-
1
-
-
49149126509
-
Outcomes research: Generating evidence for best practice and policies
-
Krumholz H. M. Outcomes research: generating evidence for best practice and policies. Circulation. 118, 309-318 (2008).
-
(2008)
Circulation
, vol.118
, pp. 309-318
-
-
Krumholz, H.M.1
-
2
-
-
84883682574
-
Most important outcomes research papers on variation in cardiovascular disease
-
Lampropulos J. F, et al. Most important outcomes research papers on variation in cardiovascular disease. Circ. Cardiovasc. Qual. Outcomes. 6, e9-e16 (2013).
-
(2013)
Circ. Cardiovasc. Qual. Outcomes
, vol.6
, pp. e9-e16
-
-
Lampropulos, J.F.1
-
3
-
-
0037452530
-
The implications of regional variations in Medicare spending Part 1: The content quality, and accessibility of care
-
Fisher E. S, et al. The implications of regional variations in Medicare spending. Part 1: the content, quality, and accessibility of care. Ann. Intern. Med. 138, 273-287 (2003).
-
(2003)
Ann. Intern. Med
, vol.138
, pp. 273-287
-
-
Fisher, E.S.1
-
4
-
-
0037452507
-
The implications of regional variations in Medicare spending Part 2: Health outcomes and satisfaction with care
-
Fisher E. S, et al. The implications of regional variations in Medicare spending. Part 2: health outcomes and satisfaction with care. Ann. Intern. Med. 138, 288-298 (2003).
-
(2003)
Ann. Intern. Med
, vol.138
, pp. 288-298
-
-
Fisher, E.S.1
-
6
-
-
85104094046
-
Big data analytics in healthcare: Promise and potential
-
Raghupathi W, & Raghupathi V. Big data analytics in healthcare: promise and potential. Health Inf. Sci. Syst. 2, 3 (2014).
-
(2014)
Health Inf. Sci. Syst
, vol.2
, pp. 3
-
-
Raghupathi, W.1
Raghupathi, V.2
-
7
-
-
84905990877
-
Big data in health care: Using analytics to identify and manage high-risk and high-cost patients
-
Bates D. W, Saria S, Ohno-Machado L, Shah A, & Escobar G. Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Aff. (Millwood) 33, 1123-1131 (2014).
-
(2014)
Health Aff. (Millwood
, vol.33
, pp. 1123-1131
-
-
Bates, D.W.1
Saria, S.2
Ohno-Machado, L.3
Shah, A.4
Escobar, G.5
-
8
-
-
84905965765
-
Big data and new knowledge in medicine: The thinking training, and tools needed for a learning health system
-
Krumholz H. M. Big data and new knowledge in medicine: the thinking, training, and tools needed for a learning health system. Health Aff. (Millwood) 33, 1163-1170 (2014).
-
(2014)
Health Aff. (Millwood
, vol.33
, pp. 1163-1170
-
-
Krumholz, H.M.1
-
9
-
-
60549098239
-
Detecting influenza epidemics using search engine query data
-
Ginsberg J, et al. Detecting influenza epidemics using search engine query data. Nature. 457, 1012-1014 (2009).
-
(2009)
Nature
, vol.457
, pp. 1012-1014
-
-
Ginsberg, J.1
-
10
-
-
84873655668
-
When Google got flu wrong
-
Butler D. When Google got flu wrong. Nature. 494, 155-156 (2013).
-
(2013)
Nature
, vol.494
, pp. 155-156
-
-
Butler, D.1
-
11
-
-
84905981088
-
Creating value in health care through big data: Opportunities and policy implications
-
Roski J, Bo Linn G. W, & Andrews T. A. Creating value in health care through big data: opportunities and policy implications. Health Aff. (Millwood) 33, 1115-1122 (2014).
