메뉴 건너뛰기




Volumn 40, Issue 11, 2019, Pages 1011-1021

Immunology Driven by Large-Scale Single-Cell Sequencing

Author keywords

[No Author keywords available]

Indexed keywords

BIG DATA; CELL ENGINEERING; CELL INTERACTION; CELL POPULATION; GENE CONTROL; HUMAN CELL; IMMUNOCOMPETENT CELL; IMMUNOLOGY; PERSONALIZED MEDICINE; REVIEW; ANIMAL; BIOLOGY; CELL COMMUNICATION; DATA BASE; DEVICES; GENE EXPRESSION PROFILING; HUMAN; IMMUNE SYSTEM; PHYSIOLOGY; PROCEDURES; RECEPTOR CROSS-TALK; SIGNAL TRANSDUCTION; SINGLE CELL ANALYSIS; TISSUE ENGINEERING;

EID: 85073825616     PISSN: 14714906     EISSN: 14714981     Source Type: Journal    
DOI: 10.1016/j.it.2019.09.004     Document Type: Review
Times cited : (58)

References (100)
  • 1
    • 85044252958 scopus 로고    scopus 로고
    • Exponential scaling of single-cell RNA-seq in the past decade
    • Svensson, V., et al. Exponential scaling of single-cell RNA-seq in the past decade. Nat. Protoc. 13 (2018), 599–604.
    • (2018) Nat. Protoc. , vol.13 , pp. 599-604
    • Svensson, V.1
  • 2
    • 85074743402 scopus 로고    scopus 로고
    • A curated database reveals trends in single cell transcriptomics
    • Published online August 21, 2019
    • Svensson, V., da Veiga Beltrame, E., A curated database reveals trends in single cell transcriptomics. bioRxiv, 2019, 10.1101/742304 Published online August 21, 2019.
    • (2019) bioRxiv
    • Svensson, V.1    da Veiga Beltrame, E.2
  • 3
    • 0020322129 scopus 로고
    • B-cell subpopulations identified by two-colour fluorescence analysis
    • Hardy, R.R., et al. B-cell subpopulations identified by two-colour fluorescence analysis. Nature 297 (1982), 589–591.
    • (1982) Nature , vol.297 , pp. 589-591
    • Hardy, R.R.1
  • 4
    • 43749098985 scopus 로고    scopus 로고
    • DNA methylation landscapes: provocative insights from epigenomics
    • Suzuki, M.M., Bird, A., DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 9 (2008), 465–476.
    • (2008) Nat. Rev. Genet. , vol.9 , pp. 465-476
    • Suzuki, M.M.1    Bird, A.2
  • 5
    • 85053883946 scopus 로고    scopus 로고
    • High-resolution single-cell DNA methylation measurements reveal epigenetically distinct hematopoietic stem cell subpopulations
    • Hui, T., et al. High-resolution single-cell DNA methylation measurements reveal epigenetically distinct hematopoietic stem cell subpopulations. Stem Cell Rep. 11 (2018), 578–592.
    • (2018) Stem Cell Rep. , vol.11 , pp. 578-592
    • Hui, T.1
  • 6
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489 (2012), 57–74.
    • (2012) Nature , vol.489 , pp. 57-74
  • 7
    • 84937857359 scopus 로고    scopus 로고
    • Single-cell chromatin accessibility reveals principles of regulatory variation
    • Buenrostro, J.D., et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523 (2015), 486–490.
    • (2015) Nature , vol.523 , pp. 486-490
    • Buenrostro, J.D.1
  • 8
    • 84930006926 scopus 로고    scopus 로고
    • Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing
    • Cusanovich, D.A., et al. Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348 (2015), 910–914.
    • (2015) Science , vol.348 , pp. 910-914
    • Cusanovich, D.A.1
  • 9
    • 85058756191 scopus 로고    scopus 로고
    • A rapid and robust method for single cell chromatin accessibility profiling
    • Chen, X., et al. A rapid and robust method for single cell chromatin accessibility profiling. Nat. Commun., 9, 2018, 5345.
    • (2018) Nat. Commun. , vol.9 , pp. 5345
    • Chen, X.1
  • 10
    • 84885617426 scopus 로고    scopus 로고
    • Single-cell Hi-C reveals cell-to-cell variability in chromosome structure
    • Nagano, T., et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502 (2013), 59–64.
    • (2013) Nature , vol.502 , pp. 59-64
    • Nagano, T.1
  • 11
    • 85065063725 scopus 로고    scopus 로고
    • CUT&Tag for efficient epigenomic profiling of small samples and single cells
    • Kaya-Okur, H.S., et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun., 10, 2019, 30.
