. GWAS with longitudinal phenotypes: performance of approximate procedures. Eur. J. Hum. Genet. 2015;23:1384-1391.
-
(2015)
Eur. J. Hum. Genet.
, vol.23
, pp. 1384-1391
-
-
Sikorska, K.1
-
68
-
-
84956653867
-
Longitudinal analytical approaches to genetic data
-
Chiu Y, Justice AE, Melton PE. Longitudinal analytical approaches to genetic data. BMC Genet. 2016;17:25-32.
-
(2016)
BMC Genet.
, vol.17
, pp. 25-32
-
-
Chiu, Y.1
Justice, A.E.2
Melton, P.E.3
-
69
-
-
84953342203
-
Automated methods for the summarization of electronic health records
-
Pivovarov R. Automated methods for the summarization of electronic health records. J. Am. Med. Informatics Assoc. 2015;22:938-947. https://doi.org/10.1093/jamia/ocv032.
-
(2015)
J. Am. Med. Informatics Assoc.
, vol.22
, pp. 938-947
-
-
Pivovarov, R.1
-
70
-
-
85041422758
-
Estimating summary statistics for electronic health record laboratory data for use in high-throughout phenotyping algorithms
-
Albers DJ et al. Estimating summary statistics for electronic health record laboratory data for use in high-throughout phenotyping algorithms. J. Biomed. Inform. 2018;78:87-101.
-
(2018)
J. Biomed. Inform.
, vol.78
, pp. 87-101
-
-
Albers, D.J.1
-
71
-
-
84866458870
-
From phenotype to genotype: an association study of longitudinal phenotypic markers to Alzheimer ' s disease relevant SNPs
-
Wang H et al. From phenotype to genotype: an association study of longitudinal phenotypic markers to Alzheimer ' s disease relevant SNPs. Bioinformatics. 2012;28:619-625.
-
(2012)
Bioinformatics
, vol.28
, pp. 619-625
-
-
Wang, H.1
-
72
-
-
84905472519
-
Longitudinal analysis is more powerful than cross-sectional analysis in detecting genetic association with neuroimaging phenotypes
-
Xu Z, Shen X, Pan W, Neuroimaging D. Longitudinal analysis is more powerful than cross-sectional analysis in detecting genetic association with neuroimaging phenotypes. PLoS One. 2014;9:1-13.
-
(2014)
PLoS One
, vol.9
, pp. 1-13
-
-
Xu, Z.1
Shen, X.2
Pan, W.3
Neuroimaging, D.4
-
73
-
-
85046254953
-
Biases in electronic health record data due to processes within the healthcare system: retrospective observational study
-
Agniel D, Kohane IS, Weber GM. Biases in electronic health record data due to processes within the healthcare system: retrospective observational study. BMJ Open. 2018;361:1-9.
-
(2018)
BMJ Open
, vol.361
, pp. 1-9
-
-
Agniel, D.1
Kohane, I.S.2
Weber, G.M.3
-
74
-
-
84961317223
-
A joint model for multistate disease processes and random informative observation times, with applications to electronic medical records data
-
Lange JM, Hubbard RA, Inoue LYT, Minin VN. A joint model for multistate disease processes and random informative observation times, with applications to electronic medical records data. Biometrics. 2015;71:90-101. https://doi.org/10.1111/biom.12252.
-
(2015)
Biometrics
, vol.71
, pp. 90-101
-
-
Lange, J.M.1
Hubbard, R.A.2
Inoue, L.Y.T.3
Minin, V.N.4
-
75
-
-
49549125409
-
Covariate bias induced by length-biased sampling of failure times
-
Bergeron PJ, Asgharian M, Wolfson DB. Covariate bias induced by length-biased sampling of failure times. J. Am. Stat. Assoc. 2008;103:737-742.
-
(2008)
J. Am. Stat. Assoc.
, vol.103
, pp. 737-742
-
-
Bergeron, P.J.1
Asgharian, M.2
Wolfson, D.B.3
-
76
-
-
84961290792
-
Validation of electronic health record phenotyping of bipolar disorder cases and controls
-
Castro VM et al. Validation of electronic health record phenotyping of bipolar disorder cases and controls. Am. J. Psychiatry. 2015;172:363-372.
-
(2015)
Am. J. Psychiatry
, vol.172
, pp. 363-372
-
-
Castro, V.M.1
-
77
-
-
68049131161
-
Why do doctors and patients not follow guidelines?
-
Baiardini I, Braido F, Bonini M, Compalati E, Canonica GW. Why do doctors and patients not follow guidelines? Curr. Opin. Allergy Clin. Immunol. 2009;9:228-233.
-
(2009)
Curr. Opin. Allergy Clin. Immunol.
, vol.9
, pp. 228-233
-
-
Baiardini, I.1
Braido, F.2
Bonini, M.3
Compalati, E.4
Canonica, G.W.5
-
78
-
-
77950338000
-
Robust replication of genotype-phenotype associations across multiple diseases in an electronic medical record
-
Ritchie MD et al. Robust replication of genotype-phenotype associations across multiple diseases in an electronic medical record. Am. J. Hum. Genet. 2010;86:560-572.
-
(2010)
Am. J. Hum. Genet.
, vol.86
, pp. 560-572
-
-
Ritchie, M.D.1
-
79
-
-
85055699625
-
Inflation of type I error rates due to differential misclassification in EHR—derived outcomes: empirical illustration using breast cancer recurrence
-
Chen Y, Wang J, Chubak J, Hubbard RA. Inflation of type I error rates due to differential misclassification in EHR—derived outcomes: empirical illustration using breast cancer recurrence. Pharmacoepidemiol. Drug Saf. 2019;28:264-268.
-
(2019)
Pharmacoepidemiol. Drug Saf.
, vol.28
, pp. 264-268
-
-
Chen, Y.1
Wang, J.2
Chubak, J.3
Hubbard, R.A.4
-
80
-
-
21844448883
-
Does it always help to adjust for misclassiÿcation of a binary outcome in logistic regression?
-
Luan X, Pan W, Gerberich SG, Carlin BP. Does it always help to adjust for misclassiÿcation of a binary outcome in logistic regression? Stat. Med. 2005;24:2221-2234.
-
(2005)
Stat. Med.
, vol.24
, pp. 2221-2234
-
-
Luan, X.1
Pan, W.2
Gerberich, S.G.3
Carlin, B.P.4
-
81
-
-
0003804002
-
-
London, United Kingdom, Chapman and Hall
-
Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM. Measurement Error in Nonlinear Models: A Modern Perspective. London, United Kingdom: Chapman and Hall; 2006.
-
(2006)
Measurement Error in Nonlinear Models: A Modern Perspective
-
-
Carroll, R.J.1
Ruppert, D.2
Stefanski, L.A.3
Crainiceanu, C.M.4
-
82
-
-
85043315236
-
PIE: A prior knowledge guided integrated likelihood estimation method for bias reduction in association studies using electronic health records data
-
[Epub ahead of print]
-
Huang J et al. PIE: A prior knowledge guided integrated likelihood estimation method for bias reduction in association studies using electronic health records data. J. Am. Med. Informatics Assoc. 2018. https://doi.org/10.1093/jamia/ocx137 [Epub ahead of print].
-
(2018)
J. Am. Med. Informatics Assoc.
-
-
Huang, J.1
-
83
-
-
84915778509
-
Classification accuracy of claims-based methods for identifying providers failing to meet performance targets
-
Hubbard RA et al. Classification accuracy of claims-based methods for identifying providers failing to meet performance targets. Stat. Med. 2015;34:93-105. https://doi.org/10.1002/sim.6318.
-
(2015)
Stat. Med.
, vol.34
, pp. 93-105
-
-
Hubbard, R.A.1
-
84
-
-
85016440836
-
Phenome-wide association study of autoantibodies to citrullinated and noncitrullinated epitopes in rheumatoid arthritis
-
Liao KP et al. Phenome-wide association study of autoantibodies to citrullinated and noncitrullinated epitopes in rheumatoid arthritis. Arthritis Rheumatol. 2017;69:742-749. https://doi.org/10.1002/art.39974.
-
(2017)
Arthritis Rheumatol.
, vol.69
, pp. 742-749
-
-
Liao, K.P.1
-
85
-
-
85031103336
-
Phenotype validation in electronic health records based genetic association studies
-
Wang L et al. Phenotype validation in electronic health records based genetic association studies. Genet Epidemiol. 2017;41:790-800.
-
(2017)
Genet Epidemiol.
, vol.41
, pp. 790-800
-
-
Wang, L.1
-
86
-
-
3543025789
-
A simple model for potential use with a misclassified binary outcome in epidemiology
-
Duffy SW et al. A simple model for potential use with a misclassified binary outcome in epidemiology. J. Epidemiol. Community Health. 2004;58:712-717.