-
(2014)
Health Aff. (Millwood
, vol.33
, pp. 1115-1122
-
-
Roski, J.1
Bo Linn, G.W.2
Andrews, T.A.3
-
12
-
-
84902799705
-
Finding the missing link for big biomedical data
-
Weber G. M, Mandi K. D, & Kohane I. S. Finding the missing link for big biomedical data. JAMA. 311, 2479-2480 (2014).
-
(2014)
JAMA
, vol.311
, pp. 2479-2480
-
-
Weber, G.M.1
Mandi, K.D.2
Kohane, I.S.3
-
13
-
-
84942599854
-
Data mining approach for in hospital treatment outcome in patients with acute coronary syndrome
-
Sladojević M, et al. Data mining approach for in hospital treatment outcome in patients with acute coronary syndrome. Med. Pregl. 68, 157-161 (2015).
-
(2015)
Med. Pregl
, vol.68
, pp. 157-161
-
-
Sladojević, M.1
-
14
-
-
85001085996
-
Customization of a severity of illness score using local electronic medical record data
-
Lee J, & Maslove D. M. Customization of a severity of illness score using local electronic medical record data. J. Intensive Care Med. http://dx.doi.org/.10.1177/0885066615585951 (2015).
-
(2015)
J. Intensive Care Med
-
-
Lee, J.1
Maslove, D.M.2
-
15
-
-
84952006219
-
Using EHRs and machine learning for heart failure survival analysis
-
Panahiazar M, Taslimitehrani V, Pereira N, & Pathak J. Using EHRs and machine learning for heart failure survival analysis. Stud. Health Technol. Inform. 216, 40-44 (2015).
-
(2015)
Stud. Health Technol. Inform
, vol.216
, pp. 40-44
-
-
Panahiazar, M.1
Taslimitehrani, V.2
Pereira, N.3
Pathak, J.4
-
16
-
-
84861960489
-
Early detection of impending physiologic deterioration among patients who are not in intensive care: Development of predictive models using data from an automated electronic medical record
-
Escobar G. J, et al. Early detection of impending physiologic deterioration among patients who are not in intensive care: development of predictive models using data from an automated electronic medical record. J. Hosp. Med. 7, 388-395 (2012).
-
(2012)
J. Hosp. Med
, vol.7
, pp. 388-395
-
-
Escobar, G.J.1
-
17
-
-
84896630259
-
Using electronic health record data to develop and validate a prediction model for adverse outcomes in the wards
-
Churpek M. M, Yuen T. C, Park S. Y, Gibbons R, & Edelson D. P. Using electronic health record data to develop and validate a prediction model for adverse outcomes in the wards. Crit. Care Med. 42, 841-848 (2014).
-
(2014)
Crit. Care Med
, vol.42
, pp. 841-848
-
-
Churpek, M.M.1
Yuen, T.C.2
Park, S.Y.3
Gibbons, R.4
Edelson, D.P.5
-
18
-
-
84939159385
-
Cloud-based smart health monitoring system for automatic cardiovascular and fall risk assessment in hypertensive patients
-
Melillo P, Orrico A, Scala P, Crispino F, & Pecchia L. Cloud-based smart health monitoring system for automatic cardiovascular and fall risk assessment in hypertensive patients. J. Med. Syst. 39, 294 (2015).
-
(2015)
J. Med. Syst
, vol.39
, pp. 294
-
-
Melillo, P.1
Orrico, A.2
Scala, P.3
Crispino, F.4
Pecchia, L.5
-
19
-
-
80052063328
-
Automated identification of postoperative complications within an electronic medical record using natural language processing
-
Murff H. J, et al. Automated identification of postoperative complications within an electronic medical record using natural language processing. JAMA. 306, 848-855 (2011).
-
(2011)
JAMA
, vol.306
, pp. 848-855
-
-
Murff, H.J.1
-
20
-
-
84925596872
-
Automatic prediction of cardiovascular and cerebrovascular events using heart rate variability analysis
-
Melillo P, et al. Automatic prediction of cardiovascular and cerebrovascular events using heart rate variability analysis. PLoS ONE. 10, e0118504 (2015).