    • (2019) Nat. Commun. , vol.10 , pp. 30
    • Kaya-Okur, H.S.1
  • 12
    • 85072708469 scopus 로고    scopus 로고
    • CoBATCH for high-throughput single-cell epigenomic profiling
    • Published online August 27, 2019
    • Wang, Q., et al. CoBATCH for high-throughput single-cell epigenomic profiling. Mol. Cell, 2019, 10.1016/j.molcel.2019.07.015 Published online August 27, 2019.
    • (2019) Mol. Cell
    • Wang, Q.1
  • 13
    • 85055073919 scopus 로고    scopus 로고
    • SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation
    • Budnik, B., et al. SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol., 19, 2018, 161.
    • (2018) Genome Biol. , vol.19 , pp. 161
    • Budnik, B.1
  • 14
    • 85028316331 scopus 로고    scopus 로고
    • Simultaneous epitope and transcriptome measurement in single cells
    • Stoeckius, M., et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14 (2017), 865–868.
    • (2017) Nat. Methods , vol.14 , pp. 865-868
    • Stoeckius, M.1
  • 15
    • 85031308868 scopus 로고    scopus 로고
    • Multiplexed quantification of proteins and transcripts in single cells
    • Peterson, V.M., et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35 (2017), 936–939.
    • (2017) Nat. Biotechnol. , vol.35 , pp. 936-939
    • Peterson, V.M.1
  • 16
    • 85032583384 scopus 로고    scopus 로고
    • SCENIC: single-cell regulatory network inference and clustering
    • Aibar, S., et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14 (2017), 1083–1086.
    • (2017) Nat. Methods , vol.14 , pp. 1083-1086
    • Aibar, S.1
  • 17
    • 85053831649 scopus 로고    scopus 로고
    • Cicero predicts cis-regulatory DNA interactions from single-cell chromatin accessibility data
    • Pliner, H.A., et al. Cicero predicts cis-regulatory DNA interactions from single-cell chromatin accessibility data. Mol. Cell 71 (2018), 858–871.
    • (2018) Mol. Cell , vol.71 , pp. 858-871
    • Pliner, H.A.1
  • 18
    • 85040564848 scopus 로고    scopus 로고
    • SINCERITIES: inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles
    • Papili Gao, N., et al. SINCERITIES: inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles. Bioinformatics 34 (2018), 258–266.
    • (2018) Bioinformatics , vol.34 , pp. 258-266
    • Papili Gao, N.1
  • 19
    • 85049250191 scopus 로고    scopus 로고
    • Multi-omics factor analysis – a framework for unsupervised integration of multi-omics data sets
    • Argelaguet, R., et al. Multi-omics factor analysis – a framework for unsupervised integration of multi-omics data sets. Molecular Systems Biology, 14, 2018, e8124.
    • (2018) Molecular Systems Biology , vol.14 , pp. e8124
    • Argelaguet, R.1
  • 20
    • 85018466550 scopus 로고    scopus 로고
    • DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning
    • Angermueller, C., et al. DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol., 18, 2017, 67.
    • (2017) Genome Biol. , vol.18 , pp. 67
    • Angermueller, C.1
  • 21
    • 85010898455 scopus 로고    scopus 로고
    • Pooled CRISPR screening with single-cell transcriptome readout
    • Datlinger, P., et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14 (2017), 297–301.
    • (2017) Nat. Methods , vol.14 , pp. 297-301
    • Datlinger, P.1
  • 22
    • 85006488344 scopus 로고    scopus 로고
    • Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens
    • Dixit, A., et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167 (2016), 1853–1866.
    • (2016) Cell , vol.167 , pp. 1853-1866
    • Dixit, A.1
  • 23
    • 85064079871 scopus 로고    scopus 로고
    • Towards inferring causal gene regulatory networks from single cell expression measurements
    • Published online September 25, 2018
    • Qiu, X., et al. Towards inferring causal gene regulatory networks from single cell expression measurements. bioRxiv, 2018, 10.1101/426981 Published online September 25, 2018.
    • (2018) bioRxiv
    • Qiu, X.1
  • 24
    • 67349146589 scopus 로고    scopus 로고
    • mRNA-Seq whole-transcriptome analysis of a single cell
    • Tang, F., et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6 (2009), 377–382.
    • (2009) Nat. Methods , vol.6 , pp. 377-382
    • Tang, F.1
  • 25
    • 85055080981 scopus 로고    scopus 로고
    • Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris
    • Tabula Muris Consortium, et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562 (2018), 367–372.
