메뉴 건너뛰기




Volumn 572, Issue 7767, 2019, Pages 116-119

A clinically applicable approach to continuous prediction of future acute kidney injury

(27)  Tomašev, Nenad a   Glorot, Xavier a   Rae, Jack W a,b   Zielinski, Michal a   Askham, Harry a   Saraiva, Andre a   Mottram, Anne a   Meyer, Clemens a   Ravuri, Suman a   Protsyuk, Ivan a   Connell, Alistair a   Hughes, Cían O a   Karthikesalingam, Alan a   Cornebise, Julien a,b   Montgomery, Hugh c   Rees, Geraint d   Laing, Chris e   Baker, Clifton R f   Peterson, Kelly g,h   Reeves, Ruth f   more..


Author keywords

[No Author keywords available]

Indexed keywords

HEALTH CARE; HOSPITAL SECTOR; INJURY; MORTALITY; PREDICTION; RECORD; RISK;

EID: 85070862380     PISSN: 00280836     EISSN: 14764687     Source Type: Journal    
DOI: 10.1038/s41586-019-1390-1     Document Type: Article
Times cited : (745)

References (58)
  • 2
    • 84938704873 scopus 로고    scopus 로고
    • A targeted real-time early warning score (TREWscore) for septic shock
    • Henry, K. E., Hager, D. N., Pronovost, P. J. & Saria, S. A targeted real-time early warning score (TREWscore) for septic shock. Sci. Transl. Med. 7, 299ra122 (2015).
    • (2015) Sci. Transl. Med. , vol.7 , pp. 299ra122
    • Henry, K.E.1    Hager, D.N.2    Pronovost, P.J.3    Saria, S.4
  • 3
    • 85127431078 scopus 로고    scopus 로고
    • Scalable and accurate deep learning with electronic health records. npj Digit
    • Rajkomar, A. et al. Scalable and accurate deep learning with electronic health records. npj Digit. Med. 1, 18 (2018).
    • (2018) Med. , vol.1 , pp. 18
    • Rajkomar, A.1
  • 5
    • 85058726453 scopus 로고    scopus 로고
    • Predicting inpatient acute kidney injury over different time horizons: How early and accurate?
    • American Medical Informatics Association
    • Cheng, P., Waitman, L. R., Hu, Y. & Liu, M. Predicting inpatient acute kidney injury over different time horizons: how early and accurate? In AMIA Annual Symposium Proceedings 565 (American Medical Informatics Association, 2017).
    • (2017) AMIA Annual Symposium Proceedings , vol.565
    • Cheng, P.1    Waitman, L.R.2    Hu, Y.3    Liu, M.4
  • 6
    • 85053003984 scopus 로고    scopus 로고
    • The development of a machine learning inpatient acute kidney injury prediction model
    • Koyner, J. L., Carey, K. A., Edelson, D. P. & Churpek, M. M. The development of a machine learning inpatient acute kidney injury prediction model. Crit. Care Med. 46, 1070–1077 (2018).
    • (2018) Crit. Care Med. , vol.46 , pp. 1070-1077
    • Koyner, J.L.1    Carey, K.A.2    Edelson, D.P.3    Churpek, M.M.4
  • 7
    • 85055475795 scopus 로고    scopus 로고
    • The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care
    • COI: 1:CAS:528:DC%2BC1cXhvF2lsbrF
    • Komorowski, M., Celi, L. A., Badawi, O., Gordon, A. C. & Faisal, A. A. The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care. Nat. Med. 24, 1716–1720 (2018).
    • (2018) Nat. Med. , vol.24 , pp. 1716-1720
    • Komorowski, M.1    Celi, L.A.2    Badawi, O.3    Gordon, A.C.4    Faisal, A.A.5
  • 9
    • 85160722598 scopus 로고    scopus 로고
    • Disease-Atlas: navigating disease trajectories with deep learning
    • Lim, B. & van der Schaar, M. Disease-Atlas: navigating disease trajectories with deep learning. Proc. Mach. Learn. Res. 85, 137–160 (2018).
    • (2018) Proc. Mach. Learn. Res. , vol.85 , pp. 137-160
    • Lim, B.1    van der Schaar, M.2
  • 10
    • 85048389332 scopus 로고    scopus 로고
    • Learning to detect sepsis with a multitask Gaussian process RNN classifier
    • (eds Precup, D. & Teh, Y. W.)
