메뉴 건너뛰기




Volumn 13, Issue 6, 2016, Pages 350-359

Big data analytics to improve cardiovascular care: Promise and challenges

Author keywords

[No Author keywords available]

Indexed keywords

CARDIOVASCULAR DISEASE; CARDIOVASCULAR RISK; CLINICAL DECISION SUPPORT SYSTEM; CLINICAL RESEARCH; COMPUTER SECURITY; DATA ANALYSIS; DRUG SURVEILLANCE PROGRAM; EVIDENCE BASED PRACTICE; HEALTH CARE QUALITY; HEALTH CARE SYSTEM; HUMAN; INFORMED CONSENT; MEDICAL DEVICE; MEDICOLEGAL ASPECT; OUTCOME ASSESSMENT; PATIENT CARE; PERFORMANCE MEASUREMENT SYSTEM; PERSONALIZED MEDICINE; PREDICTIVE MODELLING; PRIORITY JOURNAL; PUBLIC HEALTH; REVIEW; FACTUAL DATABASE; STATISTICAL ANALYSIS; STATISTICAL MODEL; STATISTICS AND NUMERICAL DATA; TREATMENT OUTCOME;

EID: 84961393205     PISSN: 17595002     EISSN: 17595010     Source Type: Journal    
DOI: 10.1038/nrcardio.2016.42     Document Type: Review
Times cited : (297)

References (74)
  • 1
    • 49149126509 scopus 로고    scopus 로고
    • Outcomes research: Generating evidence for best practice and policies
    • Krumholz H. M. Outcomes research: generating evidence for best practice and policies. Circulation. 118, 309-318 (2008).
    • (2008) Circulation , vol.118 , pp. 309-318
    • Krumholz, H.M.1
  • 2
    • 84883682574 scopus 로고    scopus 로고
    • Most important outcomes research papers on variation in cardiovascular disease
    • Lampropulos J. F, et al. Most important outcomes research papers on variation in cardiovascular disease. Circ. Cardiovasc. Qual. Outcomes. 6, e9-e16 (2013).
    • (2013) Circ. Cardiovasc. Qual. Outcomes , vol.6 , pp. e9-e16
    • Lampropulos, J.F.1
  • 3
    • 0037452530 scopus 로고    scopus 로고
    • The implications of regional variations in Medicare spending Part 1: The content quality, and accessibility of care
    • Fisher E. S, et al. The implications of regional variations in Medicare spending. Part 1: the content, quality, and accessibility of care. Ann. Intern. Med. 138, 273-287 (2003).
    • (2003) Ann. Intern. Med , vol.138 , pp. 273-287
    • Fisher, E.S.1
  • 4
    • 0037452507 scopus 로고    scopus 로고
    • The implications of regional variations in Medicare spending Part 2: Health outcomes and satisfaction with care
    • Fisher E. S, et al. The implications of regional variations in Medicare spending. Part 2: health outcomes and satisfaction with care. Ann. Intern. Med. 138, 288-298 (2003).
    • (2003) Ann. Intern. Med , vol.138 , pp. 288-298
    • Fisher, E.S.1
  • 6
    • 85104094046 scopus 로고    scopus 로고
    • Big data analytics in healthcare: Promise and potential
    • Raghupathi W, & Raghupathi V. Big data analytics in healthcare: promise and potential. Health Inf. Sci. Syst. 2, 3 (2014).
    • (2014) Health Inf. Sci. Syst , vol.2 , pp. 3
    • Raghupathi, W.1    Raghupathi, V.2
  • 7
    • 84905990877 scopus 로고    scopus 로고
    • Big data in health care: Using analytics to identify and manage high-risk and high-cost patients
    • Bates D. W, Saria S, Ohno-Machado L, Shah A, & Escobar G. Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Aff. (Millwood) 33, 1123-1131 (2014).
    • (2014) Health Aff. (Millwood , vol.33 , pp. 1123-1131
    • Bates, D.W.1    Saria, S.2    Ohno-Machado, L.3    Shah, A.4    Escobar, G.5
  • 8
    • 84905965765 scopus 로고    scopus 로고
    • Big data and new knowledge in medicine: The thinking training, and tools needed for a learning health system
    • Krumholz H. M. Big data and new knowledge in medicine: the thinking, training, and tools needed for a learning health system. Health Aff. (Millwood) 33, 1163-1170 (2014).