-
(2015)
PLoS ONE
, vol.10
, pp. e0118504
-
-
Melillo, P.1
-
21
-
-
84921904308
-
Prediction of hospitalization due to heart diseases by supervised learning methods
-
Dai W, et al. Prediction of hospitalization due to heart diseases by supervised learning methods. Int. J. Med. Inform. 84, 189-197 (2015).
-
(2015)
Int. J. Med. Inform
, vol.84
, pp. 189-197
-
-
Dai, W.1
-
22
-
-
84931075602
-
Electronic medical record-based multicondition models to predict the risk of 30 day readmission or death among adult medicine patients: Validation and comparison to existing models
-
Amarasingham R, et al. Electronic medical record-based multicondition models to predict the risk of 30 day readmission or death among adult medicine patients: validation and comparison to existing models. BMC Med. Inform. Decis. Mak. 15, 39 (2015).
-
(2015)
BMC Med. Inform. Decis. Mak
, vol.15
, pp. 39
-
-
Amarasingham, R.1
-
23
-
-
78049334037
-
An automated model to identify heart failure patients at risk for 30 day readmission or death using electronic medical record data
-
Amarasingham R, et al. An automated model to identify heart failure patients at risk for 30 day readmission or death using electronic medical record data. Med. Care. 48, 981-988 (2010).
-
(2010)
Med Care
, vol.48
, pp. 981-988
-
-
Amarasingham, R.1
-
24
-
-
84907734954
-
Data-driven decisions for reducing readmissions for heart failure: General methodology and case study
-
Bayati M, et al. Data-driven decisions for reducing readmissions for heart failure: general methodology and case study. PLoS ONE. 9, e109264 (2014).
-
(2014)
PLoS ONE
, vol.9
, pp. e109264
-
-
Bayati, M.1
-
25
-
-
84943150475
-
Real-Time web-based assessment of total population risk of future emergency department utilization: Statewide prospective active case finding study
-
Hu Z, et al. Real-Time web-based assessment of total population risk of future emergency department utilization: statewide prospective active case finding study. Interact. J. Med. Res. 4, e2 (2015).
-
(2015)
Interact. J. Med. Res
, vol.4
, pp. e2
-
-
Hu, Z.1
-
26
-
-
84911942551
-
Risk prediction of emergency department revisit 30 days post discharge: A prospective study
-
Hao S, et al. Risk prediction of emergency department revisit 30 days post discharge: a prospective study. PLoS ONE. 9, e112944 (2014).
-
(2014)
PLoS ONE
, vol.9
, pp. e112944
-
-
Hao, S.1
-
27
-
-
84943173892
-
Online prediction of health care utilization in the next six months based on electronic health record information: A cohort and validation study
-
Hu Z, et al. Online prediction of health care utilization in the next six months based on electronic health record information: a cohort and validation study. J. Med. Internet Res. 17, e219 (2015).
-
(2015)
J. Med. Internet Res
, vol.17
, pp. e219
-
-
Hu, Z.1
-
28
-
-
84924128998
-
Setting value-based payment goals - HHS efforts to improve US health care
-
Burwell S. M. Setting value-based payment goals - HHS efforts to improve U.S. health care. N. Engl. J. Med. 372, 897-899 (2015).
-
(2015)
N. Engl. J. Med
, vol.372
, pp. 897-899
-
-
Burwell, S.M.1
-
29
-
-
84927962090
-
A novel neural-inspired learning algorithm with application to clinical risk prediction
-
Tay D, Poh C. L, & Kitney R. I. A novel neural-inspired learning algorithm with application to clinical risk prediction. J. Biomed. Inform. 54, 305-314 (2015).
-
(2015)
J. Biomed Inform
, vol.54
, pp. 305-314
-
-
Tay, D.1
Poh, C.L.2
Kitney, R.I.3
-
30
-
-
84880872976
-
Identifying patients with diabetes and the earliest date of diagnosis in real time: An electronic health record case-finding algorithm
-
Makam A. N, Nguyen O. K, Moore B, Ma Y, & Amarasingham R. Identifying patients with diabetes and the earliest date of diagnosis in real time: an electronic health record case-finding algorithm. BMC Med. Inform. Decis. Mak. 13, 81 (2013).