-
(2004)
J. Epidemiol. Community Health
, vol.58
, pp. 712-717
-
-
Duffy, S.W.1
-
87
-
-
85025447339
-
IL-6 variant is associated with metastasis in breast cancer patients
-
Abana CO et al. IL-6 variant is associated with metastasis in breast cancer patients. PLoS One. 2017;12:e0181725.
-
(2017)
PLoS One
, vol.12
-
-
Abana, C.O.1
-
88
-
-
84890095736
-
Unified analysis of secondary traits in case-control association studies
-
Ghosh A, Wright FA, Zou F. Unified analysis of secondary traits in case-control association studies. J. Am. Stat. Assoc. 2013;108:566-576.
-
(2013)
J. Am. Stat. Assoc.
, vol.108
, pp. 566-576
-
-
Ghosh, A.1
Wright, F.A.2
Zou, F.3
-
89
-
-
33646128932
-
Secondary analysis of case-control data
-
Jiang Y, Scott AJ, Wild CJ. Secondary analysis of case-control data. Stat. Med. 2006;25:1323-1339.
-
(2006)
Stat. Med.
, vol.25
, pp. 1323-1339
-
-
Jiang, Y.1
Scott, A.J.2
Wild, C.J.3
-
90
-
-
84890482720
-
A general regression framework for a secondary outcome in case—control studies
-
Tchetgen EJT. A general regression framework for a secondary outcome in case—control studies. Biostatistics. 2014;15:117-128.
-
(2014)
Biostatistics
, vol.15
, pp. 117-128
-
-
Tchetgen, E.J.T.1
-
91
-
-
79952526688
-
Estimation of odds ratios of genetic variants for the secondary phenotypes associated with primary disease
-
Wang J, Shete S. Estimation of odds ratios of genetic variants for the secondary phenotypes associated with primary disease. Genet. Epidemiol. 2012;35:190-200.
-
(2012)
Genet. Epidemiol.
, vol.35
, pp. 190-200
-
-
Wang, J.1
Shete, S.2
-
92
-
-
84903315871
-
Hidden in plain sight: Bias towards sick patients when sampling patients with sufficient electronic health record data for research
-
Rusanov A, Weiskopf NG, Wang S, Weng C. Hidden in plain sight: Bias towards sick patients when sampling patients with sufficient electronic health record data for research. BMC Med. Inform. Decis. Mak. 2014;14:1-9.
-
(2014)
BMC Med. Inform. Decis. Mak.
, vol.14
, pp. 1-9
-
-
Rusanov, A.1
Weiskopf, N.G.2
Wang, S.3
Weng, C.4
-
93
-
-
84973818707
-
A multiplist strategy for strengthening nonequivalent control group designs
-
Reynolds KIMD, West SG. A multiplist strategy for strengthening nonequivalent control group designs. Evluation Rev. 1987;11:691-714.
-
(1987)
Evluation Rev.
, vol.11
, pp. 691-714
-
-
Reynolds, K.I.M.D.1
West, S.G.2
-
94
-
-
48749107496
-
Alternatives to the randomized controlled trial
-
West SG et al. Alternatives to the randomized controlled trial. Res. Innov. Recomm. 2008;98:1359-1366.
-
(2008)
Res. Innov. Recomm.
, vol.98
, pp. 1359-1366
-
-
West, S.G.1
-
95
-
-
84905009853
-
Aldehyde dehydrogenase 2—a potential genetic risk factor for lung function among southern Chinese: evidence from the Guangzhou Biobank Cohort Study
-
Au Yeung SL et al. Aldehyde dehydrogenase 2—a potential genetic risk factor for lung function among southern Chinese: evidence from the Guangzhou Biobank Cohort Study. Ann. Epidemiol. 2014;24:606-611.
-
(2014)
Ann. Epidemiol.
, vol.24
, pp. 606-611
-
-
Au Yeung, S.L.1
-
96
-
-
79951715417
-
A modified self-controlled case series method to examine association between multidose vaccinations and death
-
Kuhnert R et al. A modified self-controlled case series method to examine association between multidose vaccinations and death. Stat. Med. 2011;30:666-677.
-
(2011)
Stat. Med.
, vol.30
, pp. 666-677
-
-
Kuhnert, R.1
-
97
-
-
85040363582
-
Signal detection for recently approved products: adapting and evaluating self-controlled case series method using a us claims and uk electronic medical records database
-
Zhou X, Douglas IJ, Shen R, Bate A. Signal detection for recently approved products: adapting and evaluating self-controlled case series method using a us claims and uk electronic medical records database. Drug Saf. 2018;41:523-536.
-
(2018)
Drug Saf.
, vol.41
, pp. 523-536
-
-
Zhou, X.1
Douglas, I.J.2
Shen, R.3
Bate, A.4
-
98
-
-
84995771908
-
Detecting adverse drug reactions following long-term exposure in longitudinal observational data: the exposure-adjusted self-controlled case series
-
Schumie MJ, Trifiro G, Coloma PM, Ryan PB, Madigan D. Detecting adverse drug reactions following long-term exposure in longitudinal observational data: the exposure-adjusted self-controlled case series. Stat. Methods Med. Res. 2016;25:2577-2592.
-
(2016)
Stat. Methods Med. Res.
, vol.25
, pp. 2577-2592
-
-
Schumie, M.J.1
Trifiro, G.2
Coloma, P.M.3
Ryan, P.B.4
Madigan, D.5
-
99
-
-
84856034103
-
When should case-only designs be used for safety monitoring of medical products?
-
Maclure M et al. When should case-only designs be used for safety monitoring of medical products? Pharmacoepidemiol. Drug Saf. 2012;21:50-61. https://doi.org/10.1002/pds.2330.
-
(2012)
Pharmacoepidemiol. Drug Saf.
, vol.21
, pp. 50-61
-
-
Maclure, M.1
-
100
-
-
84890314090
-
Multiple self-controlled case series for large-scale longitudinal observational databases
-
Simpson SE et al. Multiple self-controlled case series for large-scale longitudinal observational databases. Biometrics. 2013;69:893-902. https://doi.org/10.1111/biom.12078.
-
(2013)
Biometrics
, vol.69
, pp. 893-902
-
-
Simpson, S.E.1
-
101
-
-
85015328989
-
Self controlled case series methods: an alternative to standard epidemiological study designs
-
Petersen I, Douglas I, Whitaker H. Self controlled case series methods: an alternative to standard epidemiological study designs. BMJ. 2016;354:i4515.
-
(2016)
BMJ
, vol.354
, pp. i4515
-
-
Petersen, I.1
Douglas, I.2
Whitaker, H.3
-
102
-
-
85019055480
-
Exposure enriched outcome dependent designs for longitudinal studies of gene–environment interaction
-
Sun Z, Mukherjee B, Estes JP, Vokonas PS, Park SK. Exposure enriched outcome dependent designs for longitudinal studies of gene–environment interaction. Stat. Med. 2017;36:2947-2960.
-
(2017)
Stat. Med.
, vol.36
, pp. 2947-2960
-
-
Sun, Z.1
Mukherjee, B.2
Estes, J.P.3
Vokonas, P.S.4
Park, S.K.5
-
103
-
-
84938511927
-
Biased sampling designs to improve research efficiency: Factors influencing pulmonary function over time in children with asthma
-
Schildcrout JS, Rathouz PJ, Zelnick LR, Garbett SP, Heagerty PJ. Biased sampling designs to improve research efficiency: Factors influencing pulmonary function over time in children with asthma. Ann. Appl. Stat. 2015;9:731-753.
-
(2015)
Ann. Appl. Stat.
, vol.9
, pp. 731-753
-
-
Schildcrout, J.S.1
Rathouz, P.J.2
Zelnick, L.R.3
Garbett, S.P.4
Heagerty, P.J.5
-
104
-
-
85044272678
-
Extending the case-control design to longitudinal data: stratified sampling based on repeated binary outcomes
-
Schildcrout JS, Schisterman EF, Mercaldo ND, Rathouz PJ, Heagerty PJ. Extending the case-control design to longitudinal data: stratified sampling based on repeated binary outcomes. Epidemiology. 2018;29:67-75.
-
(2018)
Epidemiology
, vol.29
, pp. 67-75
-
-
Schildcrout, J.S.1
Schisterman, E.F.2
Mercaldo, N.D.3
Rathouz, P.J.4
Heagerty, P.J.5
-
105
-
-
82355169007
-
Using extreme phenotype sampling to identify the rare causal variants of quantitative traits in association studies
-
Li D, Lewinger JP, Gauderman WJ, Murcray CE, Conti D. Using extreme phenotype sampling to identify the rare causal variants of quantitative traits in association studies. Genet. Epidemiol. 2011;35:790-799.
