메뉴 건너뛰기




Volumn 34, Issue 2, 2018, Pages 258-266

SINCERITIES: Inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85040564848     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btx575     Document Type: Article
Times cited : (153)

References (75)
  • 2
    • 84880280631 scopus 로고    scopus 로고
    • ViSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia
    • Amir, E.D. et al. (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol., 31, 545-552
    • (2013) Nat Biotechnol , vol.31 , pp. 545-552
    • Amir, E.D.1
  • 3
    • 0345397288 scopus 로고
    • On the distribution of the two-sample cramer-von mises criterion
    • Anderson, T.W. (1962) On the distribution of the Two-Sample Cramer-von Mises criterion. Ann. Math. Stat., 33, 1148-1159
    • (1962) Ann Math. Stat , vol.33 , pp. 1148-1159
    • Anderson, T.W.1
  • 4
    • 0000923503 scopus 로고
    • Asymptotic theory of certain Goodness of Fit criteria based on stochastic processes
    • Anderson, T.W. and Darling, D.A. (1952) Asymptotic theory of certain Goodness of Fit criteria based on stochastic processes. Ann. Math. Stat., 23, 193-212
    • (1952) Ann Math. Stat , vol.23 , pp. 193-212
    • Anderson, T.W.1    Darling, D.A.2
  • 5
    • 84962658087 scopus 로고    scopus 로고
    • Design and computational analysis of single-cell RNA-sequencing experiments
    • Bacher, R. et al. (2016) Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol., 17, 63
    • (2016) Genome Biol , vol.17 , pp. 63
    • Bacher, R.1
  • 6
    • 33645307955 scopus 로고    scopus 로고
    • Inference of gene regulatory networks and compound mode of action from time course gene expression profiles
    • Bansal, M et al. (2006) Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics, 22, 815-822
    • (2006) Bioinformatics , vol.22 , pp. 815-822
    • Bansal, M.1
  • 7
    • 84863887694 scopus 로고    scopus 로고
    • Studying and modelling dynamic biological processes using time-series gene expression data
    • Bar-Joseph, Z. et al. (2012) Studying and modelling dynamic biological processes using time-series gene expression data. Nat. Rev. Genet., 13, 552-564
    • (2012) Nat. Rev. Genet , vol.13 , pp. 552-564
    • Bar-Joseph, Z.1
  • 8
    • 84899574465 scopus 로고    scopus 로고
    • Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development
    • Bendall, S.C. et al. (2014) Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell, 157, 714-725
    • (2014) Cell , vol.157 , pp. 714-725
    • Bendall, S.C.1
  • 9
    • 84923292191 scopus 로고    scopus 로고
    • Computational analysis of cell-To-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells Nat
    • Buettner, F. et al. (2015) Computational analysis of cell-To-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells Nat. Biotechnol., 33, 155-160
    • (2015) Biotechnol , vol.33 , pp. 155-160
    • Buettner, F.1
  • 10
    • 84903721731 scopus 로고    scopus 로고
    • Probabilistic PCA of censored data: Accounting for uncertainties in the visualization of high-Throughput single-cell qPCR data
    • Buettner, F et al. (2014) Probabilistic PCA of censored data: Accounting for uncertainties in the visualization of high-Throughput single-cell qPCR data Bioinformatics, 30, 1867-1875
    • (2014) Bioinformatics , vol.30 , pp. 1867-1875
    • Buettner, F.1
  • 11
    • 44349162752 scopus 로고    scopus 로고
    • Transcriptome-wide noise controls lineage choice in mammalian progenitor cells
    • Chang, H.H et al. (2008) Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature, 453, 544-547
    • (2008) Nature , vol.453 , pp. 544-547
    • Chang, H.H.1
  • 12
    • 84876100615 scopus 로고    scopus 로고
    • Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool
    • Chen, E.Y. et al. (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics, 14, 128
    • (2013) BMC Bioinformatics , vol.14 , pp. 128
    • Chen, E.Y.1
  • 14
    • 84982085158 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm
    • Chu, L.-F. et al. (2016) Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm. Genome Biol., 17, 173
    • (2016) Genome Biol , vol.17 , pp. 173
    • Chu, L.-F.1
  • 16
    • 77949523739 scopus 로고    scopus 로고
    • On the spontaneous stochastic dynamics of a single gene: Complexity of the molecular interplay at the promoter