    • (2014) Health Aff. (Millwood , vol.33 , pp. 1163-1170
    • Krumholz, H.M.1
  • 9
    • 60549098239 scopus 로고    scopus 로고
    • Detecting influenza epidemics using search engine query data
    • Ginsberg J, et al. Detecting influenza epidemics using search engine query data. Nature. 457, 1012-1014 (2009).
    • (2009) Nature , vol.457 , pp. 1012-1014
    • Ginsberg, J.1
  • 10
    • 84873655668 scopus 로고    scopus 로고
    • When Google got flu wrong
    • Butler D. When Google got flu wrong. Nature. 494, 155-156 (2013).
    • (2013) Nature , vol.494 , pp. 155-156
    • Butler, D.1
  • 11
    • 84905981088 scopus 로고    scopus 로고
    • Creating value in health care through big data: Opportunities and policy implications
    • Roski J, Bo Linn G. W, & Andrews T. A. Creating value in health care through big data: opportunities and policy implications. Health Aff. (Millwood) 33, 1115-1122 (2014).
    • (2014) Health Aff. (Millwood , vol.33 , pp. 1115-1122
    • Roski, J.1    Bo Linn, G.W.2    Andrews, T.A.3
  • 12
    • 84902799705 scopus 로고    scopus 로고
    • Finding the missing link for big biomedical data
    • Weber G. M, Mandi K. D, & Kohane I. S. Finding the missing link for big biomedical data. JAMA. 311, 2479-2480 (2014).
    • (2014) JAMA , vol.311 , pp. 2479-2480
    • Weber, G.M.1    Mandi, K.D.2    Kohane, I.S.3
  • 13
    • 84942599854 scopus 로고    scopus 로고
    • Data mining approach for in hospital treatment outcome in patients with acute coronary syndrome
    • Sladojević M, et al. Data mining approach for in hospital treatment outcome in patients with acute coronary syndrome. Med. Pregl. 68, 157-161 (2015).
    • (2015) Med. Pregl , vol.68 , pp. 157-161
    • Sladojević, M.1
  • 14
    • 85001085996 scopus 로고    scopus 로고
    • Customization of a severity of illness score using local electronic medical record data
    • Lee J, & Maslove D. M. Customization of a severity of illness score using local electronic medical record data. J. Intensive Care Med. http://dx.doi.org/.10.1177/0885066615585951 (2015).
    • (2015) J. Intensive Care Med
    • Lee, J.1    Maslove, D.M.2
  • 16
    • 84861960489 scopus 로고    scopus 로고
    • Early detection of impending physiologic deterioration among patients who are not in intensive care: Development of predictive models using data from an automated electronic medical record
    • Escobar G. J, et al. Early detection of impending physiologic deterioration among patients who are not in intensive care: development of predictive models using data from an automated electronic medical record. J. Hosp. Med. 7, 388-395 (2012).
    • (2012) J. Hosp. Med , vol.7 , pp. 388-395
    • Escobar, G.J.1
  • 17
    • 84896630259 scopus 로고    scopus 로고
    • Using electronic health record data to develop and validate a prediction model for adverse outcomes in the wards
    • Churpek M. M, Yuen T. C, Park S. Y, Gibbons R, & Edelson D. P. Using electronic health record data to develop and validate a prediction model for adverse outcomes in the wards. Crit. Care Med. 42, 841-848 (2014).
    • (2014) Crit. Care Med , vol.42 , pp. 841-848
    • Churpek, M.M.1    Yuen, T.C.2    Park, S.Y.3    Gibbons, R.4    Edelson, D.P.5
  • 18
    • 84939159385 scopus 로고    scopus 로고
    • Cloud-based smart health monitoring system for automatic cardiovascular and fall risk assessment in hypertensive patients
    • Melillo P, Orrico A, Scala P, Crispino F, & Pecchia L. Cloud-based smart health monitoring system for automatic cardiovascular and fall risk assessment in hypertensive patients. J. Med. Syst. 39, 294 (2015).