-
(2011)
Genet. Epidemiol.
, vol.35
, pp. 790-799
-
-
Li, D.1
Lewinger, J.P.2
Gauderman, W.J.3
Murcray, C.E.4
Conti, D.5
-
106
-
-
85077051705
-
Improving power of genetic association studies by extreme phenotype sampling: a review and some new results
-
Bjørnland T, Bye A, Ryeng E. Improving power of genetic association studies by extreme phenotype sampling: a review and some new results. arXiv. 2017;1-26.
-
(2017)
arXiv
, pp. 1-26
-
-
Bjørnland, T.1
Bye, A.2
Ryeng, E.3
-
107
-
-
78149265272
-
Robust relationship inference in genome-wide association studies
-
Manichaikul A et al. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010;26:2867-2873.
-
(2010)
Bioinformatics
, vol.26
, pp. 2867-2873
-
-
Manichaikul, A.1
-
108
-
-
85052701392
-
Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies
-
Zhou W et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 2018;50:1335-1341.
-
(2018)
Nat. Genet.
, vol.50
, pp. 1335-1341
-
-
Zhou, W.1
-
111
-
-
84880405711
-
Does design matter? Systematic evaluation of the impact of analytical choices on effect esitmates in observational studies
-
Madigan D, Ryan PB, Schuemie MJ. Does design matter? Systematic evaluation of the impact of analytical choices on effect esitmates in observational studies. Ther. Adv. Drug Saf. 2013;4:53-62.
-
(2013)
Ther. Adv. Drug Saf.
, vol.4
, pp. 53-62
-
-
Madigan, D.1
Ryan, P.B.2
Schuemie, M.J.3
-
112
-
-
85017476407
-
A general framework for considering selection bias in ehr-based studies: what data are observed and why?
-
Haneuse S, Chan HTH, Daniels M. A general framework for considering selection bias in ehr-based studies: what data are observed and why? EGEMS (Wash DC). 2016;4(1):1203. https://doi.org/10.13063/2327-9214.1203.
-
(2016)
EGEMS (Wash DC)
, vol.4
, Issue.1
, pp. 1203
-
-
Haneuse, S.1
Chan, H.T.H.2
Daniels, M.3
-
113
-
-
0037322022
-
‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease?
-
Smith GD, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 2003;32:1-22.
-
(2003)
Int. J. Epidemiol.
, vol.32
, pp. 1-22
-
-
Smith, G.D.1
Ebrahim, S.2
-
114
-
-
71249102316
-
Genetic association studies and the effect of misclassification and selection bias in putative confounders
-
Avery CL, Monda KL, North KE. Genetic association studies and the effect of misclassification and selection bias in putative confounders. BMC Proc. 2009;3:S48.
-
(2009)
BMC Proc.
, vol.3
, pp. S48
-
-
Avery, C.L.1
Monda, K.L.2
North, K.E.3
-
115
-
-
85029030754
-
Resolving the bias in electronic medical records
-
&, 2171–2180
-
Zheng, K., Gao, J., Ngiam, K. Y., Ooi, B. C. & Yip, W. L. J. Resolving the bias in electronic medical records. Proceedings of the 23rd ACM SIGKDD Internatinal Conference Knowledge Discovery Data Mining—KDD '17 2171–2180 (2017). doi:https://doi.org/10.1145/3097983.3098149
-
(2017)
Proceedings of the 23rd ACM SIGKDD Internatinal Conference Knowledge Discovery Data Mining—KDD '17
-
-
Zheng, K.1
Gao, J.2
Ngiam, K.Y.3
Ooi, B.C.4
Yip, W.L.J.5
-
116
-
-
84890240053
-
Interpreting observational studies: Why empirical calibration is needed to correct p-values
-
Schuemie MJ, Ryan PB, Dumouchel W, Suchard MA, Madigan D. Interpreting observational studies: Why empirical calibration is needed to correct p-values. Stat. Med. 2014;33:209-218.
-
(2014)
Stat. Med.
, vol.33
, pp. 209-218
-
-
Schuemie, M.J.1
Ryan, P.B.2
Dumouchel, W.3
Suchard, M.A.4
Madigan, D.5
-
117
-
-
85043763175
-
Empirical confidence interval calibration for population-level effect estimation studies in observational healthcare data
-
Schuemie MJ, Hripcsak G, Ryan PB, Madigan D, Suchard MA. Empirical confidence interval calibration for population-level effect estimation studies in observational healthcare data. Proc. Natl. Acad. Sci. USA. 2018;115:2571-2577.
-
(2018)
Proc. Natl. Acad. Sci. USA
, vol.115
, pp. 2571-2577
-
-
Schuemie, M.J.1
Hripcsak, G.2
Ryan, P.B.3
Madigan, D.4
Suchard, M.A.5
-
118
-
-
85047505470
-
Causal inference on electronic health records to assess blood pressure treatment targets: an application of the parametric g formula
-
Johnson KW, Glicksberg BS, Hodos RA, Shameer K, Dudley JT. Causal inference on electronic health records to assess blood pressure treatment targets: an application of the parametric g formula. Biocomputing. 2018;23:180-191.
-
(2018)
Biocomputing
, vol.23
, pp. 180-191
-
-
Johnson, K.W.1
Glicksberg, B.S.2
Hodos, R.A.3
Shameer, K.4
Dudley, J.T.5
-
119
-
-
84855951317
-
A review of causal inference for biomedical informatics
-
Kleinberg S, Hripcsak G. A review of causal inference for biomedical informatics. J. Biomed. Inform. 2011;44:1102-1112.
-
(2011)
J. Biomed. Inform.
, vol.44
, pp. 1102-1112
-
-
Kleinberg, S.1
Hripcsak, G.2
-
120
-
-
84907674933
-
Estimating causal effects in observational studies using electronic health data: challenges and (some) solutions
-
Stuart EA, DuGof E, Abrams M, Salkever D, Steinwachs D. Estimating causal effects in observational studies using electronic health data: challenges and (some) solutions. eGEMs. 2013;1:4.
-
(2013)
eGEMs
, vol.1
, pp. 4
-
-
Stuart, E.A.1
DuGof, E.2
Abrams, M.3
Salkever, D.4
Steinwachs, D.5
-
121
-
-
85041549951
-
Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics
-
Beaumont RN et al. Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics. Hum. Mol. Genet. 2018;27:742-756.
-
(2018)
Hum. Mol. Genet.
, vol.27
, pp. 742-756
-
-
Beaumont, R.N.1
-
122
-
-
85028691716
-
Genetic analysis in UK Biobank links insulin resistance and transendothelial migration pathways to coronary artery disease
-
Klarin D et al. Genetic analysis in UK Biobank links insulin resistance and transendothelial migration pathways to coronary artery disease. Nat. Genet. 2017;49:1392-1397.
-
(2017)
Nat. Genet.
, vol.49
, pp. 1392-1397
-
-
Klarin, D.1
-
123
-
-
84895801913
-
Advantages and pitfalls in the application of mized model association methods
-
Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price A. Advantages and pitfalls in the application of mized model association methods. Nat. Genet. 2014;46:100-106.
-
(2014)
Nat. Genet.
, vol.46
, pp. 100-106
-
-
Yang, J.1
Zaitlen, N.A.2
Goddard, M.E.3
Visscher, P.M.4
Price, A.5
-
124
-
-
85077026788
-
Exploring various polygenic risk scores for basal cell carcinoma, cutaneous squamous cell carcinoma and melanoma in the phenomes of the michigan genomics initiative and the UK Biobank
-
Fritsche LG et al. Exploring various polygenic risk scores for basal cell carcinoma, cutaneous squamous cell carcinoma and melanoma in the phenomes of the michigan genomics initiative and the UK Biobank. bioRxiv. 2018;1-44. https://doi.org/10.1101/384909.
-
(2018)
bioRxiv
, pp. 1-44
-
-
Fritsche, L.G.1
-
125
-
-
85020254440
-
A fast and accurate algorithm to test for binary phenotypes and its application to pheWAS
-
Dey R, Schmidt EM, Abecasis GR, Lee S. A fast and accurate algorithm to test for binary phenotypes and its application to pheWAS. Am. J. Hum. Genet. 2017;101:37-49.
-
(2017)
Am. J. Hum. Genet.
, vol.101
, pp. 37-49
-
-
Dey, R.1
Schmidt, E.M.2
Abecasis, G.R.3
Lee, S.4
-
126
-
-
84923946495
-
LD score regression distinguishes confounding from polygenicity in genome-wide association studies
-
Bulik-Sullivan B et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 2015;47:291-295.
-
(2015)
Nat. Genet.