    • (2018) Nature , vol.562 , pp. 367-372
    • Tabula Muris Consortium1
  • 26
    • 85056913352 scopus 로고    scopus 로고
    • Mapping the mouse cell atlas by microwell-seq
    • Han, X., et al. Mapping the mouse cell atlas by microwell-seq. Cell, 173, 2018, 1307.
    • (2018) Cell , vol.173 , pp. 1307
    • Han, X.1
  • 27
    • 85028303209 scopus 로고    scopus 로고
    • Comprehensive single-cell transcriptional profiling of a multicellular organism
    • Cao, J., et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357 (2017), 661–667.
    • (2017) Science , vol.357 , pp. 661-667
    • Cao, J.1
  • 28
    • 85062419120 scopus 로고    scopus 로고
    • The single-cell transcriptional landscape of mammalian organogenesis
    • Cao, J., et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566 (2019), 496–502.
    • (2019) Nature , vol.566 , pp. 496-502
    • Cao, J.1
  • 29
    • 85058891736 scopus 로고    scopus 로고
    • Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics
    • Stoeckius, M., et al. Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol, 19, 2018, 224.
    • (2018) Genome Biol , vol.19 , pp. 224
    • Stoeckius, M.1
  • 30
    • 85044434871 scopus 로고    scopus 로고
    • Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding
    • Rosenberg, A.B., et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360 (2018), 176–182.
    • (2018) Science , vol.360 , pp. 176-182
    • Rosenberg, A.B.1
  • 31
    • 85040446434 scopus 로고    scopus 로고
    • Multiplexed droplet single-cell RNA-sequencing using natural genetic variation
    • Kang, H.M., et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36 (2018), 89–94.
    • (2018) Nat. Biotechnol. , vol.36 , pp. 89-94
    • Kang, H.M.1
  • 32
    • 85044715062 scopus 로고    scopus 로고
    • Single-cell RNA sequencing identifies cell type-specific cis-eQTLs and co-expression QTLs
    • van der Wijst, M.G.P., et al. Single-cell RNA sequencing identifies cell type-specific cis-eQTLs and co-expression QTLs. Nat. Genet. 50 (2018), 493–497.
    • (2018) Nat. Genet. , vol.50 , pp. 493-497
    • van der Wijst, M.G.P.1
  • 33
    • 85046289245 scopus 로고    scopus 로고
    • Scmap: projection of single-cell RNA-seq data across data sets
    • Kiselev, V.Y., et al. Scmap: projection of single-cell RNA-seq data across data sets. Nat. Methods 15 (2018), 359–362.
    • (2018) Nat. Methods , vol.15 , pp. 359-362
    • Kiselev, V.Y.1
  • 34
    • 85064582461 scopus 로고    scopus 로고
    • Moana: a robust and scalable cell type classification framework for single-cell RNA-Seq data
    • Published online October 30, 2018
    • Wagner, F., Yanai, I., Moana: a robust and scalable cell type classification framework for single-cell RNA-Seq data. bioRxiv, 2018, 10.1101/456129 Published online October 30, 2018.
    • (2018) bioRxiv
    • Wagner, F.1    Yanai, I.2
  • 35
    • 85067883031 scopus 로고    scopus 로고
    • Supervised classification enables rapid annotation of cell atlases
    • Published online February 25, 2019
    • Pliner, H.A., et al. Supervised classification enables rapid annotation of cell atlases. bioRxiv, 2019, 10.1101/538652 Published online February 25, 2019.
    • (2019) bioRxiv
    • Pliner, H.A.1
  • 36
    • 85064247021 scopus 로고    scopus 로고
    • Generative modeling and latent space arithmetics predict single-cell perturbation response across cell types, studies and species
    • Published online December 14, 2018
    • Lotfollahi, M., et al. Generative modeling and latent space arithmetics predict single-cell perturbation response across cell types, studies and species. bioRxiv, 2018, 10.1101/478503 Published online December 14, 2018.
    • (2018) bioRxiv
    • Lotfollahi, M.1
  • 37
    • 85040459896 scopus 로고    scopus 로고
    • The human cell atlas
    • Regev, A., et al. The human cell atlas. Elife, 6, 2017, e27041.
    • (2017) Elife , vol.6 , pp. e27041
    • Regev, A.1
  • 38
    • 21944445759 scopus 로고    scopus 로고
    • An ontology for cell types
    • Bard, J., et al. An ontology for cell types. Genome Biol, 6, 2005, R21.
    • (2005) Genome Biol , vol.6 , pp. R21
    • Bard, J.1
  • 39
    • 78650789238 scopus 로고    scopus 로고
    • Logical development of the cell ontology
    • Meehan, T.F., et al. Logical development of the cell ontology. BMC Bioinformatics, 12, 2011, 6.