    • Coulon, A. et al. (2010) On the spontaneous stochastic dynamics of a single gene: complexity of the molecular interplay at the promoter. BMC Syst Biol., 4, 2
    • (2010) BMC Syst Biol , vol.4 , pp. 2
    • Coulon, A.1
  • 17
    • 1642458226 scopus 로고    scopus 로고
    • The MEK-1/ERKs signalling pathway is differentially involved in the self-renewal of early and late avian erythroid progenitor cells
    • Dazy, S et al. (2003) The MEK-1/ERKs signalling pathway is differentially involved in the self-renewal of early and late avian erythroid progenitor cells. Oncogene, 22, 9205-9216
    • (2003) Oncogene , vol.22 , pp. 9205-9216
    • Dazy, S.1
  • 18
    • 84880953116 scopus 로고    scopus 로고
    • Stochastic cytokine expression induces mixed T helper cell States
    • Fang, M. et al. (2013) Stochastic cytokine expression induces mixed T helper cell States. PLoS Biol., 11, e1001618
    • (2013) PLoS Biol , vol.11 , pp. e1001618
    • Fang, M.1
  • 19
    • 0001020733 scopus 로고
    • A multidimensional version of the Kolmogorov-Smirnov test
    • Fasano, G. and Franceschini, A. (1987) A multidimensional version of the Kolmogorov-Smirnov test. Mon. Not. R. Astron. Soc., 225, 155-170
    • (1987) Mon Not. R. Astron. Soc , vol.225 , pp. 155-170
    • Fasano, G.1    Franceschini, A.2
  • 20
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman, J. et al. (2010) Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw., 33, 1-22
    • (2010) J. Stat. Softw , vol.33 , pp. 1-22
    • Friedman, J.1
  • 21
    • 0033577694 scopus 로고    scopus 로고
    • TGF-beta cooperates with TGF-Alpha to induce the self-renewal of normal erythrocytic progenitors: Evidence for an autocrine mechanism
    • Gandrillon, O et al. (1999) TGF-beta cooperates with TGF-Alpha to induce the self-renewal of normal erythrocytic progenitors: evidence for an autocrine mechanism. EMBO J., 18, 2764-2781
    • (1999) EMBO J , vol.18 , pp. 2764-2781
    • Gandrillon, O.1
  • 22
    • 0000351727 scopus 로고
    • Investigating causal relations by econometric models and cross-spectral methods
    • Granger, C.W.J (1969) Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica, 37, 424-438
    • (1969) Econometrica , vol.37 , pp. 424-438
    • Granger, C.W.J.1
  • 23
    • 80051967505 scopus 로고    scopus 로고
    • Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells
    • Gupta, P.B. et al. (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell, 146, 633-644
    • (2011) Cell , vol.146 , pp. 633-644
    • Gupta, P.B.1
  • 24
    • 84941753288 scopus 로고    scopus 로고
    • Diffusion maps for high-dimensional single-cell analysis of differentiation data
    • Haghverdi, L. et al. (2015) Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics, 31, 2989-2998
    • (2015) Bioinformatics , vol.31 , pp. 2989-2998
    • Haghverdi, L.1
  • 25
    • 0035439412 scopus 로고    scopus 로고
    • An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations
    • Higham, D.J (2001) An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations. SIAM Rev., 43, 525-546
    • (2001) SIAM Rev , vol.43 , pp. 525-546
    • Higham, D.J.1
  • 26
    • 84978698935 scopus 로고    scopus 로고
    • Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios
    • Hoppe, P.S. et al. (2016) Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios. Nature, 535, 299-302
    • (2016) Nature , vol.535 , pp. 299-302
    • Hoppe, P.S.1
  • 27
    • 84914696702 scopus 로고    scopus 로고
    • Time-variant clustering model for understanding cell fate decisions
    • Huang, W. et al. (2014) Time-variant clustering model for understanding cell fate decisions. Proc. Natl. Acad. Sci. USA, 111, E4797-E4806
    • (2014) Proc. Natl. Acad. Sci. USA , vol.111 , pp. E4797-E4806
    • Huang, W.1
  • 28
    • 77958570788 scopus 로고    scopus 로고
    • Inferring regulatory networks from expression data using tree-based methods
    • Huynh-Thu, V.A. et al. (2010) Inferring regulatory networks from expression data using tree-based methods. PLoS One, 5, e12776
    • (2010) PLoS One , vol.5 , pp. e12776
    • Huynh-Thu, V.A.1
  • 29
    • 84929612020 scopus 로고    scopus 로고
    • Combining tree-based and dynamical systems for the inference of gene regulatory networks
