메뉴 건너뛰기




Volumn 4, Issue 1, 2017, Pages

Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: A randomised clinical trial

Author keywords

alerts; electronic health records; machine learning; patient monitoring; prediction; sepsis; severe sepsis

Indexed keywords


EID: 85052147470     PISSN: None     EISSN: 20524439     Source Type: Journal    
DOI: 10.1136/bmjresp-2017-000234     Document Type: Article
Times cited : (256)

References (34)
  • 1
    • 0034958947 scopus 로고    scopus 로고
    • Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care
    • Angus DC, Linde-Zwirble WT, Lidicker J, et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 2001;29:1303-10.
    • (2001) Crit Care Med , vol.29 , pp. 1303-1310
    • Angus, D.C.1    Linde-Zwirble, W.T.2    Lidicker, J.3
  • 3
    • 84959273475 scopus 로고    scopus 로고
    • The third international consensus definitions for Sepsis and Septic Shock (sepsis-3)
    • Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for Sepsis and Septic Shock (sepsis-3). JAMA 2016;315:801-10.
    • (2016) JAMA , vol.315 , pp. 801-810
    • Singer, M.1    Deutschman, C.S.2    Seymour, C.W.3
  • 4
    • 84938704873 scopus 로고    scopus 로고
    • A Targeted Real-time Early Warning Score (TREWScore) for septic shock
    • Henry KE, Hager DN, Pronovost PJ, et al. A Targeted Real-time Early Warning Score (TREWScore) for septic shock. Sci Transl Med 2015;7:299ra122.
    • (2015) Sci Transl Med , vol.7 , pp. 299ra122
    • Henry, K.E.1    Hager, D.N.2    Pronovost, P.J.3
  • 5
    • 35948948662 scopus 로고    scopus 로고
    • Sepsis: Definition, epidemiology, and diagnosis
    • Lever A, Mackenzie I. Sepsis: definition, epidemiology, and diagnosis. BMJ 2007;335:879-83.
    • (2007) BMJ , vol.335 , pp. 879-883
    • Lever, A.1    Mackenzie, I.2
  • 6
    • 84894506061 scopus 로고    scopus 로고
    • Two decades of mortality trends among patients with severe sepsis: A comparative meta-analysis
    • Stevenson EK, Rubenstein AR, Radin GT, et al. Two decades of mortality trends among patients with severe sepsis: a comparative meta-analysis. Crit Care Med 2014;42:625.
    • (2014) Crit Care Med , vol.42 , pp. 625
    • Stevenson, E.K.1    Rubenstein, A.R.2    Radin, G.T.3
  • 7
    • 33744527833 scopus 로고    scopus 로고
    • Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock
    • Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 2006;34:1589-96.
    • (2006) Crit Care Med , vol.34 , pp. 1589-1596
    • Kumar, A.1    Roberts, D.2    Wood, K.E.3
  • 8
    • 34247175892 scopus 로고    scopus 로고
    • Implementation of a bundle of quality indicators for the early management of severe sepsis and septic shock is associated with decreased mortality
    • Nguyen HB, Corbett SW, Steele R, et al. Implementation of a bundle of quality indicators for the early management of severe sepsis and septic shock is associated with decreased mortality. Crit Care Med 2007;35:1105-12.
    • (2007) Crit Care Med , vol.35 , pp. 1105-1112
    • Nguyen, H.B.1    Corbett, S.W.2    Steele, R.3
  • 10
    • 84969784621 scopus 로고    scopus 로고
    • High-performance detection and early prediction of septic shock for alcohol-use disorder patients
    • Calvert J, Desautels T, Chettipally U, et al. High-performance detection and early prediction of septic shock for alcohol-use disorder patients. Ann Med Surg 2016;8:50-5.
    • (2016) Ann Med Surg , vol.8 , pp. 50-55
    • Calvert, J.1    Desautels, T.2    Chettipally, U.3
  • 11
    • 85018664128 scopus 로고    scopus 로고
    • Prediction of sepsis in the intensive care unit with minimal electronic health record data: A machine learning approach
    • Desautels T, Calvert J, Hoffman J, et al. Prediction of sepsis in the intensive care unit with minimal electronic health record data: a machine learning approach. JMIR Med Inform 2016;4:e28.
    • (2016) JMIR Med Inform , vol.4 , pp. e28
    • Desautels, T.1    Calvert, J.2    Hoffman, J.3
  • 13
    • 0034072264 scopus 로고    scopus 로고
    • Severe sepsis and septic shock. Definitions, epidemiology, and clinical manifestations
    • Balk RA. Severe sepsis and septic shock. Definitions, epidemiology, and clinical manifestations. Crit Care Clin 2000;16:179-92.
    • (2000) Crit Care Clin , vol.16 , pp. 179-192