-
(2013)
BMC Med. Inform. Decis. Mak
, vol.13
, pp. 81
-
-
Makam, A.N.1
Nguyen, O.K.2
Moore, B.3
Ma, Y.4
Amarasingham, R.5
-
31
-
-
84945353785
-
A hybrid model for automatic identification of risk factors for heart disease
-
Yang H, & Garibaldi J. M. A hybrid model for automatic identification of risk factors for heart disease. J. Biomed. Inform. 58, S171-S182 (2015).
-
(2015)
J. Biomed Inform
, vol.58
, pp. S171-S182
-
-
Yang, H.1
Garibaldi, J.M.2
-
32
-
-
84941073116
-
Identification and progression of heart disease risk factors in diabetic patients from longitudinal electronic health records
-
Jonnagaddala J, et al. Identification and progression of heart disease risk factors in diabetic patients from longitudinal electronic health records. Biomed Res. Int. 2015, 636371 (2015).
-
(2015)
Biomed Res. Int
, vol.2015
, pp. 636371
-
-
Jonnagaddala, J.1
-
33
-
-
84946474636
-
NLP based congestive heart failure case finding: A prospective analysis on statewide electronic medical records
-
Wang Y, et al. NLP based congestive heart failure case finding: a prospective analysis on statewide electronic medical records. Int. J. Med. Inform. 84, 1039-1047 (2015).
-
(2015)
Int. J. Med. Inform
, vol.84
, pp. 1039-1047
-
-
Wang, Y.1
-
34
-
-
84903893026
-
Prevalence of heart failure signs and symptoms in a large primary care population identified through the use of text and data mining of the electronic health record
-
Vijayakrishnan R, et al. Prevalence of heart failure signs and symptoms in a large primary care population identified through the use of text and data mining of the electronic health record. J. Card. Fail. 20, 459-464 (2014).
-
(2014)
J. Card. Fail
, vol.20
, pp. 459-464
-
-
Vijayakrishnan, R.1
-
35
-
-
84938413340
-
Symmetrical compression distance for arrhythmia discrimination in cloud-based big-data services
-
Lillo-Castellano J. M, et al. Symmetrical compression distance for arrhythmia discrimination in cloud-based big-data services. IEEE J. Biomed. Health Inform. 19, 1253-1263 (2015).
-
(2015)
IEEE J. Biomed. Health Inform
, vol.19
, pp. 1253-1263
-
-
Lillo-Castellano, J.M.1
-
36
-
-
84935141074
-
Improving detection of arrhythmia drug-drug interactions in pharmacovigilance data through the implementation of similarity-based modeling
-
Vilar S, Lorberbaum T, Hripcsak G, & Tatonetti N. P. Improving detection of arrhythmia drug-drug interactions in pharmacovigilance data through the implementation of similarity-based modeling. PLoS ONE. 10, e0129974 (2015).
-
(2015)
PLoS ONE
, vol.10
, pp. e0129974
-
-
Vilar, S.1
Lorberbaum, T.2
Hripcsak, G.3
Tatonetti, N.P.4
-
37
-
-
84928110923
-
Mining severe drug-drug interaction adverse events using Semantic Web technologies: A case study
-
Jiang G, Liu H, Solbrig H. R, & Chute C. G. Mining severe drug-drug interaction adverse events using Semantic Web technologies: a case study. BioData Min. 8, 12 (2015).
-
(2015)
BioData Min
, vol.8
, pp. 12
-
-
Jiang, G.1
Liu, H.2
Solbrig, H.R.3
Chute, C.G.4
-
38
-
-
78149345321
-
Automated surveillance to detect postprocedure safety signals of approved cardiovascular devices
-
Resnic F. S, et al. Automated surveillance to detect postprocedure safety signals of approved cardiovascular devices. JAMA. 304, 2019-2027 (2010).