, vol.47
, pp. 291-295
-
-
Bulik-Sullivan, B.1
-
127
-
-
68449086236
-
Common polygenic variation contributes to risk of schizophrenia and bipolar disorder
-
Purcell SM et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460:748-752.
-
(2009)
Nature
, vol.460
, pp. 748-752
-
-
Purcell, S.M.1
-
128
-
-
84992212817
-
Shared genetic aetiology between cognitive functions and physical and mental health in UK Biobank (N=112 151) and 24 GWAS consortia
-
Hagenaars SP et al. Shared genetic aetiology between cognitive functions and physical and mental health in UK Biobank (N=112 151) and 24 GWAS consortia. Mol. Psychiatry. 2016;21:1624-1632.
-
(2016)
Mol. Psychiatry
, vol.21
, pp. 1624-1632
-
-
Hagenaars, S.P.1
-
129
-
-
85018389876
-
Phenome-wide heritability analysis of the UK Biobank
-
Ge T, Chen C-Y, Neale BM, Sabuncu MR, Smoller JW. Phenome-wide heritability analysis of the UK Biobank. PLOS Genet. 2017;13:e1006711.
-
(2017)
PLOS Genet.
, vol.13
-
-
Ge, T.1
Chen, C.-Y.2
Neale, B.M.3
Sabuncu, M.R.4
Smoller, J.W.5
-
130
-
-
78650197952
-
A commentary on ‘common SNPs explain a large proportion of the heritability for human height’ by Yang et al. (2010)
-
Yang J et al. A commentary on ‘common SNPs explain a large proportion of the heritability for human height’ by Yang et al. (2010). Twin Res. Hum. Genet. 2010;13:517-524.
-
(2010)
Twin Res. Hum. Genet.
, vol.13
, pp. 517-524
-
-
Yang, J.1
-
131
-
-
85047270381
-
The personal and clinical utility of polygenic risk scores
-
Torkamani A, Wineinger NE, Topol EJ. The personal and clinical utility of polygenic risk scores. Nat Rev Genet. 2018;19:581-590.
-
(2018)
Nat Rev Genet
, vol.19
, pp. 581-590
-
-
Torkamani, A.1
Wineinger, N.E.2
Topol, E.J.3
-
132
-
-
85077046820
-
Polygenic prediction via bayesian regression and continuous shrinkage priors
-
Ge T, Chen C, Ni Y, Feng YA, Smoller JW. Polygenic prediction via bayesian regression and continuous shrinkage priors. bioRXiv. 2018;1-30.
-
(2018)
bioRXiv
, pp. 1-30
-
-
Ge, T.1
Chen, C.2
Ni, Y.3
Feng, Y.A.4
Smoller, J.W.5
-
133
-
-
85077026048
-
Genome analysis PRSice: polygenic risk score software
-
Euesden J, Lewis CM, Reilly PFO. Genome analysis PRSice: polygenic risk score software. Bioinformatics. 2018;31:1466-1468.
-
(2018)
Bioinformatics
, vol.31
, pp. 1466-1468
-
-
Euesden, J.1
Lewis, C.M.2
Reilly, P.F.O.3
-
134
-
-
84939176188
-
The current and future use of ridge regression for prediction in quantitative genetics
-
De Vlaming R, Groenen PJF. The current and future use of ridge regression for prediction in quantitative genetics. Biomed Res Int. 2015;2015:1-19.
-
(2015)
Biomed Res Int
, vol.2015
, pp. 1-19
-
-
De Vlaming, R.1
Groenen, P.J.F.2
-
135
-
-
85011416878
-
Improving polygenic risk prediction from summary statistics by an empirical Bayes approach
-
So H, Sham PC. Improving polygenic risk prediction from summary statistics by an empirical Bayes approach. Sci. Rep. 2017;7:1-11.
-
(2017)
Sci. Rep.
, vol.7
, pp. 1-11
-
-
So, H.1
Sham, P.C.2
-
136
-
-
85030656412
-
A machine-learning heuristic to improve gene score prediction of polygenic traits
-
Paré G, Mao S, Deng WQ. A machine-learning heuristic to improve gene score prediction of polygenic traits. Sci. Rep. 2017;7:12665.
-
(2017)
Sci. Rep.
, vol.7
, pp. 12665
-
-
Paré, G.1
Mao, S.2
Deng, W.Q.3
-
137
-
-
84953439419
-
Local true discovery rate weighted polygenic scores using GWAS summary data
-
Mak TSH, Sheung J, Kwan H, Dedalus D. Local true discovery rate weighted polygenic scores using GWAS summary data. Behav. Genet. 2016;46:573-582.
-
(2016)
Behav. Genet.
, vol.46
, pp. 573-582
-
-
Mak, T.S.H.1
Sheung, J.2
Kwan, H.3
Dedalus, D.4
-
138
-
-
85071508483
-
Improved polygenic prediction by Bayesian multiple regression on summary statistics
-
Lloyd-Jones LR et al. Improved polygenic prediction by Bayesian multiple regression on summary statistics. bioRXiv. 2019;1-39.
-
(2019)
bioRXiv
, pp. 1-39
-
-
Lloyd-Jones, L.R.1
-
139
-
-
84908121749
-
Research review: polygenic methods and their application to psychiatric traits
-
Wray NR, Lee SH, Mehta D, Vinkhuyzen AAE, Middeldorp CM. Research review: polygenic methods and their application to psychiatric traits. J. Child Psychol. Psychiatry. 2014;55:1068-1087.
-
(2014)
J. Child Psychol. Psychiatry
, vol.55
, pp. 1068-1087
-
-
Wray, N.R.1
Lee, S.H.2
Mehta, D.3
Vinkhuyzen, A.A.E.4
Middeldorp, C.M.5
-
140
-
-
84876007072
-
Power and predictive accuracy of polygenic risk scores
-
Dudbridge F. Power and predictive accuracy of polygenic risk scores. PLoS Genet. 2013;9:e1003348.
-
(2013)
PLoS Genet
, vol.9
-
-
Dudbridge, F.1
-
142
-
-
84952665106
-
Modeling linkage disequilibrium increases accuracy of polygenic risk scores
-
Vihjalmsson BJ et al. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am. J. Hum. Genet. 2015;97:576-592.
-
(2015)
Am. J. Hum. Genet.
, vol.97
, pp. 576-592
-
-
Vihjalmsson, B.J.1
-
143
-
-
85018440877
-
Polygenic scores via penalized regression on summary statistics
-
Mak TSH, Sham PC, Porsch RM, Choi SW, Zhou X. Polygenic scores via penalized regression on summary statistics. Genet. Epidemiol. 2017;41:469-480.
-
(2017)
Genet. Epidemiol.
, vol.41
, pp. 469-480
-
-
Mak, T.S.H.1
Sham, P.C.2
Porsch, R.M.3
Choi, S.W.4
Zhou, X.5
-
145
-
-
85042767167
-
Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits
-
Wu Y et al. Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. Nat. Commun. 2018;9:1-14.
-
(2018)
Nat. Commun.
, vol.9
, pp. 1-14
-
-
Wu, Y.1
-
146
-
-
85071508483
-
Improved polygenic prediction by Bayesian multiple regression on summary statistics
-
Lloyd-Jones LR et al. Improved polygenic prediction by Bayesian multiple regression on summary statistics. bioRxiv. 2019;1-41. https://doi.org/10.1101/522961.
-
(2019)
bioRxiv
, pp. 1-41
-
-
Lloyd-Jones, L.R.1
-
147
-
-
85031498677
-
Bayesian large-scale multiple regression with summary statistics from genome-wide association studies
-
Zhu X, Stephens M. Bayesian large-scale multiple regression with summary statistics from genome-wide association studies. Ann. Appl. Stat. 2017;11:1561-1592.
-
(2017)
Ann. Appl. Stat.
, vol.11
, pp. 1561-1592
-
-
Zhu, X.1
Stephens, M.2
-
148
-
-
85039801269
-
Multi-trait analysis of genome-wide association summary statistics using MTAG
-
Turley P et al. Multi-trait analysis of genome-wide association summary statistics using MTAG. Nat. Genet. 2017;50:229-237.
-
(2017)
Nat. Genet.
, vol.50
, pp. 229-237
-
-
Turley, P.1
-
149
-
-
85048198000
-
Improving genetic prediction by leveraging genetic correlations among human diseases and traits
-
Maier RM et al. Improving genetic prediction by leveraging genetic correlations among human diseases and traits. Nat. Commun. 2018;9:1-17.
-
(2018)
Nat. Commun.
, vol.9
, pp. 1-17
-
-
Maier, R.M.1
-
150
-
-
84978540343
-
Hierarchical models for multiple, rare outcomes using massive observational databases
-
Shaddox TR, Ryan PB, Schuemie MJ, Madigan D, Suchard MA. Hierarchical models for multiple, rare outcomes using massive observational databases. Stat Anal Data Min. 2016;2(9):260-268.