    • Balk, R.A.1
  • 14
    • 33750698270 scopus 로고    scopus 로고
    • Validation of physiological scoring systems in the accident and emergency department
    • Subbe CP, Slater A, Menon D, et al. Validation of physiological scoring systems in the accident and emergency department. Emerg Med J 2006;23:841-5.
    • (2006) Emerg Med J , vol.23 , pp. 841-845
    • Subbe, C.P.1    Slater, A.2    Menon, D.3
  • 15
    • 85010445056 scopus 로고    scopus 로고
    • Scoring systems for the characterization of sepsis and associated outcomes
    • McLymont N, Glover GW. Scoring systems for the characterization of sepsis and associated outcomes. Ann Transl Med 2016;4:527.
    • (2016) Ann Transl Med , vol.4 , pp. 527
    • McLymont, N.1    Glover, G.W.2
  • 16
    • 85017407164 scopus 로고    scopus 로고
    • Quick sepsis-related organ failure assessment, systemic inflammatory response syndrome, and early warning scores for detecting clinical deterioration in infected patients outside the intensive care unit
    • Churpek MM, Snyder A, Han X, et al. Quick sepsis-related organ failure assessment, systemic inflammatory response syndrome, and early warning scores for detecting clinical deterioration in infected patients outside the intensive care unit. Am J Respir Crit Care Med 2017;195:906-11.
    • (2017) Am J Respir Crit Care Med , vol.195 , pp. 906-911
    • Churpek, M.M.1    Snyder, A.2    Han, X.3
  • 17
    • 84907019464 scopus 로고    scopus 로고
    • Machine learning, medical diagnosis, and biomedical engineering research-commentary
    • Foster KR, Koprowski R, Skufca JD. Machine learning, medical diagnosis, and biomedical engineering research-commentary. Biomed Eng Online 2014;13:94.
    • (2014) Biomed Eng Online , vol.13 , pp. 94
    • Foster, K.R.1    Koprowski, R.2    Skufca, J.D.3
  • 18
    • 84880811518 scopus 로고    scopus 로고
    • Early detection of sepsis in the emergency department using dynamic bayesian networks
    • Nachimuthu SK, Haug PJ. Early detection of sepsis in the emergency department using dynamic bayesian networks. AMIA Annu Symp Proc 2012;2012:653-62.
    • (2012) AMIA Annu Symp Proc , vol.2012 , pp. 653-662
    • Nachimuthu, S.K.1    Haug, P.J.2
  • 20
    • 84927170042 scopus 로고    scopus 로고
    • Autoregressive hidden Markov models for the early detection of neonatal sepsis
    • Stanculescu I, Williams CK, Freer Y. Autoregressive hidden Markov models for the early detection of neonatal sepsis. IEEE J Biomed Health Inform 2014;18:1560-70.
    • (2014) IEEE J Biomed Health Inform , vol.18 , pp. 1560-1570
    • Stanculescu, I.1    Williams, C.K.2    Freer, Y.3
  • 21
    • 84959493690 scopus 로고    scopus 로고
    • Learning (predictive) risk scores in the presence of censoring due to interventions
    • Dyagilev K, Saria S. Learning (predictive) risk scores in the presence of censoring due to interventions. Mach Learn 2016;102:323-48.
    • (2016) Mach Learn , vol.102 , pp. 323-348
    • Dyagilev, K.1    Saria, S.2
  • 22
    • 79952166676 scopus 로고    scopus 로고
    • Implementation of a real-time computerized sepsis alert in non-intensive care unit patients
    • Sawyer AM, Deal EN, Labelle AJ, et al. Implementation of a real-time computerized sepsis alert in non-intensive care unit patients. Critical Care Medicine 2011;39.3:469-73.
    • (2011) Critical Care Medicine , vol.39 , Issue.3 , pp. 469-473
    • Sawyer, A.M.1    Deal, E.N.2    Labelle, A.J.3
  • 23
    • 0035829842 scopus 로고    scopus 로고
    • Early goal-directed therapy in the treatment of severe sepsis and septic shock
    • Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001;345:1368-77.
    • (2001) N Engl J Med , vol.345 , pp. 1368-1377
    • Rivers, E.1    Nguyen, B.2    Havstad, S.3
  • 24
    • 84899750488 scopus 로고    scopus 로고
    • A randomized trial of protocol-based care for early septic shock
    • Yealy DM, Kellum JA, Huang DT, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med 2014;370:1683-93.
    • (2014) N Engl J Med , vol.370 , pp. 1683-1693
    • Yealy, D.M.1    Kellum, J.A.2    Huang, D.T.3
  • 25
    • 85030698960 scopus 로고    scopus 로고
    • Antibiotics for sepsis: Does each hour really count, or is it incestuous amplification?