-
(2010)
JAMA
, vol.304
, pp. 2019-2027
-
-
Resnic, F.S.1
-
39
-
-
84954242896
-
A method for systematic discovery of adverse drug events from clinical notes
-
Wang G, Jung K, Winnenburg R, & Shah N. H. A method for systematic discovery of adverse drug events from clinical notes. J. Am. Med. Inform. Assoc. 22, 1196-1204 (2015).
-
(2015)
J. Am. Med Inform. Assoc
, vol.22
, pp. 1196-1204
-
-
Wang, G.1
Jung, K.2
Winnenburg, R.3
Shah, N.H.4
-
40
-
-
84862932391
-
The us food and drug administration's mini-sentinel program: Status and direction
-
Platt R, et al. The U.S. Food and Drug Administration's Mini-Sentinel program: status and direction. Pharmacoepidemiol. Drug Saf. 21 (Suppl. 1), 1-8 (2012).
-
(2012)
Pharmacoepidemiol Drug Saf
, vol.21
, pp. 1-8
-
-
Platt, R.1
-
41
-
-
84925286056
-
Using 'big data' to dissect clinical heterogeneity
-
Altman R. B, & Ashley E. A. Using 'big data' to dissect clinical heterogeneity. Circulation. 131, 232-233 (2015).
-
(2015)
Circulation
, vol.131
, pp. 232-233
-
-
Altman, R.B.1
Ashley, E.A.2
-
42
-
-
84927626763
-
Phenomapping for novel classification of heart failure with preserved ejection fraction
-
Shah S. J, et al. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation. 131, 269-279 (2015).
-
(2015)
Circulation
, vol.131
, pp. 269-279
-
-
Shah, S.J.1
-
43
-
-
84894026081
-
A review of approaches to identifying patient phenotype cohorts using electronic health records
-
Shivade C, et al. A review of approaches to identifying patient phenotype cohorts using electronic health records. J. Am. Med. Inform. Assoc. 21, 221-230 (2014).
-
(2014)
J. Am. Med Inform. Assoc
, vol.21
, pp. 221-230
-
-
Shivade, C.1
-
44
-
-
34548575455
-
Limitations of applying summary results of clinical trials to individual patients: The need for risk stratification
-
Kent D. M, & Hayward R. A. Limitations of applying summary results of clinical trials to individual patients: the need for risk stratification. JAMA. 298, 1209-1212 (2007).
-
(2007)
JAMA
, vol.298
, pp. 1209-1212
-
-
Kent, D.M.1
Hayward, R.A.2
-
45
-
-
84875646817
-
The inevitable application of big data to health care
-
Murdoch T. B, & Detsky A. S. The inevitable application of big data to health care. JAMA. 309, 1351-1352 (2013).
-
(2013)
JAMA
, vol.309
, pp. 1351-1352
-
-
Murdoch, T.B.1
Detsky, A.S.2
-
46
-
-
84905988439
-
A 'green button' for using aggregate patient data at the point of care
-
Longhurst C. A, Harrington R. A, & Shah N. H. A 'green button' for using aggregate patient data at the point of care. Health Aff. (Millwood) 33, 1229-1235 (2014).
-
(2014)
Health Aff (Millwood
, vol.33
, pp. 1229-1235
-
-
Longhurst, C.A.1
Harrington, R.A.2
Shah, N.H.3
-
48
-
-
84951992882
-
Heart failure medications detection and prescription status classification in clinical narrative documents
-
Meystre S. M, et al. Heart failure medications detection and prescription status classification in clinical narrative documents. Stud. Health Technol. Inform. 216, 609-613 (2015).
-
(2015)
Stud. Health Technol. Inform
, vol.216
, pp. 609-613
-
-
Meystre, S.M.1
-
49
-
-
84865174655
-
Validity of electronic health record-derived quality measurement for performance monitoring
-
Parsons A, McCullough C, Wang J, & Shih S. Validity of electronic health record-derived quality measurement for performance monitoring. J. Am. Med. Inform. Assoc. 19, 604-609 (2012).