    • (2011) BMC Bioinformatics , vol.12 , pp. 6
    • Meehan, T.F.1
  • 40
    • 85021335524 scopus 로고    scopus 로고
    • Single-cell alternative splicing analysis with Expedition reveals splicing dynamics during neuron differentiation
    • Song, Y., et al. Single-cell alternative splicing analysis with Expedition reveals splicing dynamics during neuron differentiation. Mol. Cell 67 (2017), 148–161.
    • (2017) Mol. Cell , vol.67 , pp. 148-161
    • Song, Y.1
  • 41
    • 85058796569 scopus 로고    scopus 로고
    • Single-cell isoform RNA sequencing characterizes isoforms in thousands of cerebellar cells
    • Gupta, I., et al. Single-cell isoform RNA sequencing characterizes isoforms in thousands of cerebellar cells. Nat. Biotechnol. 36 (2018), 1197–1202.
    • (2018) Nat. Biotechnol. , vol.36 , pp. 1197-1202
    • Gupta, I.1
  • 42
    • 85093417555 scopus 로고    scopus 로고
    • Identification of transcriptional signatures for cell types from single-cell RNA-seq. bioRxiv Published online February 14.
    • Ntranos, V. et al. Identification of transcriptional signatures for cell types from single-cell RNA-seq. bioRxiv Published online February 14, 2018. https://doi.org/10.1101/258566.
    • (2018)
    • Ntranos, V.1
  • 43
    • 85061380809 scopus 로고    scopus 로고
    • Single-cell transcriptomics of regulatory T cells reveals trajectories of tissue adaptation
    • Miragaia, R.J., et al. Single-cell transcriptomics of regulatory T cells reveals trajectories of tissue adaptation. Immunity 50 (2019), 493–504.
    • (2019) Immunity , vol.50 , pp. 493-504
    • Miragaia, R.J.1
  • 44
    • 84960194523 scopus 로고    scopus 로고
    • T cell fate and clonality inference from single-cell transcriptomes
    • Stubbington, M.J.T., et al. T cell fate and clonality inference from single-cell transcriptomes. Nat. Methods 13 (2016), 329–332.
    • (2016) Nat. Methods , vol.13 , pp. 329-332
    • Stubbington, M.J.T.1
  • 45
    • 85051486287 scopus 로고    scopus 로고
    • BraCeR: B-cell-receptor reconstruction and clonality inference from single-cell RNA-seq
    • Lindeman, I., et al. BraCeR: B-cell-receptor reconstruction and clonality inference from single-cell RNA-seq. Nat. Methods 15 (2018), 563–565.
    • (2018) Nat. Methods , vol.15 , pp. 563-565
    • Lindeman, I.1
  • 46
    • 84891677425 scopus 로고    scopus 로고
    • Full-length RNA-seq from single cells using Smart-seq2
    • Picelli, S., et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9 (2014), 171–181.
    • (2014) Nat. Protoc. , vol.9 , pp. 171-181
    • Picelli, S.1
  • 47
    • 85048957607 scopus 로고    scopus 로고
    • Single-cell map of diverse immune phenotypes in the breast tumor microenvironment
    • Azizi, E., et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174 (2018), 1293–1308.
    • (2018) Cell , vol.174 , pp. 1293-1308
    • Azizi, E.1
  • 48
    • 85069532270 scopus 로고    scopus 로고
    • High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes
    • Singh, M., et al. High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes. Nat. Commun., 10, 2019, 3120.
    • (2019) Nat. Commun. , vol.10 , pp. 3120
    • Singh, M.1
  • 49
    • 85022229481 scopus 로고    scopus 로고
    • Identifying specificity groups in the T cell receptor repertoire
    • Glanville, J., et al. Identifying specificity groups in the T cell receptor repertoire. Nature 547 (2017), 94–98.
    • (2017) Nature , vol.547 , pp. 94-98
    • Glanville, J.1
  • 50
    • 85022212188 scopus 로고    scopus 로고
    • Quantifiable predictive features define epitope-specific T cell receptor repertoires
    • Dash, P., et al. Quantifiable predictive features define epitope-specific T cell receptor repertoires. Nature 547 (2017), 89–93.
    • (2017) Nature , vol.547 , pp. 89-93
    • Dash, P.1
  • 51
    • 85040750667 scopus 로고    scopus 로고
    • Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria
    • Lönnberg, T., et al. Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria. Sci Immunol, 2, 2017, eaal2192.