    • Singer M. Antibiotics for sepsis: does each hour really count, or is it incestuous amplification? Am J Respir Crit Care Med 2017;196:800-2.
    • (2017) Am J Respir Crit Care Med , vol.196 , pp. 800-802
    • Singer, M.1
  • 26
    • 85102600605 scopus 로고    scopus 로고
    • The effectiveness of a real-time electronic alert to detect severe sepsis in an intensive care unit
    • Honolulu HI
    • Chang J, Sullivan M, Shea E, et al. The effectiveness of a real-time electronic alert to detect severe sepsis in an intensive care unit. Poster 13 presented at: SOCCA 28th Annual Meeting and Critical Care Update. 2015. Honolulu HI: URL:https:// socca. org/ 2015-SOCCA-syllabus. pdf (accessed 22 Feb 2017).
    • (2015) Poster 13 Presented At: SOCCA 28th Annual Meeting and Critical Care Update
    • Chang, J.1    Sullivan, M.2    Shea, E.3
  • 27
    • 84873714375 scopus 로고    scopus 로고
    • Surviving sepsis campaign: International guidelines for management of severe Sepsis and Septic Shock, 2012
    • Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe Sepsis and Septic Shock, 2012. Intensive Care Med 2013;39:165-228.
    • (2013) Intensive Care Med , vol.39 , pp. 165-228
    • Dellinger, R.P.1    Levy, M.M.2    Rhodes, A.3
  • 28
    • 84971255250 scopus 로고    scopus 로고
    • A computational approach to mortality prediction of alcohol use disorder inpatients
    • Calvert J, Mao Q, Rogers AJ, et al. A computational approach to mortality prediction of alcohol use disorder inpatients. Comput Biol Med 2016;75:74-9.
    • (2016) Comput Biol Med , vol.75 , pp. 74-79
    • Calvert, J.1    Mao, Q.2    Rogers, A.J.3
  • 29
    • 84988564562 scopus 로고    scopus 로고
    • Using electronic health record collected clinical variables to predict medical intensive care unit mortality
    • Calvert J, Mao Q, Hoffman JL, et al. Using electronic health record collected clinical variables to predict medical intensive care unit mortality. Ann Med Surg 2016;11:52-7.
    • (2016) Ann Med Surg , vol.11 , pp. 52-57
    • Calvert, J.1    Mao, Q.2    Hoffman, J.L.3
  • 30
    • 84862765998 scopus 로고    scopus 로고
    • Randomized trial of automated, electronic monitoring to facilitate early detection of sepsis in the intensive care unit
    • Hooper MH, Weavind L, Wheeler AP, et al. Randomized trial of automated, electronic monitoring to facilitate early detection of sepsis in the intensive care unit. Crit Care Med 2012;40:2096-101.
    • (2012) Crit Care Med , vol.40 , pp. 2096-2101
    • Hooper, M.H.1    Weavind, L.2    Wheeler, A.P.3
  • 31
    • 84939141387 scopus 로고    scopus 로고
    • An electronic tool for the evaluation and treatment of Sepsis in the ICU: A randomized controlled trial
    • Semler MW, Weavind L, Hooper MH, et al. An electronic tool for the evaluation and treatment of Sepsis in the ICU: a randomized controlled trial. Crit Care Med 2015;43:1595.
    • (2015) Crit Care Med , vol.43 , pp. 1595
    • Semler, M.W.1    Weavind, L.2    Hooper, M.H.3
  • 32
    • 85014637868 scopus 로고    scopus 로고
    • Evaluating the impact of a computerized surveillance algorithm and decision support system on sepsis mortality
    • Manaktala S, Claypool SR. Evaluating the impact of a computerized surveillance algorithm and decision support system on sepsis mortality. J Am Med Inform Assoc 2017;24:88-95.
    • (2017) J Am Med Inform Assoc , vol.24 , pp. 88-95
    • Manaktala, S.1    Claypool, S.R.2
  • 33
    • 84884492814 scopus 로고    scopus 로고
    • A computerized alert screening for severe sepsis in emergency department patients increases lactate testing but does not improve inpatient mortality
    • Berger T, Birnbaum A, Bijur P, et al. A computerized alert screening for severe sepsis in emergency department patients increases lactate testing but does not improve inpatient mortality. Appl Clin Inform 2010;1:394-407.
    • (2010) Appl Clin Inform , vol.1 , pp. 394-407
    • Berger, T.1    Birnbaum, A.2    Bijur, P.3
  • 34
    • 84865082126 scopus 로고    scopus 로고
    • Monitor alarm fatigue: An integrative review
    • Cvach M. Monitor alarm fatigue: an integrative review. Biomed Instrum Technol 2012;46:268-77.
    • (2012) Biomed Instrum Technol , vol.46 , pp. 268-277
    • Cvach, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.