-
(2012)
J. Am. Med. Inform. Assoc
, vol.19
, pp. 604-609
-
-
Parsons, A.1
McCullough, C.2
Wang, J.3
Shih, S.4
-
50
-
-
79952545764
-
Tracking the rise in popularity of electronic nicotine delivery systems (electronic cigarettes) using search query surveillance
-
Ayers J. W, Ribisl K. M, & Brownstein J. S. Tracking the rise in popularity of electronic nicotine delivery systems (electronic cigarettes) using search query surveillance. Am. J. Prev. Med. 40, 448-453 (2011).
-
(2011)
Am. J. Prev. Med
, vol.40
, pp. 448-453
-
-
Ayers, J.W.1
Ribisl, K.M.2
Brownstein, J.S.3
-
51
-
-
84942636574
-
Part 1 Statistical learning methods for the effects of multiple air pollution constituents
-
Coull B. A, et al. Part 1. Statistical learning methods for the effects of multiple air pollution constituents. Res. Rep. Health Eff. Inst. 183, 5-50 (2015).
-
(2015)
Res. Rep. Health Eff. Inst
, vol.183
, pp. 5-50
-
-
Coull, B.A.1
-
52
-
-
84929050576
-
The national institutes of health's big data to knowledge (bd2k) initiative: Capitalizing on biomedical big data
-
Margolis R, et al. The National Institutes of Health's Big Data to Knowledge (BD2K) initiative: capitalizing on biomedical big data. J. Am. Med. Inform. Assoc. 21, 957-958 (2014).
-
(2014)
J. Am. Med. Inform. Assoc
, vol.21
, pp. 957-958
-
-
Margolis, R.1
-
53
-
-
84872151662
-
Data resource profile: Cardiovascular disease research using linked bespoke studies and electronic health records (CALIBER
-
Denaxas S. C, et al. Data resource profile: cardiovascular disease research using linked bespoke studies and electronic health records (CALIBER). Int. J. Epidemiol. 41, 1625-1638 (2012).
-
(2012)
Int. J. Epidemiol
, vol.41
, pp. 1625-1638
-
-
Denaxas, S.C.1
-
54
-
-
84937563247
-
The cardiovascular health in ambulatory care research team (canheart): Using big data to measure and improve cardiovascular health and healthcare services
-
Tu J. V, et al. The Cardiovascular Health in Ambulatory Care Research Team (CANHEART): using big data to measure and improve cardiovascular health and healthcare services. Circ. Cardiovasc. Qual. Outcomes. 8, 204-212 (2015).
-
(2015)
Circ. Cardiovasc. Qual. Outcomes
, vol.8
, pp. 204-212
-
-
Tu, J.V.1
-
55
-
-
84905962659
-
Optum Labs: Building a novel node in the learning health care system
-
Wallace P. J, et al. Optum Labs: building a novel node in the learning health care system. Health Aff. (Millwood) 33, 1187-1194 (2014).
-
(2014)
Health Aff. (Millwood
, vol.33
, pp. 1187-1194
-
-
Wallace, P.J.1
-
56
-
-
84905967661
-
Four health data networks illustrate the potential for a shared national multipurpose big-data network
-
Curtis L. H, Brown J, & Platt R. Four health data networks illustrate the potential for a shared national multipurpose big-data network. Health Aff. (Millwood) 33, 1178-1186 (2014).
-
(2014)
Health Aff. (Millwood
, vol.33
, pp. 1178-1186
-
-
Curtis, L.H.1
Brown, J.2
Platt, R.3
-
57
-
-
84905996552
-
Patient-powered research networks aim to improve patient care and health research
-
Fleurence R. L, Beal A. C, Sheridan S. E, Johnson L. B, & Selby J. V. Patient-powered research networks aim to improve patient care and health research. Health Aff. (Millwood) 33, 1212-1219 (2014).