    • (2015) J. Med. Syst , vol.39 , pp. 294
    • Melillo, P.1    Orrico, A.2    Scala, P.3    Crispino, F.4    Pecchia, L.5
  • 19
    • 80052063328 scopus 로고    scopus 로고
    • Automated identification of postoperative complications within an electronic medical record using natural language processing
    • Murff H. J, et al. Automated identification of postoperative complications within an electronic medical record using natural language processing. JAMA. 306, 848-855 (2011).
    • (2011) JAMA , vol.306 , pp. 848-855
    • Murff, H.J.1
  • 20
    • 84925596872 scopus 로고    scopus 로고
    • Automatic prediction of cardiovascular and cerebrovascular events using heart rate variability analysis
    • Melillo P, et al. Automatic prediction of cardiovascular and cerebrovascular events using heart rate variability analysis. PLoS ONE. 10, e0118504 (2015).
    • (2015) PLoS ONE , vol.10 , pp. e0118504
    • Melillo, P.1
  • 21
    • 84921904308 scopus 로고    scopus 로고
    • Prediction of hospitalization due to heart diseases by supervised learning methods
    • Dai W, et al. Prediction of hospitalization due to heart diseases by supervised learning methods. Int. J. Med. Inform. 84, 189-197 (2015).
    • (2015) Int. J. Med. Inform , vol.84 , pp. 189-197
    • Dai, W.1
  • 22
    • 84931075602 scopus 로고    scopus 로고
    • Electronic medical record-based multicondition models to predict the risk of 30 day readmission or death among adult medicine patients: Validation and comparison to existing models
    • Amarasingham R, et al. Electronic medical record-based multicondition models to predict the risk of 30 day readmission or death among adult medicine patients: validation and comparison to existing models. BMC Med. Inform. Decis. Mak. 15, 39 (2015).
    • (2015) BMC Med. Inform. Decis. Mak , vol.15 , pp. 39
    • Amarasingham, R.1
  • 23
    • 78049334037 scopus 로고    scopus 로고
    • An automated model to identify heart failure patients at risk for 30 day readmission or death using electronic medical record data
    • Amarasingham R, et al. An automated model to identify heart failure patients at risk for 30 day readmission or death using electronic medical record data. Med. Care. 48, 981-988 (2010).
    • (2010) Med Care , vol.48 , pp. 981-988
    • Amarasingham, R.1
  • 24
    • 84907734954 scopus 로고    scopus 로고
    • Data-driven decisions for reducing readmissions for heart failure: General methodology and case study
    • Bayati M, et al. Data-driven decisions for reducing readmissions for heart failure: general methodology and case study. PLoS ONE. 9, e109264 (2014).
    • (2014) PLoS ONE , vol.9 , pp. e109264
    • Bayati, M.1
  • 25
    • 84943150475 scopus 로고    scopus 로고
    • Real-Time web-based assessment of total population risk of future emergency department utilization: Statewide prospective active case finding study
    • Hu Z, et al. Real-Time web-based assessment of total population risk of future emergency department utilization: statewide prospective active case finding study. Interact. J. Med. Res. 4, e2 (2015).
    • (2015) Interact. J. Med. Res , vol.4 , pp. e2
    • Hu, Z.1
  • 26
    • 84911942551 scopus 로고    scopus 로고
    • Risk prediction of emergency department revisit 30 days post discharge: A prospective study
    • Hao S, et al. Risk prediction of emergency department revisit 30 days post discharge: a prospective study. PLoS ONE. 9, e112944 (2014).
    • (2014) PLoS ONE , vol.9 , pp. e112944
    • Hao, S.1
  • 27
    • 84943173892 scopus 로고    scopus 로고
    • Online prediction of health care utilization in the next six months based on electronic health record information: A cohort and validation study
    • Hu Z, et al. Online prediction of health care utilization in the next six months based on electronic health record information: a cohort and validation study. J. Med. Internet Res. 17, e219 (2015).