    • Futoma, J., Hariharan, S. & Heller, K. A. Learning to detect sepsis with a multitask Gaussian process RNN classifier. In Proc. International Conference on Machine Learning (eds Precup, D. & Teh, Y. W.) 1174–1182 (2017).
    • (2017) Proc. International Conference on Machine Learning , pp. 1174-1182
    • Futoma, J.1    Hariharan, S.2    Heller, K.A.3
  • 11
    • 84968813824 scopus 로고    scopus 로고
    • Deep Patient: an unsupervised representation to predict the future of patients from the electronic health records
    • COI: 1:CAS:528:DC%2BC28Xot1Gnu7s%3D
    • Miotto, R., Li, L., Kidd, B. A. & Dudley, J. T. Deep Patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep. 6, 26094 (2016).
    • (2016) Sci. Rep. , vol.6
    • Miotto, R.1    Li, L.2    Kidd, B.A.3    Dudley, J.T.4
  • 13
    • 84991721533 scopus 로고    scopus 로고
    • Risk prediction with electronic health records: A deep learning approach
    • (eds Venkatasubramanian, S. C. & Meria, W.)
    • Cheng, Y. P. Z. J. H. & Wang, F. Risk prediction with electronic health records: a deep learning approach. In Proc. SIAM International Conference on Data Mining (eds Venkatasubramanian, S. C. & Meria, W.) 432–440 (2016).
    • (2016) Proc. SIAM International Conference on Data Mining , pp. 432-440
    • Cheng, Y.P.Z.J.H.1    Wang, F.2
  • 14
    • 85031126284 scopus 로고    scopus 로고
    • Treatment-response models for counterfactual reasoning with continuous-time, continuous-valued interventions
    • AUAI Press Corvallis
    • Soleimani, H., Subbaswamy, A. & Saria, S. Treatment-response models for counterfactual reasoning with continuous-time, continuous-valued interventions. In Proc. 33rd Conference on Uncertainty in Artificial Intelligence (AUAI Press Corvallis, 2017).
    • (2017) Proc. 33Rd Conference on Uncertainty in Artificial Intelligence
    • Soleimani, H.1    Subbaswamy, A.2    Saria, S.3
  • 15
    • 85041956992 scopus 로고    scopus 로고
    • Personalized risk scoring for critical care prognosis using mixtures of Gaussian process experts
    • &
    • Alaa, A. M., Yoon, J., Hu, S. & van der Schaar, M. Personalized risk scoring for critical care prognosis using mixtures of Gaussian process experts. IEEE Trans. Biomed. Eng. 65, 207–218 (2018).
    • (2018) IEEE Trans. Biomed. Eng , vol.65 , pp. 207-218
    • Alaa, A.M.1    Yoon, J.2    Hu, S.3    van der Schaar, M.4
  • 16
    • 84940373302 scopus 로고    scopus 로고
    • Risk prediction for chronic kidney disease progression using heterogeneous electronic health record data and time series analysis
    • Perotte, A., Ranganath, R., Hirsch, J. S., Blei, D. & Elhadad, N. Risk prediction for chronic kidney disease progression using heterogeneous electronic health record data and time series analysis. J. Am. Med. Inform. Assoc. 22, 872–880 (2015).
    • (2015) J. Am. Med. Inform. Assoc. , vol.22 , pp. 872-880
    • Perotte, A.1    Ranganath, R.2    Hirsch, J.S.3    Blei, D.4    Elhadad, N.5
  • 17
    • 85055912186 scopus 로고    scopus 로고
    • MySurgeryRisk: development and validation of a machine-learning risk algorithm for major complications and death after surgery
    • Bihorac, A. et al. MySurgeryRisk: development and validation of a machine-learning risk algorithm for major complications and death after surgery. Ann. Surg. 269, 652–662 (2019).
    • (2019) Ann. Surg. , vol.269 , pp. 652-662
    • Bihorac, A.1
  • 18
    • 84864808953 scopus 로고    scopus 로고
    • KDIGO clinical practice guidelines for acute kidney injury
    • Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 120, c179–c184 (2012).
    • (2012) Nephron Clin. Pract. , vol.120 , pp. c179-c184
    • Khwaja, A.1