-
(2016)
Stat Anal Data Min
, vol.2
, Issue.9
, pp. 260-268
-
-
Shaddox, T.R.1
Ryan, P.B.2
Schuemie, M.J.3
Madigan, D.4
Suchard, M.A.5
-
151
-
-
85020753023
-
A statistical methods for studying correlated rare events and their risk factors
-
Xue X, Kim MY, Wang T, Kuniholm MH, Strickler HD. A statistical methods for studying correlated rare events and their risk factors. Stat Methods Med Res. 2017;26:1416-1428.
-
(2017)
Stat Methods Med Res
, vol.26
, pp. 1416-1428
-
-
Xue, X.1
Kim, M.Y.2
Wang, T.3
Kuniholm, M.H.4
Strickler, H.D.5
-
152
-
-
85044062518
-
Phenotype risk scores identify pations with unrecognized Mendelian disease patterns
-
Bastarache L et al. Phenotype risk scores identify pations with unrecognized Mendelian disease patterns. Science (80-.). 2018;359:1233-1239.
-
(2018)
Science (80-.)
, vol.359
, pp. 1233-1239
-
-
Bastarache, L.1
-
153
-
-
85061025010
-
Automated feature selection of predictors in electronic medical records data
-
Gronsbell J, Minnier J, Yu S, Liao K, Cai T. Automated feature selection of predictors in electronic medical records data. Biometrics. 2018;75:268-277.
-
(2018)
Biometrics
, vol.75
, pp. 268-277
-
-
Gronsbell, J.1
Minnier, J.2
Yu, S.3
Liao, K.4
Cai, T.5
-
154
-
-
85029533726
-
Selecting relevant features from the electronic health record for clinical code prediction
-
Scheurwegs E, Cule B, Luyckx K, Luyten L, Daelemans W. Selecting relevant features from the electronic health record for clinical code prediction. J. Biomed. Inform. 2017;74:92-103.
-
(2017)
J. Biomed. Inform.
, vol.74
, pp. 92-103
-
-
Scheurwegs, E.1
Cule, B.2
Luyckx, K.3
Luyten, L.4
Daelemans, W.5
-
155
-
-
85053035044
-
Machine learning models in electronic health records can outperform conventional survival models for predicting patient mortality in coronary artery disease
-
Steele AJ, Denaxas SC, Shah AD, Hemingway H. Machine learning models in electronic health records can outperform conventional survival models for predicting patient mortality in coronary artery disease. PLoS One. 2018;13:1-20.
-
(2018)
PLoS One
, vol.13
, pp. 1-20
-
-
Steele, A.J.1
Denaxas, S.C.2
Shah, A.D.3
Hemingway, H.4
-
156
-
-
85047868687
-
Quantifying predictive capability of electronic health records for the most harmful breast cancer
-
Wu Y et al. Quantifying predictive capability of electronic health records for the most harmful breast cancer. Proceedings of SPIE—The International Society for Optical Engineering; 2018:1-15. https://doi.org/10.1117/12.2293954.Quantifying.
-
(2018)
Proceedings of SPIE—The International Society for Optical Engineering
, pp. 1-15
-
-
Wu, Y.1
-
157
-
-
77953635924
-
Prediction modeling using EHR data challenges, strategies, and a comparison of machine learning approaches
-
Wu J et al. Prediction modeling using EHR data challenges, strategies, and a comparison of machine learning approaches. Med. Care. 2010;48:S106-S113.
-
(2010)
Med. Care
, vol.48
, pp. S106-S113
-
-
Wu, J.1
-
158
-
-
85051727540
-
Deep EHR: a survey of recent advances in deep learning techniques for electronic health record
-
Shickel B, Tighe PJ, Bihorac A, Rashidi P. Deep EHR: a survey of recent advances in deep learning techniques for electronic health record. arXiv. 2018;1-16.
-
(2018)
arXiv
, pp. 1-16
-
-
Shickel, B.1
Tighe, P.J.2
Bihorac, A.3
Rashidi, P.4
-
159
-
-
85127431078
-
Scalable and accurate deep learning with electronic health records
-
Rajkomar A et al. Scalable and accurate deep learning with electronic health records. Digit. Med. 2018;18:1-10.
-
(2018)
Digit. Med.
, vol.18
, pp. 1-10
-
-
Rajkomar, A.1
-
160
-
-
85011570357
-
Machine learning and electronic health records: a paradigm shift
-
Adkins DE. Machine learning and electronic health records: a paradigm shift. Am. J. Psychiatry. 2018;174:93-94.
-
(2018)
Am. J. Psychiatry
, vol.174
, pp. 93-94
-
-
Adkins, D.E.1
-
161
-
-
85020622841
-
A bootstrap machine learning approach to identify rare disease patients from electronic health records
-
Garg R, Dong S, Shah S, Jonnalagadda SR. A bootstrap machine learning approach to identify rare disease patients from electronic health records. arXiv. 2016;1-8.
-
(2016)
arXiv
, pp. 1-8
-
-
Garg, R.1
Dong, S.2
Shah, S.3
Jonnalagadda, S.R.4
-
162
-
-
85077083492
-
Towards principled uncertainty estimation for deep neural networks
-
Harang R, Rudd EM. Towards principled uncertainty estimation for deep neural networks. arXiv. 2018;1-11.
-
(2018)
arXiv
, pp. 1-11
-
-
Harang, R.1
Rudd, E.M.2
-
163
-
-
85058011589
-
Parallel computing in genome-wide association studies journal of biometrics & biostatistics
-
Thompson K, Charnigo R. Parallel computing in genome-wide association studies journal of biometrics & biostatistics. J. Biometrics Biostat. 2015;6:1-3.
-
(2015)
J. Biometrics Biostat.
, vol.6
, pp. 1-3
-
-
Thompson, K.1
Charnigo, R.2
-
164
-
-
85054984910
-
Efficient analysis of large-scale genome-wide data with two R packages : bigstatsr and bigsnpr
-
Prive F, Aschard H, Ziyatdinov A, Blum MGB, Timc-imag L. Efficient analysis of large-scale genome-wide data with two R packages: bigstatsr and bigsnpr. Bioinformatics. 2018;34:2781-2787.
-
(2018)
Bioinformatics
, vol.34
, pp. 2781-2787
-
-
Prive, F.1
Aschard, H.2
Ziyatdinov, A.3
Blum, M.G.B.4
Timc-imag, L.5
-
165
-
-
84876576325
-
Computational solutions for omics data
-
Berger B, Peng J, Singh M. Computational solutions for omics data. Nat. Rev. Genet. 2013;14:333-346.
-
(2013)
Nat. Rev. Genet.
, vol.14
, pp. 333-346
-
-
Berger, B.1
Peng, J.2
Singh, M.3
-
166
-
-
84958599888
-
-
Vol, Washington, DC, EGEMS
-
Wells BJ, Chagin KM, Nowacki AS, Kattan MW. Strategies for handling missing data in electronic health record derived data. Vol 1. Washington, DC: EGEMS; 2013:1035.
-
(2013)
Strategies for handling missing data in electronic health record derived data
, vol.1
, pp. 1035
-
-
Wells, B.J.1
Chagin, K.M.2
Nowacki, A.S.3
Kattan, M.W.4
-
167
-
-
84989871804
-
Imputing phenotypes for genome-wide association studies
-
Hormozdiari F et al. Imputing phenotypes for genome-wide association studies. Am. J. Hum. Genet. 2016;99:89-103.
-
(2016)
Am. J. Hum. Genet.
, vol.99
, pp. 89-103
-
-
Hormozdiari, F.1
-
168
-
-
85021860204
-
Missing data imputation in the electronic health record using deeply learned autoencoders
-
Beaulieu-Jones BK, Moore JH. Missing data imputation in the electronic health record using deeply learned autoencoders. Biocomput. 2017;2017:207-218. https://doi.org/10.1142/9789813207813_0021.
-
(2017)
Biocomput.
, vol.2017
, pp. 207-218
-
-
Beaulieu-Jones, B.K.1
Moore, J.H.2
-
169
-
-
85058033600
-
Characterizing and managing missing structured data in electronic health records: data analysis
-
Beaulieu-Jones BK et al. Characterizing and managing missing structured data in electronic health records: data analysis. JMIR Med. Informatics. 2018;e11:6.