    • (2015) J. Med. Internet Res , vol.17 , pp. e219
    • Hu, Z.1
  • 28
    • 84924128998 scopus 로고    scopus 로고
    • Setting value-based payment goals - HHS efforts to improve US health care
    • Burwell S. M. Setting value-based payment goals - HHS efforts to improve U.S. health care. N. Engl. J. Med. 372, 897-899 (2015).
    • (2015) N. Engl. J. Med , vol.372 , pp. 897-899
    • Burwell, S.M.1
  • 29
    • 84927962090 scopus 로고    scopus 로고
    • A novel neural-inspired learning algorithm with application to clinical risk prediction
    • Tay D, Poh C. L, & Kitney R. I. A novel neural-inspired learning algorithm with application to clinical risk prediction. J. Biomed. Inform. 54, 305-314 (2015).
    • (2015) J. Biomed Inform , vol.54 , pp. 305-314
    • Tay, D.1    Poh, C.L.2    Kitney, R.I.3
  • 30
    • 84880872976 scopus 로고    scopus 로고
    • Identifying patients with diabetes and the earliest date of diagnosis in real time: An electronic health record case-finding algorithm
    • Makam A. N, Nguyen O. K, Moore B, Ma Y, & Amarasingham R. Identifying patients with diabetes and the earliest date of diagnosis in real time: an electronic health record case-finding algorithm. BMC Med. Inform. Decis. Mak. 13, 81 (2013).
    • (2013) BMC Med. Inform. Decis. Mak , vol.13 , pp. 81
    • Makam, A.N.1    Nguyen, O.K.2    Moore, B.3    Ma, Y.4    Amarasingham, R.5
  • 31
    • 84945353785 scopus 로고    scopus 로고
    • A hybrid model for automatic identification of risk factors for heart disease
    • Yang H, & Garibaldi J. M. A hybrid model for automatic identification of risk factors for heart disease. J. Biomed. Inform. 58, S171-S182 (2015).
    • (2015) J. Biomed Inform , vol.58 , pp. S171-S182
    • Yang, H.1    Garibaldi, J.M.2
  • 32
    • 84941073116 scopus 로고    scopus 로고
    • Identification and progression of heart disease risk factors in diabetic patients from longitudinal electronic health records
    • Jonnagaddala J, et al. Identification and progression of heart disease risk factors in diabetic patients from longitudinal electronic health records. Biomed Res. Int. 2015, 636371 (2015).
    • (2015) Biomed Res. Int , vol.2015 , pp. 636371
    • Jonnagaddala, J.1
  • 33
    • 84946474636 scopus 로고    scopus 로고
    • NLP based congestive heart failure case finding: A prospective analysis on statewide electronic medical records
    • Wang Y, et al. NLP based congestive heart failure case finding: a prospective analysis on statewide electronic medical records. Int. J. Med. Inform. 84, 1039-1047 (2015).
    • (2015) Int. J. Med. Inform , vol.84 , pp. 1039-1047
    • Wang, Y.1
  • 34
    • 84903893026 scopus 로고    scopus 로고
    • Prevalence of heart failure signs and symptoms in a large primary care population identified through the use of text and data mining of the electronic health record
    • Vijayakrishnan R, et al. Prevalence of heart failure signs and symptoms in a large primary care population identified through the use of text and data mining of the electronic health record. J. Card. Fail. 20, 459-464 (2014).
    • (2014) J. Card. Fail , vol.20 , pp. 459-464
    • Vijayakrishnan, R.1
  • 35
    • 84938413340 scopus 로고    scopus 로고
    • Symmetrical compression distance for arrhythmia discrimination in cloud-based big-data services
    • Lillo-Castellano J. M, et al. Symmetrical compression distance for arrhythmia discrimination in cloud-based big-data services. IEEE J. Biomed. Health Inform. 19, 1253-1263 (2015).
    • (2015) IEEE J. Biomed. Health Inform , vol.19 , pp. 1253-1263
    • Lillo-Castellano, J.M.1
  • 36
    • 84935141074 scopus 로고    scopus 로고
    • Improving detection of arrhythmia drug-drug interactions in pharmacovigilance data through the implementation of similarity-based modeling
    • Vilar S, Lorberbaum T, Hripcsak G, & Tatonetti N. P. Improving detection of arrhythmia drug-drug interactions in pharmacovigilance data through the implementation of similarity-based modeling. PLoS ONE. 10, e0129974 (2015).