-
(2014)
Health Aff. (Millwood
, vol.33
, pp. 1212-1219
-
-
Fleurence, R.L.1
Beal, A.C.2
Sheridan, S.E.3
Johnson, L.B.4
Selby, J.V.5
-
58
-
-
84938994290
-
Biobank comes of age
-
Thompson S. G, & Willeit P. U. K. Biobank comes of age. Lancet. 386, 509-510 (2015).
-
(2015)
Lancet
, vol.386
, pp. 509-510
-
-
Thompson, S.G.1
Willeit, P.U.K.2
-
59
-
-
84880059657
-
The Electronic Medical Records and Genomics (eMERGE) Network: Past, present, and future
-
Gottesman O, et al. The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future. Genet. Med. 15, 761-771 (2013).
-
(2013)
Genet. Med
, vol.15
, pp. 761-771
-
-
Gottesman, O.1
-
60
-
-
84936774522
-
Proton pump inhibitor usage and the risk of myocardial infarction in the general population
-
Shah N. H, et al. Proton pump inhibitor usage and the risk of myocardial infarction in the general population. PLoS ONE. 10, e0124653 (2015).
-
(2015)
PLoS ONE
, vol.10
, pp. e0124653
-
-
Shah, N.H.1
-
61
-
-
84901912574
-
Association of statin use with sleep disturbances: Data mining of a spontaneous reporting database and a prescription database
-
Takada M, Fujimoto M, Yamazaki K, Takamoto M, & Hosomi K. Association of statin use with sleep disturbances: data mining of a spontaneous reporting database and a prescription database. Drug Saf. 37, 421-431 (2014).
-
(2014)
Drug Saf
, vol.37
, pp. 421-431
-
-
Takada, M.1
Fujimoto, M.2
Yamazaki, K.3
Takamoto, M.4
Hosomi, K.5
-
62
-
-
84929486040
-
Quantification of diabetes comorbidity risks across life using nation wide big claims data
-
Klimek P, Kautzky-Willer A, Chmiel A, Schiller Frühwirth I, & Thurner S. Quantification of diabetes comorbidity risks across life using nation wide big claims data. PLoS Comput. Biol. 11, e1004125 (2015).
-
(2015)
PLoS Comput. Biol
, vol.11
, pp. e1004125
-
-
Klimek, P.1
Kautzky-Willer, A.2
Chmiel, A.3
Schiller Frühwirth, I.4
Thurner, S.5
-
63
-
-
84879087840
-
Building trust in the power of 'big data' research to serve the public good
-
Larson E. B. Building trust in the power of 'big data' research to serve the public good. JAMA. 309, 2443-2444 (2013).
-
(2013)
JAMA
, vol.309
, pp. 2443-2444
-
-
Larson, E.B.1
-
64
-
-
84890473073
-
Electronic health records based phenotyping in next-generation clinical trials: A perspective from the nih health care systems collaboratory
-
Richesson R. L, et al. Electronic health records based phenotyping in next-generation clinical trials: a perspective from the NIH Health Care Systems Collaboratory. J. Am. Med. Inform. Assoc. 20, e226-e231 (2013).
-
(2013)
J. Am. Med. Inform. Assoc
, vol.20
, pp. e226-e231
-
-
Richesson, R.L.1
-
65
-
-
84889681291
-
Allocating scarce resources in real-Time to reduce heart failure readmissions: A prospective controlled study
-
Amarasingham R, et al. Allocating scarce resources in real-Time to reduce heart failure readmissions: a prospective, controlled study. BMJ Qual. Saf. 22, 998-1005 (2013).
-
(2013)
BMJ Qual. Saf
, vol.22
, pp. 998-1005
-
-
Amarasingham, R.1
-
66
-
-
84905994891
-
Early experiences with big data at an academic medical center
-
Halamka J. D. Early experiences with big data at an academic medical center. Health Aff. (Millwood) 33, 1132-1138 (2014).