-
(2018)
JMIR Med. Informatics
, vol.e11
, pp. 6
-
-
Beaulieu-Jones, B.K.1
-
170
-
-
85101444608
-
-
&, Hoboken, NJ, John Wiley and Sons, Inc
-
Little, R. J. A. & Rubin, D. B. Statistical Analysis with Missing Data. Hoboken, NJ: John Wiley and Sons, Inc; 2002. doi:https://doi.org/10.1002/9781119013563
-
(2002)
Statistical Analysis with Missing Data
-
-
Little, R.J.A.1
Rubin, D.B.2
-
171
-
-
85077018110
-
Diagnostic methods for uncovering outcome dependent visit processes
-
[Epub ahead of print]
-
Mcculloch CE, Neuhaus JM. Diagnostic methods for uncovering outcome dependent visit processes. Biostatistics. 2018;1-16. https://doi.org/10.1093/biostatistics/kxy068. [Epub ahead of print]
-
(2018)
Biostatistics
, pp. 1-16
-
-
Mcculloch, C.E.1
Neuhaus, J.M.2
-
172
-
-
84949625917
-
Learning about missing data mechanisms in electronic health records-based research: a survey-based approach
-
Haneuse S et al. Learning about missing data mechanisms in electronic health records-based research: a survey-based approach. Epidemiology. 2016;27:82-90.
-
(2016)
Epidemiology
, vol.27
, pp. 82-90
-
-
Haneuse, S.1
-
173
-
-
85008425474
-
Controlling the rate of gwas false discoveries
-
Brzyski D et al. Controlling the rate of gwas false discoveries. Genetics. 2017;205:61-75.
-
(2017)
Genetics
, vol.205
, pp. 61-75
-
-
Brzyski, D.1
-
174
-
-
84862260334
-
Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets
-
Li MX, Yeung JMY, Cherny SS, Sham PC. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum. Genet. 2012;131:747-756.
-
(2012)
Hum. Genet.
, vol.131
, pp. 747-756
-
-
Li, M.X.1
Yeung, J.M.Y.2
Cherny, S.S.3
Sham, P.C.4
-
176
-
-
43249090541
-
A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms
-
Gao X, Starmer J, Martin ER. A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet. Epidemiol. 2008;32:361-369.
-
(2008)
Genet. Epidemiol.
, vol.32
, pp. 361-369
-
-
Gao, X.1
Starmer, J.2
Martin, E.R.3
-
177
-
-
84899144478
-
Identifying large sets of unrelated individuals and unrelated markers
-
Abraham KJ, Diaz C. Identifying large sets of unrelated individuals and unrelated markers. Source Code Biol. Med. 2014;9:1-8.
-
(2014)
Source Code Biol. Med.
, vol.9
, pp. 1-8
-
-
Abraham, K.J.1
Diaz, C.2
-
178
-
-
66349103652
-
Rapid and accurate multiple testing correction and power estimation for millions of correlated markers
-
Han B, Kang HM, Eskin E. Rapid and accurate multiple testing correction and power estimation for millions of correlated markers. PLoS Genet. 2009;5:1-13.
-
(2009)
PLoS Genet.
, vol.5
, pp. 1-13
-
-
Han, B.1
Kang, H.M.2
Eskin, E.3
-
179
-
-
15944388957
-
An efficient Monte Carlo approach to assessing statistical significance in genomic studies
-
Lin DY. An efficient Monte Carlo approach to assessing statistical significance in genomic studies. Bioinformatics. 2005;21:781-787.
-
(2005)
Bioinformatics
, vol.21
, pp. 781-787
-
-
Lin, D.Y.1
-
180
-
-
13844262641
-
Rapid simulation of P values for product methods and multiple-testing adjustment in association studies
-
Seaman SR, Müller-Myhsok B. Rapid simulation of P values for product methods and multiple-testing adjustment in association studies. Am. J. Hum. Genet. 2005;76:399-408.
-
(2005)
Am. J. Hum. Genet.
, vol.76
, pp. 399-408
-
-
Seaman, S.R.1
Müller-Myhsok, B.2
-
181
-
-
58249124501
-
Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies
-
Duggal P, Gillanders EM, Holmes TN, Bailey-Wilson JE. Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies. BMC Genomics. 2008;9:1-8.
-
(2008)
BMC Genomics
, vol.9
, pp. 1-8
-
-
Duggal, P.1
Gillanders, E.M.2
Holmes, T.N.3
Bailey-Wilson, J.E.4
-
182
-
-
78650353878
-
A. Accounting for multiple comparisons in a genome-wide association study (GWAS)
-
Johnson RC, Nelson GW, Troyer JL, Lautenberger JA, Winkler C. A. Accounting for multiple comparisons in a genome-wide association study (GWAS). BMC Genomics. 2010;11:724. https://doi.org/10.1186/1471-2164-11-724.
-
(2010)
BMC Genomics
, vol.11
, pp. 724
-
-
Johnson, R.C.1
Nelson, G.W.2
Troyer, J.L.3
Lautenberger, J.A.4
Winkler, C.5
-
183
-
-
84859641368
-
Rapid and robust resampling-based multiple-testing correction with application in a genome-wide expression quantitative trait loci study
-
Zhang X, Huang S, Sun W, Wang W. Rapid and robust resampling-based multiple-testing correction with application in a genome-wide expression quantitative trait loci study. Genetics. 2012;190:1511-1520.
-
(2012)
Genetics
, vol.190
, pp. 1511-1520
-
-
Zhang, X.1
Huang, S.2
Sun, W.3
Wang, W.4
-
184
-
-
85044062518
-
Phenotype risk scores identify patients with unrecognized Mendelian disease patterns
-
Bastarache L et al. Phenotype risk scores identify patients with unrecognized Mendelian disease patterns. Science (80-.). 2018;359:1233-1239.
-
(2018)
Science (80-.)
, vol.359
, pp. 1233-1239
-
-
Bastarache, L.1
-
185
-
-
53849093458
-
What do we mean by ‘replication’ and ‘validation’ in genome-wide association studies?
-
Inke BI, Andreas RK. What do we mean by ‘replication’ and ‘validation’ in genome-wide association studies? Hum. Hered. 2009;67:66-68.
-
(2009)
Hum. Hered.
, vol.67
, pp. 66-68
-
-
Inke, B.I.1
Andreas, R.K.2
-
186
-
-
85077018158
-
-
NHGRI-EBI GWAS catalog. https://www.ebi.ac.uk/gwas/.
-
-
-
-
187
-
-
74749107322
-
Robust statistical methods for analysis of biomarkers measured with batch/experiment specific errors
-
Long Q, Flanders WD, Fedirko V, Bostick RM. Robust statistical methods for analysis of biomarkers measured with batch/experiment specific errors. Stat. Med. 2010;29:361-370.
-
(2010)
Stat. Med.
, vol.29
, pp. 361-370
-
-
Long, Q.1
Flanders, W.D.2
Fedirko, V.3
Bostick, R.M.4
-
188
-
-
0028152471
-
Systematic Review: Why sources of heterogeneity in meta-analysis should be investigated
-
Thompson SG. Systematic Review: Why sources of heterogeneity in meta-analysis should be investigated. BMJ. 1994;309:1351-1355.
-
(1994)
BMJ
, vol.309
, pp. 1351-1355
-
-
Thompson, S.G.1
-
189
-
-
33846279812
-
What is heterogeneity and is it important?
-
Fletcher J. What is heterogeneity and is it important? British Medical Journal. 2007;334:94-96. https://doi.org/10.1136/bmj.39057.406644.68.
-
(2007)
British Medical Journal
, vol.334
, pp. 94-96
-
-
Fletcher, J.1
-
190
-
-
0041876133
-
Measuring inconsistency in meta-analyses Need for consistency
-
Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses Need for consistency. BMJ. 2003;327:557-560.
-
(2003)
BMJ
, vol.327
, pp. 557-560
-
-
Higgins, J.P.T.1
Thompson, S.G.2
Deeks, J.J.3
Altman, D.G.4
-
191
-
-
84875614691
-
Dealing with clinical heterogeneity in meta-analysis. Assumptions, methods, interpretation
-
Kriston L. Dealing with clinical heterogeneity in meta-analysis. Assumptions, methods, interpretation. Int. J. Methods Psychiatr. Res. 2013;22:1-15.
-
(2013)
Int. J. Methods Psychiatr. Res.
, vol.22
, pp. 1-15
-
-
Kriston, L.1
-
192
-
-
84859092568
-
Assumption weighting for incorporating heterogeneity into meta-analysis of genomic data
-
Li Y, Ghosh D. Assumption weighting for incorporating heterogeneity into meta-analysis of genomic data. Bioinformatics. 2012;28:807-814.
-
(2012)
Bioinformatics
, vol.28
, pp. 807-814
-
-
Li, Y.1
Ghosh, D.2
-
193
-
-
85047191160
-
estimating heterogeneous treatment effects and the effects of heterogeneous treatments with ensemble methods
-
Grimmer J, Messing S, Westwood SJ. estimating heterogeneous treatment effects and the effects of heterogeneous treatments with ensemble methods. Polit. Anal. 2017;25:413-434.