    • (2015) PLoS ONE , vol.10 , pp. e0129974
    • Vilar, S.1    Lorberbaum, T.2    Hripcsak, G.3    Tatonetti, N.P.4
  • 37
    • 84928110923 scopus 로고    scopus 로고
    • Mining severe drug-drug interaction adverse events using Semantic Web technologies: A case study
    • Jiang G, Liu H, Solbrig H. R, & Chute C. G. Mining severe drug-drug interaction adverse events using Semantic Web technologies: a case study. BioData Min. 8, 12 (2015).
    • (2015) BioData Min , vol.8 , pp. 12
    • Jiang, G.1    Liu, H.2    Solbrig, H.R.3    Chute, C.G.4
  • 38
    • 78149345321 scopus 로고    scopus 로고
    • Automated surveillance to detect postprocedure safety signals of approved cardiovascular devices
    • Resnic F. S, et al. Automated surveillance to detect postprocedure safety signals of approved cardiovascular devices. JAMA. 304, 2019-2027 (2010).
    • (2010) JAMA , vol.304 , pp. 2019-2027
    • Resnic, F.S.1
  • 39
    • 84954242896 scopus 로고    scopus 로고
    • A method for systematic discovery of adverse drug events from clinical notes
    • Wang G, Jung K, Winnenburg R, & Shah N. H. A method for systematic discovery of adverse drug events from clinical notes. J. Am. Med. Inform. Assoc. 22, 1196-1204 (2015).
    • (2015) J. Am. Med Inform. Assoc , vol.22 , pp. 1196-1204
    • Wang, G.1    Jung, K.2    Winnenburg, R.3    Shah, N.H.4
  • 40
    • 84862932391 scopus 로고    scopus 로고
    • The us food and drug administration's mini-sentinel program: Status and direction
    • Platt R, et al. The U.S. Food and Drug Administration's Mini-Sentinel program: status and direction. Pharmacoepidemiol. Drug Saf. 21 (Suppl. 1), 1-8 (2012).
    • (2012) Pharmacoepidemiol Drug Saf , vol.21 , pp. 1-8
    • Platt, R.1
  • 41
    • 84925286056 scopus 로고    scopus 로고
    • Using 'big data' to dissect clinical heterogeneity
    • Altman R. B, & Ashley E. A. Using 'big data' to dissect clinical heterogeneity. Circulation. 131, 232-233 (2015).
    • (2015) Circulation , vol.131 , pp. 232-233
    • Altman, R.B.1    Ashley, E.A.2
  • 42
    • 84927626763 scopus 로고    scopus 로고
    • Phenomapping for novel classification of heart failure with preserved ejection fraction
    • Shah S. J, et al. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation. 131, 269-279 (2015).
    • (2015) Circulation , vol.131 , pp. 269-279
    • Shah, S.J.1
  • 43
    • 84894026081 scopus 로고    scopus 로고
    • A review of approaches to identifying patient phenotype cohorts using electronic health records
    • Shivade C, et al. A review of approaches to identifying patient phenotype cohorts using electronic health records. J. Am. Med. Inform. Assoc. 21, 221-230 (2014).
    • (2014) J. Am. Med Inform. Assoc , vol.21 , pp. 221-230
    • Shivade, C.1
  • 44
    • 34548575455 scopus 로고    scopus 로고
    • Limitations of applying summary results of clinical trials to individual patients: The need for risk stratification
    • Kent D. M, & Hayward R. A. Limitations of applying summary results of clinical trials to individual patients: the need for risk stratification. JAMA. 298, 1209-1212 (2007).
    • (2007) JAMA , vol.298 , pp. 1209-1212
    • Kent, D.M.1    Hayward, R.A.2
  • 45
    • 84875646817 scopus 로고    scopus 로고
    • The inevitable application of big data to health care
    • Murdoch T. B, & Detsky A. S. The inevitable application of big data to health care. JAMA. 309, 1351-1352 (2013).