  • 19
    • 0001372014 scopus 로고    scopus 로고
    • Prospective evaluation of a modified early warning score to aid earlier detection of patients developing critical illness on a general surgical ward
    • Stenhouse, C., Coates, S., Tivey, M., Allsop, P. & Parker, T. Prospective evaluation of a modified early warning score to aid earlier detection of patients developing critical illness on a general surgical ward. Br. J. Anaesth. 84, 663P (2000).
    • (2000) Br. J. Anaesth. , vol.84 , pp. 663P
    • Stenhouse, C.1    Coates, S.2    Tivey, M.3    Allsop, P.4    Parker, T.5
  • 20
    • 84923346326 scopus 로고    scopus 로고
    • Biomarkers of AKI: a review of mechanistic relevance and potential therapeutic implications
    • COI: 1:CAS:528:DC%2BC2MXitVChs78%3D
    • Alge, J. L. & Arthur, J. M. Biomarkers of AKI: a review of mechanistic relevance and potential therapeutic implications. Clin. J. Am. Soc. Nephrol. 10, 147–155 (2015).
    • (2015) Clin. J. Am. Soc. Nephrol. , vol.10 , pp. 147-155
    • Alge, J.L.1    Arthur, J.M.2
  • 21
    • 84859128929 scopus 로고    scopus 로고
    • Acute kidney injury and mortality in hospitalized patients
    • Wang, H. E., Muntner, P., Chertow, G. M. & Warnock, D. G. Acute kidney injury and mortality in hospitalized patients. Am. J. Nephrol. 35, 349–355 (2012).
    • (2012) Am. J. Nephrol. , vol.35 , pp. 349-355
    • Wang, H.E.1    Muntner, P.2    Chertow, G.M.3    Warnock, D.G.4
  • 22
    • 70350095380 scopus 로고    scopus 로고
    • NCEPOD report on acute kidney injury—must do better
    • MacLeod, A. NCEPOD report on acute kidney injury—must do better. Lancet 374, 1405–1406 (2009).
    • (2009) Lancet , vol.374 , pp. 1405-1406
    • MacLeod, A.1
  • 23
    • 85016034442 scopus 로고    scopus 로고
    • Association between e-alert implementation for detection of acute kidney injury and outcomes: a systematic review
    • Lachance, P. et al. Association between e-alert implementation for detection of acute kidney injury and outcomes: a systematic review. Nephrol. Dial. Transplant. 32, 265–272 (2017).
    • (2017) Nephrol. Dial. Transplant. , vol.32 , pp. 265-272
    • Lachance, P.1
  • 24
    • 84962092181 scopus 로고    scopus 로고
    • Machine learning and decision support in critical care
    • Johnson, A. E. W. et al. Machine learning and decision support in critical care. Proc. IEEE Inst. Electr. Electron Eng. 104, 444–466 (2016).
    • (2016) Proc. IEEE Inst. Electr. Electron Eng. , vol.104 , pp. 444-466
    • Johnson, A.E.W.1
  • 25
    • 85061418276 scopus 로고    scopus 로고
    • Prediction of acute kidney injury with a machine learning algorithm using electronic health record data
    • Mohamadlou, H. et al. Prediction of acute kidney injury with a machine learning algorithm using electronic health record data. Can. J. Kidney Health Dis. 5, 1–9 (2018).
    • (2018) Can. J. Kidney Health Dis. , vol.5 , pp. 1-9
    • Mohamadlou, H.1
  • 27
    • 85025597307 scopus 로고    scopus 로고
    • Impact of electronic acute kidney injury (AKI) alerts with automated nephrologist consultation on detection and severity of AKI: a quality improvement study
    • Park, S. et al. Impact of electronic acute kidney injury (AKI) alerts with automated nephrologist consultation on detection and severity of AKI: a quality improvement study. Am. J. Kidney Dis. 71, 9–19 (2018).
    • (2018) Am. J. Kidney Dis. , vol.71 , pp. 9-19
    • Park, S.1
  • 29
    • 85046992528 scopus 로고    scopus 로고
    • Reliable decision support using counterfactual models
    • eds Guyon, I. et al