    • (2017) Sci Immunol , vol.2 , pp. eaal2192
    • Lönnberg, T.1
  • 52
    • 85045131214 scopus 로고    scopus 로고
    • Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain
    • Raj, B., et al. Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain. Nat. Biotechnol. 36 (2018), 442–450.
    • (2018) Nat. Biotechnol. , vol.36 , pp. 442-450
    • Raj, B.1
  • 53
    • 85045136951 scopus 로고    scopus 로고
    • Simultaneous lineage tracing and cell-type identification using CRISPR–Cas9-induced genetic scars
    • Spanjaard, B., et al. Simultaneous lineage tracing and cell-type identification using CRISPR–Cas9-induced genetic scars. Nat. Biotechnol. 36 (2018), 469–473.
    • (2018) Nat. Biotechnol. , vol.36 , pp. 469-473
    • Spanjaard, B.1
  • 54
    • 85056665737 scopus 로고    scopus 로고
    • Single-cell reconstruction of the early maternal-fetal interface in humans
    • Vento-Tormo, R., et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563 (2018), 347–353.
    • (2018) Nature , vol.563 , pp. 347-353
    • Vento-Tormo, R.1
  • 55
    • 85061736757 scopus 로고    scopus 로고
    • CONICS integrates scRNA-seq with DNA sequencing to map gene expression to tumor sub-clones
    • Müller, S., et al. CONICS integrates scRNA-seq with DNA sequencing to map gene expression to tumor sub-clones. Bioinformatics 34 (2018), 3217–3219.
    • (2018) Bioinformatics , vol.34 , pp. 3217-3219
    • Müller, S.1
  • 56
    • 85062864174 scopus 로고    scopus 로고
    • Clonealign: statistical integration of independent single-cell RNA & DNA-seq from human cancers
    • Campbell, K.R., et al. Clonealign: statistical integration of independent single-cell RNA & DNA-seq from human cancers. Genome Biol., 20, 2018, 54.
    • (2018) Genome Biol. , vol.20 , pp. 54
    • Campbell, K.R.1
  • 57
    • 85062941775 scopus 로고    scopus 로고
    • Cardelino: integrating whole exomes and single-cell transcriptomes to reveal phenotypic impact of somatic variants
    • Published online November 26, 2018
    • McCarthy, D.J., et al. Cardelino: integrating whole exomes and single-cell transcriptomes to reveal phenotypic impact of somatic variants. bioRxiv, 2018, 10.1101/413047 Published online November 26, 2018.
    • (2018) bioRxiv
    • McCarthy, D.J.1
  • 58
    • 85074744215 scopus 로고    scopus 로고
    • Single-cell lineage tracing by endogenous mutations enriched in transposase accessible mitochondrial DNA
    • Published online November 29, 2018
    • Xu, J., et al. Single-cell lineage tracing by endogenous mutations enriched in transposase accessible mitochondrial DNA. bioRxiv, 2018, 10.1101/480202 Published online November 29, 2018.
    • (2018) bioRxiv
    • Xu, J.1
  • 59
    • 85062426134 scopus 로고    scopus 로고
    • Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics
    • Ludwig, L.S., et al. Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell 176 (2019), 1325–1339.
    • (2019) Cell , vol.176 , pp. 1325-1339
    • Ludwig, L.S.1
  • 60
    • 85020287843 scopus 로고    scopus 로고
    • A unique microglia type associated with restricting development of Alzheimer's disease
    • Keren-Shaul, H., et al. A unique microglia type associated with restricting development of Alzheimer's disease. Cell 169 (2017), 1276–1290.
    • (2017) Cell , vol.169 , pp. 1276-1290
    • Keren-Shaul, H.1
  • 61
    • 85063634593 scopus 로고    scopus 로고
    • A cellular census of healthy lung and asthmatic airway wall identifies novel cell states in health and disease
    • Published online January 23, 2019
    • Vieira Braga, F.A., et al. A cellular census of healthy lung and asthmatic airway wall identifies novel cell states in health and disease. bioRxiv, 2019, 10.1101/527408 Published online January 23, 2019.
    • (2019) bioRxiv
    • Vieira Braga, F.A.1
  • 62
    • 85033226512 scopus 로고    scopus 로고
    • Single-cell analysis identifies cellular markers of the HIV permissive cell
    • Rato, S., et al. Single-cell analysis identifies cellular markers of the HIV permissive cell. PLoS Pathog., 13, 2017, e1006678.
    • (2017) PLoS Pathog. , vol.13 , pp. e1006678
    • Rato, S.1
  • 63
    • 85045284573 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals transcriptional heterogeneity in latent and reactivated HIV-infected cells
    • Golumbeanu, M., et al. Single-cell RNA-seq reveals transcriptional heterogeneity in latent and reactivated HIV-infected cells. Cell Rep. 23 (2018), 942–950.