    • (2013) JAMA , vol.309 , pp. 1351-1352
    • Murdoch, T.B.1    Detsky, A.S.2
  • 46
    • 84905988439 scopus 로고    scopus 로고
    • A 'green button' for using aggregate patient data at the point of care
    • Longhurst C. A, Harrington R. A, & Shah N. H. A 'green button' for using aggregate patient data at the point of care. Health Aff. (Millwood) 33, 1229-1235 (2014).
    • (2014) Health Aff (Millwood , vol.33 , pp. 1229-1235
    • Longhurst, C.A.1    Harrington, R.A.2    Shah, N.H.3
  • 48
    • 84951992882 scopus 로고    scopus 로고
    • Heart failure medications detection and prescription status classification in clinical narrative documents
    • Meystre S. M, et al. Heart failure medications detection and prescription status classification in clinical narrative documents. Stud. Health Technol. Inform. 216, 609-613 (2015).
    • (2015) Stud. Health Technol. Inform , vol.216 , pp. 609-613
    • Meystre, S.M.1
  • 49
    • 84865174655 scopus 로고    scopus 로고
    • Validity of electronic health record-derived quality measurement for performance monitoring
    • Parsons A, McCullough C, Wang J, & Shih S. Validity of electronic health record-derived quality measurement for performance monitoring. J. Am. Med. Inform. Assoc. 19, 604-609 (2012).
    • (2012) J. Am. Med. Inform. Assoc , vol.19 , pp. 604-609
    • Parsons, A.1    McCullough, C.2    Wang, J.3    Shih, S.4
  • 50
    • 79952545764 scopus 로고    scopus 로고
    • Tracking the rise in popularity of electronic nicotine delivery systems (electronic cigarettes) using search query surveillance
    • Ayers J. W, Ribisl K. M, & Brownstein J. S. Tracking the rise in popularity of electronic nicotine delivery systems (electronic cigarettes) using search query surveillance. Am. J. Prev. Med. 40, 448-453 (2011).
    • (2011) Am. J. Prev. Med , vol.40 , pp. 448-453
    • Ayers, J.W.1    Ribisl, K.M.2    Brownstein, J.S.3
  • 51
    • 84942636574 scopus 로고    scopus 로고
    • Part 1 Statistical learning methods for the effects of multiple air pollution constituents
    • Coull B. A, et al. Part 1. Statistical learning methods for the effects of multiple air pollution constituents. Res. Rep. Health Eff. Inst. 183, 5-50 (2015).
    • (2015) Res. Rep. Health Eff. Inst , vol.183 , pp. 5-50
    • Coull, B.A.1
  • 52
    • 84929050576 scopus 로고    scopus 로고
    • The national institutes of health's big data to knowledge (bd2k) initiative: Capitalizing on biomedical big data
    • Margolis R, et al. The National Institutes of Health's Big Data to Knowledge (BD2K) initiative: capitalizing on biomedical big data. J. Am. Med. Inform. Assoc. 21, 957-958 (2014).
    • (2014) J. Am. Med. Inform. Assoc , vol.21 , pp. 957-958
    • Margolis, R.1
  • 53
    • 84872151662 scopus 로고    scopus 로고
    • Data resource profile: Cardiovascular disease research using linked bespoke studies and electronic health records (CALIBER
    • Denaxas S. C, et al. Data resource profile: cardiovascular disease research using linked bespoke studies and electronic health records (CALIBER). Int. J. Epidemiol. 41, 1625-1638 (2012).
    • (2012) Int. J. Epidemiol , vol.41 , pp. 1625-1638
    • Denaxas, S.C.1
  • 54
    • 84937563247 scopus 로고    scopus 로고
    • The cardiovascular health in ambulatory care research team (canheart): Using big data to measure and improve cardiovascular health and healthcare services
    • Tu J. V, et al. The Cardiovascular Health in Ambulatory Care Research Team (CANHEART): using big data to measure and improve cardiovascular health and healthcare services. Circ. Cardiovasc. Qual. Outcomes. 8, 204-212 (2015).
    • (2015) Circ. Cardiovasc. Qual. Outcomes , vol.8 , pp. 204-212
    • Tu, J.V.1
  • 55
    • 84905962659 scopus 로고    scopus 로고
    • Optum Labs: Building a novel node in the learning health care system
    • Wallace P. J, et al. Optum Labs: building a novel node in the learning health care system. Health Aff. (Millwood) 33, 1187-1194 (2014).