-
(2014)
Health Aff. (Millwood
, vol.33
, pp. 1132-1138
-
-
Halamka, J.D.1
-
67
-
-
84905973448
-
Implementing electronic health care predictive analytics: Considerations and challenges
-
Amarasingham R, Patzer R. E, Huesch M, Nguyen N. Q, & Xie B. Implementing electronic health care predictive analytics: considerations and challenges. Health Aff. (Millwood) 33, 1148-1154 (2014).
-
(2014)
Health Aff. (Millwood
, vol.33
, pp. 1148-1154
-
-
Amarasingham, R.1
Patzer, R.E.2
Huesch, M.3
Nguyen, N.Q.4
Xie, B.5
-
68
-
-
84888023491
-
Are we up to speed?: From big data to rich insights in CV imaging for a hyperconnected world
-
Narula J. Are we up to speed?: from big data to rich insights in CV imaging for a hyperconnected world. JACC Cardiovasc. Imaging. 6, 1222-1224 (2013).
-
(2013)
JACC Cardiovasc. Imaging
, vol.6
, pp. 1222-1224
-
-
Narula, J.1
-
69
-
-
84920847860
-
Comparative effectiveness research and big data: Balancing potential with legal and ethical considerations
-
Gray E. A, & Thorpe J. H. Comparative effectiveness research and big data: balancing potential with legal and ethical considerations. J. Comp. Eff. Res. 4, 61-74 (2015).
-
(2015)
J. Comp. Eff. Res
, vol.4
, pp. 61-74
-
-
Gray, E.A.1
Thorpe, J.H.2
-
70
-
-
84991818000
-
Why big data won't cure us
-
Neff G. Why big data won't cure us. Big Data. 1, 117-123 (2013).
-
(2013)
Big Data
, vol.1
, pp. 117-123
-
-
Neff, G.1
-
71
-
-
84937701283
-
Clinical prediction models for cardiovascular disease: Tufts predictive analytics and comparative effectiveness clinical prediction model database
-
Wessler B. S, et al. Clinical prediction models for cardiovascular disease: tufts predictive analytics and comparative effectiveness clinical prediction model database. Circ. Cardiovasc. Qual. Outcomes. 8, 368-375 (2015).
-
(2015)
Circ. Cardiovasc. Qual. Outcomes
, vol.8
, pp. 368-375
-
-
Wessler, B.S.1
-
72
-
-
84937713802
-
Realizing the potential of clinical risk prediction models: Where are we now and what needs to change to better personalize delivery of care?
-
Salisbury A. C, & Spertus J. A. Realizing the potential of clinical risk prediction models: where are we now and what needs to change to better personalize delivery of care?. Circ. Cardiovasc. Qual. Outcomes. 8, 332-334 (2015).
-
(2015)
Circ. Cardiovasc. Qual. Outcomes
, vol.8
, pp. 332-334
-
-
Salisbury, A.C.1
Spertus, J.A.2
-
73
-
-
84969265349
-
Can valid and practical risk-prediction or casemix adjustment models, including adjustment for comorbidity, be generated from english hospital administrative data (hospital episode statistics? A national observational study
-
Bottle A, Gaudoin R, Goudie R, Jones S, & Aylin P. Can valid and practical risk-prediction or casemix adjustment models, including adjustment for comorbidity, be generated from English hospital administrative data (Hospital Episode Statistics)?. A national observational study. Health Serv. Deliv. Res. 2, 40 (2014).
-
(2014)
Health Serv. Deliv. Res
, vol.2
, pp. 40
-
-
Bottle, A.1
Gaudoin, R.2
Goudie, R.3
Jones, S.4
Aylin, P.5
-
74
-
-
84905995605
-
Insights from advanced analytics at the veterans health administration
-
Fihn S. D, et al. Insights from advanced analytics at the Veterans Health Administration. Health Aff. (Millwood) 33, 1203-1211 (2014).
-
(2014)
Health Aff. (Millwood
, vol.33
, pp. 1203-1211
-
-
Fihn, S.D.1
|