    • (2018) Cell Rep. , vol.23 , pp. 942-950
    • Golumbeanu, M.1
  • 64
    • 85059214054 scopus 로고    scopus 로고
    • Virus-inclusive single-cell RNA sequencing reveals the molecular signature of progression to severe dengue
    • Zanini, F., et al. Virus-inclusive single-cell RNA sequencing reveals the molecular signature of progression to severe dengue. Proc. Natl. Acad. Sci. U. S. A. 115 (2018), E12363–E12369.
    • (2018) Proc. Natl. Acad. Sci. U. S. A. , vol.115 , pp. E12363-E12369
    • Zanini, F.1
  • 65
    • 85043531075 scopus 로고    scopus 로고
    • Extreme heterogeneity of influenza virus infection in single cells
    • Russell, A.B., et al. Extreme heterogeneity of influenza virus infection in single cells. Elife, 7, 2018, e32303.
    • (2018) Elife , vol.7 , pp. e32303
    • Russell, A.B.1
  • 66
    • 85074746227 scopus 로고    scopus 로고
    • Single-cell RNA-sequencing of herpes simplex virus 1-infected cells identifies NRF2 activation as an antiviral program
    • Published online March 4, 2019
    • Wyler, E., et al. Single-cell RNA-sequencing of herpes simplex virus 1-infected cells identifies NRF2 activation as an antiviral program. bioRxiv, 2019, 10.1101/566992 Published online March 4, 2019.
    • (2019) bioRxiv
    • Wyler, E.1
  • 67
    • 85068196924 scopus 로고    scopus 로고
    • HSV-1 single cell analysis reveals anti-viral and developmental programs activation in distinct sub-populations
    • Drayman, N., et al. HSV-1 single cell analysis reveals anti-viral and developmental programs activation in distinct sub-populations. Elife, 8, 2019, e46330.
    • (2019) Elife , vol.8 , pp. e46330
    • Drayman, N.1
  • 68
    • 85045640021 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals hidden transcriptional variation in malaria parasites
    • Reid, A.J., et al. Single-cell RNA-seq reveals hidden transcriptional variation in malaria parasites. Elife, 7, 2018, e33105.
    • (2018) Elife , vol.7 , pp. e33105
    • Reid, A.J.1
  • 69
    • 85047409215 scopus 로고    scopus 로고
    • Single-cell transcriptome profiling of protozoan and metazoan parasites
    • Nötzel, C., et al. Single-cell transcriptome profiling of protozoan and metazoan parasites. Trends Parasitol 34 (2018), 731–734.
    • (2018) Trends Parasitol , vol.34 , pp. 731-734
    • Nötzel, C.1
  • 70
    • 84930178333 scopus 로고    scopus 로고
    • G&T-seq: parallel sequencing of single-cell genomes and transcriptomes
    • Macaulay, I.C., et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat. Methods 12 (2015), 519–522.
    • (2015) Nat. Methods , vol.12 , pp. 519-522
    • Macaulay, I.C.1
  • 71
    • 85009781625 scopus 로고    scopus 로고
    • Single-cell multiomics: multiple measurements from single cells
    • Macaulay, I.C., et al. Single-cell multiomics: multiple measurements from single cells. Trends Genet 33 (2017), 155–168.
    • (2017) Trends Genet , vol.33 , pp. 155-168
    • Macaulay, I.C.1
  • 72
    • 84937251378 scopus 로고    scopus 로고
    • A functional perspective on phenotypic heterogeneity in microorganisms
    • Ackermann, M., A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol. 13 (2015), 497–508.
    • (2015) Nat. Rev. Microbiol. , vol.13 , pp. 497-508
    • Ackermann, M.1
  • 73
    • 85032571368 scopus 로고    scopus 로고
    • The trajectory of microbial single-cell sequencing
    • Woyke, T., et al. The trajectory of microbial single-cell sequencing. Nat. Methods 14 (2017), 1045–1054.
    • (2017) Nat. Methods , vol.14 , pp. 1045-1054
    • Woyke, T.1
  • 74
    • 85061775708 scopus 로고    scopus 로고
    • Single-cell analysis of diverse pathogen responses defines a molecular roadmap for generating antigen-specific immunity
    • Blecher-Gonen, R., et al. Single-cell analysis of diverse pathogen responses defines a molecular roadmap for generating antigen-specific immunity. Cell Syst. 8 (2019), 109–121.