    • (2014) Health Aff. (Millwood , vol.33 , pp. 1187-1194
    • Wallace, P.J.1
  • 56
    • 84905967661 scopus 로고    scopus 로고
    • Four health data networks illustrate the potential for a shared national multipurpose big-data network
    • Curtis L. H, Brown J, & Platt R. Four health data networks illustrate the potential for a shared national multipurpose big-data network. Health Aff. (Millwood) 33, 1178-1186 (2014).
    • (2014) Health Aff. (Millwood , vol.33 , pp. 1178-1186
    • Curtis, L.H.1    Brown, J.2    Platt, R.3
  • 58
    • 84938994290 scopus 로고    scopus 로고
    • Biobank comes of age
    • Thompson S. G, & Willeit P. U. K. Biobank comes of age. Lancet. 386, 509-510 (2015).
    • (2015) Lancet , vol.386 , pp. 509-510
    • Thompson, S.G.1    Willeit, P.U.K.2
  • 59
    • 84880059657 scopus 로고    scopus 로고
    • The Electronic Medical Records and Genomics (eMERGE) Network: Past, present, and future
    • Gottesman O, et al. The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future. Genet. Med. 15, 761-771 (2013).
    • (2013) Genet. Med , vol.15 , pp. 761-771
    • Gottesman, O.1
  • 60
    • 84936774522 scopus 로고    scopus 로고
    • Proton pump inhibitor usage and the risk of myocardial infarction in the general population
    • Shah N. H, et al. Proton pump inhibitor usage and the risk of myocardial infarction in the general population. PLoS ONE. 10, e0124653 (2015).
    • (2015) PLoS ONE , vol.10 , pp. e0124653
    • Shah, N.H.1
  • 61
    • 84901912574 scopus 로고    scopus 로고
    • Association of statin use with sleep disturbances: Data mining of a spontaneous reporting database and a prescription database
    • Takada M, Fujimoto M, Yamazaki K, Takamoto M, & Hosomi K. Association of statin use with sleep disturbances: data mining of a spontaneous reporting database and a prescription database. Drug Saf. 37, 421-431 (2014).
    • (2014) Drug Saf , vol.37 , pp. 421-431
    • Takada, M.1    Fujimoto, M.2    Yamazaki, K.3    Takamoto, M.4    Hosomi, K.5
  • 63
    • 84879087840 scopus 로고    scopus 로고
    • Building trust in the power of 'big data' research to serve the public good
    • Larson E. B. Building trust in the power of 'big data' research to serve the public good. JAMA. 309, 2443-2444 (2013).
    • (2013) JAMA , vol.309 , pp. 2443-2444
    • Larson, E.B.1
  • 64
    • 84890473073 scopus 로고    scopus 로고
    • Electronic health records based phenotyping in next-generation clinical trials: A perspective from the nih health care systems collaboratory
    • Richesson R. L, et al. Electronic health records based phenotyping in next-generation clinical trials: a perspective from the NIH Health Care Systems Collaboratory. J. Am. Med. Inform. Assoc. 20, e226-e231 (2013).
    • (2013) J. Am. Med. Inform. Assoc , vol.20 , pp. e226-e231
    • Richesson, R.L.1
  • 65
    • 84889681291 scopus 로고    scopus 로고
    • Allocating scarce resources in real-Time to reduce heart failure readmissions: A prospective controlled study
    • Amarasingham R, et al. Allocating scarce resources in real-Time to reduce heart failure readmissions: a prospective, controlled study. BMJ Qual. Saf. 22, 998-1005 (2013).
    • (2013) BMJ Qual. Saf , vol.22 , pp. 998-1005
    • Amarasingham, R.1
  • 66
    • 84905994891 scopus 로고    scopus 로고
    • Early experiences with big data at an academic medical center
    • Halamka J. D. Early experiences with big data at an academic medical center. Health Aff. (Millwood) 33, 1132-1138 (2014).