    • Schulam, P. & Saria, S. Reliable decision support using counterfactual models. In Advances in Neural Information Processing Systems 30 (eds Guyon, I. et al.) 1697–1708 (2017).
    • (2017) Advances in Neural Information Processing Systems , vol.30 , pp. 1697-1708
    • Schulam, P.1    Saria, S.2
  • 30
  • 35
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • COI: 1:STN:280:DyaK1c%2FhvVahsQ%3D%3D
    • Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).
    • (1997) Neural Comput. , vol.9 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 42
    • 84993949467 scopus 로고    scopus 로고
    • Hybrid computing using a neural network with dynamic external memory
    • Graves, A. et al. Hybrid computing using a neural network with dynamic external memory. Nature 538, 471–476 (2016).
    • (2016) Nature , vol.538 , pp. 471-476
    • Graves, A.1
  • 43
    • 85059833004 scopus 로고    scopus 로고
    • Relational recurrent neural networks
    • Bengio, S. et al
    • Santoro, A. et al. Relational recurrent neural networks. In Advances in Neural Information Processing Systems 31 (eds Bengio, S. et al.) 7310–7321 (2018).
    • (2018) Advances in Neural Information Processing Systems , vol.31 , pp. 7310-7321
    • Santoro, A.1
  • 45
    • 84979871458 scopus 로고    scopus 로고
    • Patient risk stratification with time-varying parameters: a multitask learning approach
    • Wiens, J., Guttag, J. & Horvitz, E. Patient risk stratification with time-varying parameters: a multitask learning approach. J. Mach. Learn. Res. 17, 1–23 (2016).
    • (2016) J. Mach. Learn. Res. , vol.17 , pp. 1-23
    • Wiens, J.1    Guttag, J.2    Horvitz, E.3
  • 47
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • Tehand, Y. W. & Titterington, M
    • Glorot, X. & Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In International Conference on Artificial Intelligence and Statistics (vol. 9) (eds Tehand, Y. W. & Titterington, M.) 249–256 (2010).
    • (2010) International Conference on Artificial Intelligence and Statistics , vol.9 , pp. 249-256
    • Glorot, X.1    Bengio, Y.2
  • 48
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • (eds Bengio, Y. & LeCun, Y.)
    • Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. In International Conference on Learning Representations (eds Bengio, Y. & LeCun, Y.) https://dblp.org/rec/bib/journals/corr/KingmaB14 (2015).
    • (2015) In International Conference on Learning Representations
    • Kingma, D.P.1    Ba, J.2
  • 51
    • 0003010182 scopus 로고
    • Verification of forecasts expressed in terms of probability
    • Brier, G. W. Verification of forecasts expressed in terms of probability. Mon. Weath. Rev. 78, 1–3 (1950).
    • (1950) Mon. Weath. Rev. , vol.78 , pp. 1-3
    • Brier, G.W.1
  • 52
  • 53
    • 84928911070 scopus 로고    scopus 로고
    • The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets
    • Saito, T. & Rehmsmeier, M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE 10, e0118432 (2015).
    • (2015) PLoS ONE , vol.10
    • Saito, T.1    Rehmsmeier, M.2
  • 55
    • 0002322469 scopus 로고
    • On a test of whether one of two random variables is stochastically larger than the other
    • Mann, H. B. & Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947).
    • (1947) Ann. Math. Stat. , vol.18 , pp. 50-60
    • Mann, H.B.1    Whitney, D.R.2
  • 57
    • 85052522615 scopus 로고    scopus 로고
    • Clinically applicable deep learning for diagnosis and referral in retinal disease
    • De Fauw, J. et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 24, 1342–1350 (2018).
    • (2018) Nat. Med. , vol.24 , pp. 1342-1350
    • De Fauw, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.