    • (2019) Cell Syst. , vol.8 , pp. 109-121
    • Blecher-Gonen, R.1
  • 75
    • 85047186828 scopus 로고    scopus 로고
    • Mapping the physical network of cellular interactions
    • Boisset, J.-C., et al. Mapping the physical network of cellular interactions. Nat. Methods 15 (2018), 547–553.
    • (2018) Nat. Methods , vol.15 , pp. 547-553
    • Boisset, J.-C.1
  • 76
    • 84928395184 scopus 로고    scopus 로고
    • Spatially resolved, highly multiplexed RNA profiling in single cells
    • Chen, K.H., et al. Spatially resolved, highly multiplexed RNA profiling in single cells. Science, 348, 2015, aaa6090.
    • (2015) Science , vol.348 , pp. aaa6090
    • Chen, K.H.1
  • 77
    • 84976875145 scopus 로고    scopus 로고
    • Visualization and analysis of gene expression in tissue sections by spatial transcriptomics
    • Ståhl, P.L., et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353 (2016), 78–82.
    • (2016) Science , vol.353 , pp. 78-82
    • Ståhl, P.L.1
  • 78
    • 85074744679 scopus 로고    scopus 로고
    • High-density spatial transcriptomics arrays for in situ tissue profiling
    • Published online March 13, 2019
    • Vickovic, S., et al. High-density spatial transcriptomics arrays for in situ tissue profiling. bioRxiv, 2019, 10.1101/563338 Published online March 13, 2019.
    • (2019) bioRxiv
    • Vickovic, S.1
  • 79
    • 85064114011 scopus 로고    scopus 로고
    • Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution
    • Rodriques, S.G., et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363 (2019), 1463–1467.
    • (2019) Science , vol.363 , pp. 1463-1467
    • Rodriques, S.G.1
  • 80
    • 85057586270 scopus 로고    scopus 로고
    • Deep generative modeling for single-cell transcriptomics
    • Lopez, R., et al. Deep generative modeling for single-cell transcriptomics. Nat. Methods 15 (2018), 1053–1058.
    • (2018) Nat. Methods , vol.15 , pp. 1053-1058
    • Lopez, R.1
  • 81
    • 85066448459 scopus 로고    scopus 로고
    • Comprehensive integration of single cell data
    • P188–1902.E21
    • Stuart, T., et al. Comprehensive integration of single cell data. Cell, 177, 2019 P188–1902.E21.
    • (2019) Cell , vol.177
    • Stuart, T.1
  • 82
    • 85059455396 scopus 로고    scopus 로고
    • Integrative inference of brain cell similarities and differences from single-cell genomics
    • Published online November 2, 2018
    • Welch, J., et al. Integrative inference of brain cell similarities and differences from single-cell genomics. bioRxiv, 2018, 10.1101/459891 Published online November 2, 2018.
    • (2018) bioRxiv
    • Welch, J.1
  • 83
    • 85057943596 scopus 로고    scopus 로고
    • Integrating single-cell RNA-seq with spatial transcriptomics in pancreatic ductal adenocarcinoma using multimodal intersection analysis
    • Published online March 13, 2019
    • Moncada, R., et al. Integrating single-cell RNA-seq with spatial transcriptomics in pancreatic ductal adenocarcinoma using multimodal intersection analysis. bioRxiv, 2019, 10.1101/254375 Published online March 13, 2019.
    • (2019) bioRxiv
    • Moncada, R.1
  • 84
    • 85074743312 scopus 로고    scopus 로고
    • Harmonization and annotation of single-cell transcriptomics data with deep generative models
    • Published online January 29, 2019
    • Xu, C., et al. Harmonization and annotation of single-cell transcriptomics data with deep generative models. bioRxiv, 2019, 10.1101/532895 Published online January 29, 2019.
    • (2019) bioRxiv
    • Xu, C.1
  • 85
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • Esteva, A., et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542 (2017), 115–118.
    • (2017) Nature , vol.542 , pp. 115-118
    • Esteva, A.1
  • 86
    • 85050855414 scopus 로고    scopus 로고
    • Generative adversarial networks simulate gene expression and predict perturbations in single cells
    • Published online July 30, 2018
    • Ghahramani, A., et al. Generative adversarial networks simulate gene expression and predict perturbations in single cells. bioRxiv, 2018, 10.1101/262501 Published online July 30, 2018.
    • (2018) bioRxiv
    • Ghahramani, A.1
  • 87
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y., et al. Deep learning. Nature 521 (2015), 436–444.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1
  • 88
    • 85057576705 scopus 로고    scopus 로고
    • scVAE: variational auto-encoders for single-cell gene expression data
    • Published online May 21, 2019
    • Grønbech, C.H., et al. scVAE: variational auto-encoders for single-cell gene expression data. bioRxiv, 2019, 10.1101/318295 Published online May 21, 2019.