    • (2014) Health Aff. (Millwood , vol.33 , pp. 1132-1138
    • Halamka, J.D.1
  • 67
    • 84905973448 scopus 로고    scopus 로고
    • Implementing electronic health care predictive analytics: Considerations and challenges
    • Amarasingham R, Patzer R. E, Huesch M, Nguyen N. Q, & Xie B. Implementing electronic health care predictive analytics: considerations and challenges. Health Aff. (Millwood) 33, 1148-1154 (2014).
    • (2014) Health Aff. (Millwood , vol.33 , pp. 1148-1154
    • Amarasingham, R.1    Patzer, R.E.2    Huesch, M.3    Nguyen, N.Q.4    Xie, B.5
  • 68
    • 84888023491 scopus 로고    scopus 로고
    • Are we up to speed?: From big data to rich insights in CV imaging for a hyperconnected world
    • Narula J. Are we up to speed?: from big data to rich insights in CV imaging for a hyperconnected world. JACC Cardiovasc. Imaging. 6, 1222-1224 (2013).
    • (2013) JACC Cardiovasc. Imaging , vol.6 , pp. 1222-1224
    • Narula, J.1
  • 69
    • 84920847860 scopus 로고    scopus 로고
    • Comparative effectiveness research and big data: Balancing potential with legal and ethical considerations
    • Gray E. A, & Thorpe J. H. Comparative effectiveness research and big data: balancing potential with legal and ethical considerations. J. Comp. Eff. Res. 4, 61-74 (2015).
    • (2015) J. Comp. Eff. Res , vol.4 , pp. 61-74
    • Gray, E.A.1    Thorpe, J.H.2
  • 70
    • 84991818000 scopus 로고    scopus 로고
    • Why big data won't cure us
    • Neff G. Why big data won't cure us. Big Data. 1, 117-123 (2013).
    • (2013) Big Data , vol.1 , pp. 117-123
    • Neff, G.1
  • 71
    • 84937701283 scopus 로고    scopus 로고
    • Clinical prediction models for cardiovascular disease: Tufts predictive analytics and comparative effectiveness clinical prediction model database
    • Wessler B. S, et al. Clinical prediction models for cardiovascular disease: tufts predictive analytics and comparative effectiveness clinical prediction model database. Circ. Cardiovasc. Qual. Outcomes. 8, 368-375 (2015).
    • (2015) Circ. Cardiovasc. Qual. Outcomes , vol.8 , pp. 368-375
    • Wessler, B.S.1
  • 72
    • 84937713802 scopus 로고    scopus 로고
    • Realizing the potential of clinical risk prediction models: Where are we now and what needs to change to better personalize delivery of care?
    • Salisbury A. C, & Spertus J. A. Realizing the potential of clinical risk prediction models: where are we now and what needs to change to better personalize delivery of care?. Circ. Cardiovasc. Qual. Outcomes. 8, 332-334 (2015).
    • (2015) Circ. Cardiovasc. Qual. Outcomes , vol.8 , pp. 332-334
    • Salisbury, A.C.1    Spertus, J.A.2
  • 73
    • 84969265349 scopus 로고    scopus 로고
    • Can valid and practical risk-prediction or casemix adjustment models, including adjustment for comorbidity, be generated from english hospital administrative data (hospital episode statistics? A national observational study
    • Bottle A, Gaudoin R, Goudie R, Jones S, & Aylin P. Can valid and practical risk-prediction or casemix adjustment models, including adjustment for comorbidity, be generated from English hospital administrative data (Hospital Episode Statistics)?. A national observational study. Health Serv. Deliv. Res. 2, 40 (2014).
    • (2014) Health Serv. Deliv. Res , vol.2 , pp. 40
    • Bottle, A.1    Gaudoin, R.2    Goudie, R.3    Jones, S.4    Aylin, P.5
  • 74
    • 84905995605 scopus 로고    scopus 로고
    • Insights from advanced analytics at the veterans health administration
    • Fihn S. D, et al. Insights from advanced analytics at the Veterans Health Administration. Health Aff. (Millwood) 33, 1203-1211 (2014).
    • (2014) Health Aff. (Millwood , vol.33 , pp. 1203-1211
    • Fihn, S.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.