-
(2017)
Polit. Anal.
, vol.25
, pp. 413-434
-
-
Grimmer, J.1
Messing, S.2
Westwood, S.J.3
-
194
-
-
84875365439
-
An empirical study using permutation-based resampling in meta-regression
-
Gagnier JJ, Moher D, Boon H, Bombardier C, Beyene J. An empirical study using permutation-based resampling in meta-regression. Syst. Rev. 2012;1:1-9.
-
(2012)
Syst. Rev.
, vol.1
, pp. 1-9
-
-
Gagnier, J.J.1
Moher, D.2
Boon, H.3
Bombardier, C.4
Beyene, J.5
-
195
-
-
84925286056
-
Using “big data” to dissect clinical heterogeneity
-
Altman RB, Ashley EA. Using “big data” to dissect clinical heterogeneity. Circulation. 2015;131:232-233.
-
(2015)
Circulation
, vol.131
, pp. 232-233
-
-
Altman, R.B.1
Ashley, E.A.2
-
196
-
-
85077081101
-
Spherical regression under mismatch corruption with application to automated knowledge translation
-
Shi X, Li X, Cai T. Spherical regression under mismatch corruption with application to automated knowledge translation. arXiv. 2018;1-45.
-
(2018)
arXiv
, pp. 1-45
-
-
Shi, X.1
Li, X.2
Cai, T.3
-
198
-
-
85034840974
-
An electronic health record-based algorithm to ascertain the date of second breast cancer events
-
Chubak J, Onega T, Zhu W, Buist DSM, Hubbard RA. An electronic health record-based algorithm to ascertain the date of second breast cancer events. Med. Care. 2017;55:81-87. https://doi.org/10.1097/MLR.0000000000000352.
-
(2017)
Med. Care
, vol.55
, pp. 81-87
-
-
Chubak, J.1
Onega, T.2
Zhu, W.3
Buist, D.S.M.4
Hubbard, R.A.5
-
199
-
-
85017186712
-
Informatics and data analytics to support exposome-based discovery for public health
-
Manrai AK et al. Informatics and data analytics to support exposome-based discovery for public health. Annu. Rev. Public Heal. 2017;38:279-294.
-
(2017)
Annu. Rev. Public Heal.
, vol.38
, pp. 279-294
-
-
Manrai, A.K.1
-
200
-
-
85029786365
-
Semantic modeling for exposomics with exploratory evaluation in clinical context
-
Fan JW, Li J, Lussier YA. Semantic modeling for exposomics with exploratory evaluation in clinical context. J. Healthc. Eng. 2017;1-10. https://doi.org/10.1155/2017/3818302.
-
(2017)
J. Healthc. Eng.
, pp. 1-10
-
-
Fan, J.W.1
Li, J.2
Lussier, Y.A.3
-
201
-
-
85011277834
-
Methods to study variation in associations between food store availability and body mass in the multi-ethnic study of atherosclerosis
-
Baek J et al. Methods to study variation in associations between food store availability and body mass in the multi-ethnic study of atherosclerosis. Epidemiology. 2017;28:403-411.
-
(2017)
Epidemiology
, vol.28
, pp. 403-411
-
-
Baek, J.1
-
202
-
-
84963772539
-
‘Community vital signs’: Incorporating geocoded social determinants into electronic records to promote patient and population health
-
Bazemore AW et al. ‘Community vital signs’: Incorporating geocoded social determinants into electronic records to promote patient and population health. J. Am. Med. Informatics Assoc. 2016;23:407-412.
-
(2016)
J. Am. Med. Informatics Assoc.
, vol.23
, pp. 407-412
-
-
Bazemore, A.W.1
-
203
-
-
85021145639
-
Exposure to neighborhood foreclosures and changes in cardiometabolic health: results from MESA
-
Christine PJ et al. Exposure to neighborhood foreclosures and changes in cardiometabolic health: results from MESA. Am. J. Epidemiol. 2017;185:106-114.
-
(2017)
Am. J. Epidemiol.
, vol.185
, pp. 106-114
-
-
Christine, P.J.1
-
204
-
-
80655148243
-
Incorporating geospatial capacity within clinical data systems to address social determinants of health
-
Frederickson Comer K, Grannis S, Dixon BE, Bodenhamer DJ, Wiehe SE. Incorporating geospatial capacity within clinical data systems to address social determinants of health. Public Health Rep. 2011;3:54-61.
-
(2011)
Public Health Rep.
, vol.3
, pp. 54-61
-
-
Frederickson Comer, K.1
Grannis, S.2
Dixon, B.E.3
Bodenhamer, D.J.4
Wiehe, S.E.5
-
205
-
-
84862505652
-
Differential associations between the food environment near schools and childhood overweight across race/ethnicity, gender, and grade
-
Sánchez BN, Sanchez-Vaznaugh EV, Uscilka A, Baek J, Zhang L. Differential associations between the food environment near schools and childhood overweight across race/ethnicity, gender, and grade. Am. J. Epidemiol. 2012;175:1284-1293.
-
(2012)
Am. J. Epidemiol.
, vol.175
, pp. 1284-1293
-
-
Sánchez, B.N.1
Sanchez-Vaznaugh, E.V.2
Uscilka, A.3
Baek, J.4
Zhang, L.5
-
207
-
-
85053358651
-
The eICU Collaborative Research Database, a freely available multi-center database for critical care research
-
Pollard TJ et al. The eICU Collaborative Research Database, a freely available multi-center database for critical care research. Sci. Data. 2018;180178:5.
-
(2018)
Sci. Data
, pp. 5
-
-
Pollard, T.J.1
-
208
-
-
85046730837
-
Integration of wearable technologies into patients' electronic medical records
-
Al-Azwani IK, Aziz HA. Integration of wearable technologies into patients' electronic medical records. Qual. Prim. Care. 2016;24:151-155.
-
(2016)
Qual. Prim. Care
, vol.24
, pp. 151-155
-
-
Al-Azwani, I.K.1
Aziz, H.A.2
-
209
-
-
85033467966
-
A structured analysis of smartphone applications to early diagnose alzheimer's disease or dementia
-
Polzer N, Gewald H. A structured analysis of smartphone applications to early diagnose alzheimer's disease or dementia. Procedia Comput. Sci. 2017;113:448-453.
-
(2017)
Procedia Comput. Sci.
, vol.113
, pp. 448-453
-
-
Polzer, N.1
Gewald, H.2
-
210
-
-
81355127388
-
Temporal pattern discovery in longitudinal electronic patient records
-
Norén GN, Hopstadius J, Bate A, Star K, Edwards IR. Temporal pattern discovery in longitudinal electronic patient records. Data Min. Knowl. Discov. 2010;20:361-387. https://doi.org/10.1007/s10618-009-0152-3.
-
(2010)
Data Min. Knowl. Discov.
, vol.20
, pp. 361-387
-
-
Norén, G.N.1
Hopstadius, J.2
Bate, A.3
Star, K.4
Edwards, I.R.5
-
211
-
-
84892944187
-
Empirical performance of the calibrated self-controlled cohort analysis within temporal pattern discovery: Lessons for developing a risk identification and analysis system
-
Norén GN et al. Empirical performance of the calibrated self-controlled cohort analysis within temporal pattern discovery: Lessons for developing a risk identification and analysis system. Drug Saf. 2013;36:107-121. https://doi.org/10.1007/s40264-013-0095-x.
-
(2013)
Drug Saf.
, vol.36
, pp. 107-121
-
-
Norén, G.N.1
-
212
-
-
84945175578
-
Birth month affects lifetime disease risk: A phenome-wide method
-
Boland MR, Shahn Z, Madigan D, Hripcsak G, Tatonetti NP. Birth month affects lifetime disease risk: A phenome-wide method. J. Am. Med. Informatics Assoc. 2015;22:1042-1053. https://doi.org/10.1093/jamia/ocv046.
-
(2015)
J. Am. Med. Informatics Assoc.
, vol.22
, pp. 1042-1053
-
-
Boland, M.R.1
Shahn, Z.2
Madigan, D.3
Hripcsak, G.4
Tatonetti, N.P.5
-
213
-
-
84876692093
-
Comparative analysis of pharmacovigilance methods in the detection of adverse drug reactions using electronic medical records
-
Liu M et al. Comparative analysis of pharmacovigilance methods in the detection of adverse drug reactions using electronic medical records. J Am Med Inf. Assoc. 2013;20:420-426.