    • (2019) bioRxiv
    • Grønbech, C.H.1
  • 89
    • 85031092991 scopus 로고    scopus 로고
    • Gene regulatory network inference from single-cell data using multivariate information measures
    • Chan, T.E., et al. Gene regulatory network inference from single-cell data using multivariate information measures. Cell Syst. 5 (2017), 251–267.
    • (2017) Cell Syst. , vol.5 , pp. 251-267
    • Chan, T.E.1
  • 90
    • 85055863346 scopus 로고    scopus 로고
    • Large-scale multi-class image-based cell classification with deep learning
    • Meng, N., et al. Large-scale multi-class image-based cell classification with deep learning. IEEE J. Biomed. Health Inform. 23 (2018), 2091–2098.
    • (2018) IEEE J. Biomed. Health Inform. , vol.23 , pp. 2091-2098
    • Meng, N.1
  • 91
    • 85060821631 scopus 로고    scopus 로고
    • Label-free classification of cells based on supervised machine learning of subcellular structures
    • Ozaki, Y., et al. Label-free classification of cells based on supervised machine learning of subcellular structures. PLoS One, 14, 2019, e0211347.
    • (2019) PLoS One , vol.14 , pp. e0211347
    • Ozaki, Y.1
  • 92
    • 85048928895 scopus 로고    scopus 로고
    • Generalizable and scalable visualization of single-cell data using neural networks
    • Cho, H., et al. Generalizable and scalable visualization of single-cell data using neural networks. Cell Syst. 7 (2018), 185–191.
    • (2018) Cell Syst. , vol.7 , pp. 185-191
    • Cho, H.1
  • 93
    • 85093617858 scopus 로고    scopus 로고
    • scCapsNet: a deep learning classifier with the capability of interpretable feature extraction, applicable for single cell RNA data analysis
    • Published online May 21, 2019
    • Wang, L., et al. scCapsNet: a deep learning classifier with the capability of interpretable feature extraction, applicable for single cell RNA data analysis. bioRxiv, 2019, 10.1101/506642 Published online May 21, 2019.
    • (2019) bioRxiv
    • Wang, L.1
  • 94
    • 85074745558 scopus 로고    scopus 로고
    • Droplet scRNA-seq is not zero-inflated
    • Published online March 19, 2019
    • Svensson, V., Droplet scRNA-seq is not zero-inflated. bioRxiv, 2019, 10.1101/582064 Published online March 19, 2019.
    • (2019) bioRxiv
    • Svensson, V.1
  • 95
    • 85066928572 scopus 로고    scopus 로고
    • Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression
    • Published online March 18, 2019
    • Hafemeister, C., Satija, R., Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. bioRxiv, 2019, 10.1101/576827 Published online March 18, 2019.
    • (2019) bioRxiv
    • Hafemeister, C.1    Satija, R.2
  • 96
    • 84860909299 scopus 로고    scopus 로고
    • A theory of biological relativity: no privileged level of causation
    • Noble, D., A theory of biological relativity: no privileged level of causation. Interface Focus 2 (2012), 55–64.
    • (2012) Interface Focus , vol.2 , pp. 55-64
    • Noble, D.1
  • 97
    • 85062300354 scopus 로고    scopus 로고
    • A single-cell molecular map of mouse gastrulation and early organogenesis
    • Pijuan-Sala, B., et al. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 566 (2019), 490–495.
    • (2019) Nature , vol.566 , pp. 490-495
    • Pijuan-Sala, B.1
  • 98
    • 85057333353 scopus 로고    scopus 로고
    • A primer on deep learning in genomics
    • Zou, J., et al. A primer on deep learning in genomics. Nat. Genet. 51 (2019), 12–18.
    • (2019) Nat. Genet. , vol.51 , pp. 12-18
    • Zou, J.1
  • 99
    • 85057555111 scopus 로고    scopus 로고
    • A primer on data analytics in functional genomics: how to move from data to insight?
    • Grabowski, P., Rappsilber, J., A primer on data analytics in functional genomics: how to move from data to insight?. Trends Biochem. Sci. 44 (2019), 21–32.
    • (2019) Trends Biochem. Sci. , vol.44 , pp. 21-32
    • Grabowski, P.1    Rappsilber, J.2
  • 100
    • 84990070233 scopus 로고    scopus 로고
    • Tutorial on variational autoencoders
    • Published online June 19, 2016
    • Doersch, C., Tutorial on variational autoencoders. arRxiv, 2016 Published online June 19, 2016 https://arxiv.org/abs/1606.05908.
    • (2016) arRxiv
    • Doersch, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.