-
(2013)
J Am Med Inf. Assoc
, vol.20
, pp. 420-426
-
-
Liu, M.1
-
214
-
-
84863229218
-
Predicting warfarin dosage in European-Americans and African-Americans using DNA samples linked to an electronic health record
-
Ramirez AH et al. Predicting warfarin dosage in European-Americans and African-Americans using DNA samples linked to an electronic health record. Pharmacogenomics. 2012;13:407-418. https://doi.org/10.2217/pgs.11.164.
-
(2012)
Pharmacogenomics
, vol.13
, pp. 407-418
-
-
Ramirez, A.H.1
-
215
-
-
84885101900
-
Electronic health record design and implementation for pharmacogenomics: a local perspective HHS Public access
-
Peterson JF et al. Electronic health record design and implementation for pharmacogenomics: a local perspective HHS Public access. Genet Med. 2013;15109:833-841.
-
(2013)
Genet Med
, vol.15109
, pp. 833-841
-
-
Peterson, J.F.1
-
216
-
-
85067494190
-
Drospirenone-containing oral contraceptives and venous thromboembolism: an analysis of the FAERS database
-
Madigan D, Shin J. Drospirenone-containing oral contraceptives and venous thromboembolism: an analysis of the FAERS database. Open Access J. Contracept. 2018;9:29-32.
-
(2018)
Open Access J. Contracept.
, vol.9
, pp. 29-32
-
-
Madigan, D.1
Shin, J.2
-
217
-
-
84880727398
-
The pharmacogenomics research network translational pharmacogenetics program: Overcoming challenges of real-world implementation
-
Shuldiner AR et al. The pharmacogenomics research network translational pharmacogenetics program: Overcoming challenges of real-world implementation. Clin. Pharmacol. Ther. 2013;94:207-210.
-
(2013)
Clin. Pharmacol. Ther.
, vol.94
, pp. 207-210
-
-
Shuldiner, A.R.1
-
218
-
-
84985034308
-
Computational drug repositioning using continuous self-controlled case series
-
Kuang Z et al. Computational drug repositioning using continuous self-controlled case series. KDD. 2017;491-500. https://doi.org/10.1145/2939672.2939715.
-
(2017)
KDD
, pp. 491-500
-
-
Kuang, Z.1
-
219
-
-
85051422123
-
Landmark models for optimizing the use of repeated measurements of risk factors in electronic health records to predict future disease risk
-
Paige E et al. Landmark models for optimizing the use of repeated measurements of risk factors in electronic health records to predict future disease risk. Am. J. Epidemiol. 2018;187:1530-1538.
-
(2018)
Am. J. Epidemiol.
, vol.187
, pp. 1530-1538
-
-
Paige, E.1
-
220
-
-
85014666740
-
Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review
-
Goldstein BA, Navar AM, Pencina MJ, Ioannidis JPA. Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review. J. Am. Med. Informatics Assoc. 2017;24:198-208.
-
(2017)
J. Am. Med. Informatics Assoc.
, vol.24
, pp. 198-208
-
-
Goldstein, B.A.1
Navar, A.M.2
Pencina, M.J.3
Ioannidis, J.P.A.4
-
221
-
-
85031318677
-
Dynamic estimation of the probability of patient readmission to the ICU using electronic medical records
-
Caballero K, Akella R. Dynamic estimation of the probability of patient readmission to the ICU using electronic medical records. AMIA Annu. Symp. Proc. 2015;2015:1831-1840.
-
(2015)
AMIA Annu. Symp. Proc.
, vol.2015
, pp. 1831-1840
-
-
Caballero, K.1
Akella, R.2
-
222
-
-
85032335480
-
Dynamic Mortality Risk Predictions in Pediatric Critical Care Using Recurrent
-
Aczon M et al. Dynamic Mortality Risk Predictions in Pediatric Critical Care Using Recurrent. Neural Networks arXiv. 2017;1-18.
-
(2017)
Neural Networks arXiv.
, pp. 1-18
-
-
Aczon, M.1
-
223
-
-
85010651464
-
A bayesian approach to graphical record linkage and deduplication
-
Steorts RC, Hall R, Fienberg SE. A bayesian approach to graphical record linkage and deduplication. J. Am. Stat. Assoc. 2016;111:1660-1672.
-
(2016)
J. Am. Stat. Assoc.
, vol.111
, pp. 1660-1672
-
-
Steorts, R.C.1
Hall, R.2
Fienberg, S.E.3
-
225
-
-
84889599807
-
A taxonomy of privacy-preserving record linkage techniques
-
Vatsalan D, Christen P, Verykios VS. A taxonomy of privacy-preserving record linkage techniques. Inf. Syst. 2013;38:946-969.
-
(2013)
Inf. Syst.
, vol.38
, pp. 946-969
-
-
Vatsalan, D.1
Christen, P.2
Verykios, V.S.3
-
226
-
-
84974633011
-
Efficient record linkage algorithms using complete linkage clustering
-
Al Mamun A, Aseltine R, Rajasekaran S. Efficient record linkage algorithms using complete linkage clustering. PLoS One. 2016;11:1-21.
-
(2016)
PLoS One
, vol.11
, pp. 1-21
-
-
Al Mamun, A.1
Aseltine, R.2
Rajasekaran, S.3
-
227
-
-
84931088109
-
Privacy preserving probabilistic record linkage (P3RL): a novel method for linking existing health-related data and maintaining participant confidentiality
-
Schmidlin K, Clough-Gorr KM, Spoerri A. Privacy preserving probabilistic record linkage (P3RL): a novel method for linking existing health-related data and maintaining participant confidentiality. BMC Med. Res. Methodol. 2015;15:1-10.
-
(2015)
BMC Med. Res. Methodol.
, vol.15
, pp. 1-10
-
-
Schmidlin, K.1
Clough-Gorr, K.M.2
Spoerri, A.3
-
228
-
-
85077052239
-
Statistical methods for handling missing data in distributed health data networks
-
Long Q. Statistical methods for handling missing data in distributed health data networks. Joint Statistical Meetings; 2018.
-
(2018)
Joint Statistical Meetings
-
-
Long, Q.1
-
230
-
-
85042539657
-
Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits
-
Yang J et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat Genet. 2013;44:1-22.
-
(2013)
Nat Genet
, vol.44
, pp. 1-22
-
-
Yang, J.1
-
231
-
-
84977265918
-
Characterizing treatment pathways at scale using the OHDSI network
-
Hripcsak G et al. Characterizing treatment pathways at scale using the OHDSI network. Proc. Natl. Acad. Sci. USA. 2016;113:7329-7336. https://doi.org/10.1073/pnas.1510502113.
-
(2016)
Proc. Natl. Acad. Sci. USA
, vol.113
, pp. 7329-7336
-
-
Hripcsak, G.1
-
232
-
-
84875370304
-
Is treatment adherence consistent across time, across different treatments and across diagnoses?
-
Simon GE, Peterson D, Hubbard R. Is treatment adherence consistent across time, across different treatments and across diagnoses? Gen. Hosp. Psychiatry. 2013;35:195-201. https://doi.org/10.1016/j.genhosppsych.2012.10.001.
-
(2013)
Gen. Hosp. Psychiatry
, vol.35
, pp. 195-201
-
-
Simon, G.E.1
Peterson, D.2
Hubbard, R.3
-
233
-
-
84966333746
-
Cloud-based electronic health records for real-time, region-specific influenza surveillance
-
Santillana M et al. Cloud-based electronic health records for real-time, region-specific influenza surveillance. Sci. Rep. 2016;25732:1-8.
-
(2016)
Sci. Rep.
, vol.25732
, pp. 1-8
-
-
Santillana, M.1
-
234
-
-
85018433836
-
Using electronic health records and Internet search information for accurate influenza forecasting
-
Yang S et al. Using electronic health records and Internet search information for accurate influenza forecasting. BMC Infect. Dis. 2017;17:1-9.
-
(2017)
BMC Infect. Dis.
, vol.17
, pp. 1-9
-
-
Yang, S.1
-
235
-
-
85015845840
-
Epidemic forecasting is messier than weather forecasting: the role of human behavior and internet data streams in epidemic forecast
-
Moran KR et al. Epidemic forecasting is messier than weather forecasting: the role of human behavior and internet data streams in epidemic forecast. J. Infect. Dis. 2016;214:404-408.
-
(2016)
J. Infect. Dis.
, vol.214
, pp. 404-408
-
-
Moran, K.R.1
-
236
-
-
85050915200
-
Statistical paradises and paradoxes in big data (I): Law of large populations, big data paradox, and the 2016 us presidential election
-
Meng XL. Statistical paradises and paradoxes in big data (I): Law of large populations, big data paradox, and the 2016 us presidential election. Ann. Appl. Stat. 2018;12:685-726.
-
(2018)
Ann. Appl. Stat.
, vol.12
, pp. 685-726
-
-
Meng, X.L.1
|