    • Huynh-Thu, V.A and Sanguinetti, G. (2015) Combining tree-based and dynamical systems for the inference of gene regulatory networks Bioinformatics, 31, 1614-1622
    • (2015) Bioinformatics , vol.31 , pp. 1614-1622
    • Huynh-Thu, V.A.1    Sanguinetti, G.2
  • 30
    • 84982806105 scopus 로고    scopus 로고
    • TSCAN: Pseudo-Time reconstruction and evaluation in single-cell RNA-seq analysis
    • Ji, Z. and Ji, H. (2016) TSCAN: Pseudo-Time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic Acids Res., 44, e117
    • (2016) Nucleic Acids Res , vol.44 , pp. e117
    • Ji, Z.1    Ji, H.2
  • 31
    • 0031572682 scopus 로고    scopus 로고
    • A multivariate Kolmogorov-Smirnov test of goodness of fit
    • Justel, A. et al. (1997) A multivariate Kolmogorov-Smirnov test of goodness of fit. Stat. Probab. Lett., 35, 251-259
    • (1997) Stat Probab. Lett , vol.35 , pp. 251-259
    • Justel, A.1
  • 32
    • 77954275723 scopus 로고    scopus 로고
    • ToppCluster: A multiple gene list feature analyzer for comparative enrichment clustering and network-based dissection of biological systems
    • Kaimal, V. et al. (2010) ToppCluster: A multiple gene list feature analyzer for comparative enrichment clustering and network-based dissection of biological systems. Nucleic Acids Res., 38, W96-W102
    • (2010) Nucleic Acids Res , vol.38 , pp. W96-W102
    • Kaimal, V.1
  • 33
    • 84937573360 scopus 로고    scopus 로고
    • Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells
    • Kim, K.-T et al. (2015) Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells Genome Biol., 16, 127
    • (2015) Genome Biol , vol.16 , pp. 127
    • Kim, K.-T.1
  • 34
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Kohavi, R. (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proc. 14th Int. Jt. Conf. Artif. Intell., pp 1137-1143
    • (1995) Proc 14th Int. Jt. Conf. Artif. Intell , pp. 1137-1143
    • Kohavi, R.1
  • 35
    • 84886017663 scopus 로고    scopus 로고
    • Temporal dynamics and transcriptional control using single-cell gene expression analysis
    • Kouno, T. et al. (2013) Temporal dynamics and transcriptional control using single-cell gene expression analysis. Genome Biol., 14, R118
    • (2013) Genome Biol , vol.14 , pp. R118
    • Kouno, T.1
  • 36
    • 84923188586 scopus 로고    scopus 로고
    • Deconstructing transcriptional heterogeneity in pluripotent stem cells
    • Kumar, R.M. et al. (2014) Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature, 516, 56-61
    • (2014) Nature , vol.516 , pp. 56-61
    • Kumar, R.M.1
  • 37
    • 84892939104 scopus 로고    scopus 로고
    • Network of mutually repressive metastasis regulators can promote cell heterogeneity and metastatic transitions
    • Lee, J. et al. (2014) Network of mutually repressive metastasis regulators can promote cell heterogeneity and metastatic transitions. Proc. Natl. Acad. Sci USA, 111, 364-373
    • (2014) Proc. Natl. Acad. Sci USA , vol.111 , pp. 364-373
    • Lee, J.1
  • 38
    • 84985987160 scopus 로고    scopus 로고
    • BTR: Training asynchronous Boolean models using single-cell expression data
    • Lim, C.Y. et al. (2016) BTR: Training asynchronous Boolean models using single-cell expression data. BMC Bioinformatics, 17, 355
    • (2016) BMC Bioinformatics , vol.17 , pp. 355
    • Lim, C.Y.1
  • 39
    • 84964545059 scopus 로고    scopus 로고
    • Single-cell transcriptome sequencing: Recent advances and remaining challenges
    • Liu, S. and Trapnell, C. (2016) Single-cell transcriptome sequencing: recent advances and remaining challenges. F1000Research, 5, 182
    • (2016) F1000Research , vol.5 , pp. 182
    • Liu, S.1    Trapnell, C.2
  • 40
    • 59649110273 scopus 로고    scopus 로고
    • Generating realistic in silico gene networks for performance assessment of reverse engineering methods
    • Marbach, D. et al. (2009) Generating realistic in silico gene networks for performance assessment of reverse engineering methods. J. Comput. Biol., 16, 229-239
    • (2009) J Comput. Biol , vol.16 , pp. 229-239
    • Marbach, D.1
  • 41
    • 84870305264 scopus 로고    scopus 로고
    • Wisdom of crowds for robust gene network inference
    • Marbach, D. et al. (2012) Wisdom of crowds for robust gene network inference Nat. Methods, 9, 796-804
    • (2012) Nat Methods , vol.9 , pp. 796-804
    • Marbach, D.1
  • 42
    • 84924365758 scopus 로고    scopus 로고
    • Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape
    • Marco, E. et al. (2014) Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape. Proc. Natl. Acad. Sci. USA, 111, 5643-5650
    • (2014) Proc. Natl. Acad. Sci. USA , vol.111 , pp. 5643-5650
    • Marco, E.1
  • 43
    • 84941871856 scopus 로고
    • The kolmogorov-smirnov test for goodness of fit
    • Massey, F.J. (1951) The Kolmogorov-Smirnov Test for Goodness of Fit J. Am. Stat. Assoc., 46, 68-78
    • (1951) J Am Stat. Assoc , vol.46 , pp. 68-78
    • Massey, F.J.1
  • 44
    • 85040584980 scopus 로고    scopus 로고
    • SCODE: An efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation
    • Matsumoto, H. et al. (2017) SCODE: An efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation. Bioinformatics, 43, 76-81
    • (2017) Bioinformatics , vol.43 , pp. 76-81
    • Matsumoto, H.1
  • 45
    • 84924353105 scopus 로고    scopus 로고
    • Decoding the regulatory network of early blood development from single-cell gene expression measurements
    • Moignard, V. et al. (2015) Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat Biotechnol., 33, 269-276
    • (2015) Nat Biotechnol , vol.33 , pp. 269-276
    • Moignard, V.1
  • 46
    • 84991585454 scopus 로고    scopus 로고
    • Transition states and cell fate decisions in epigenetic landscapes
    • Moris, N. et al. (2016) Transition states and cell fate decisions in epigenetic landscapes. Nat. Rev. Genet., 17, 693-703
    • (2016) Nat. Rev. Genet , vol.17 , pp. 693-703
    • Moris, N.1
  • 47
    • 84879689439 scopus 로고    scopus 로고
    • Specificity through cooperation: BATF-IRF interactions control immune-regulatory networks
    • Murphy, T.L. et al. (2013) Specificity through cooperation: BATF-IRF interactions control immune-regulatory networks. Nat. Rev. Immunol., 13, 499-509
    • (2013) Nat. Rev. Immunol , vol.13 , pp. 499-509
    • Murphy, T.L.1
  • 48
    • 84931084251 scopus 로고    scopus 로고
    • Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data
    • Ocone, A. et al. (2015) Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data. Bioinformatics, 31, i89-i96
    • (2015) Bioinformatics , vol.31 , pp. i89-i96
    • Ocone, A.1
  • 49
    • 85008402805 scopus 로고    scopus 로고
    • Gene regulatory network inference using time-stamped cross-sectional single cell expression data
    • Papili Gao, N. et al. (2016) Gene regulatory network inference using time-stamped cross-sectional single cell expression data. IFAC-PapersOnLine, 49, 147-152
    • (2016) IFAC-PapersOnLine , vol.49 , pp. 147-152
    • Papili Gao, N.1
  • 50
    • 84929548290 scopus 로고    scopus 로고
    • Fluidigm dynamic arrays provide a platform for single-cell gene expression analysis
    • Pieprzyk, M. and High, H. (2009) Fluidigm Dynamic Arrays provide a platform for single-cell gene expression analysis. Nat. Methods, 6, iii-iv
    • (2009) Nat Methods , vol.6 , pp. 3-4
    • Pieprzyk, M.1    High, H.2
  • 51
    • 84955706109 scopus 로고    scopus 로고
    • ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis
    • Pierson, E. et al. (2015) ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol., 16, 241
    • (2015) Genome Biol , vol.16 , pp. 241
    • Pierson, E.1
  • 52
    • 84937641068 scopus 로고    scopus 로고
    • Single-cell network analysis identifies DDIT3 as a nodal lineage regulator in hematopoiesis
    • Pina, C. et al. (2015) Single-cell network analysis identifies DDIT3 as a nodal lineage regulator in hematopoiesis. Cell Rep., 11, 1503-1510
    • (2015) Cell Rep , vol.11 , pp. 1503-1510
    • Pina, C.1
  • 53
    • 78149429509 scopus 로고    scopus 로고
    • From knockouts to networks: Establishing direct cause-effect relationships through graph analysis
    • Pinna, A. et al. (2010) From knockouts to networks: establishing direct cause-effect relationships through graph analysis. PLoS One, 5, e12912
    • (2010) PLoS One , vol.5 , pp. e12912
    • Pinna, A.1
  • 54
    • 84922321862 scopus 로고    scopus 로고
    • Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex
    • Pollen, A.A. et al. (2014) Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat. Biotechnol., 32, 1053-1058
    • (2014) Nat. Biotechnol , vol.32 , pp. 1053-1058
    • Pollen, A.A.1
  • 55
    • 85009145060 scopus 로고    scopus 로고
    • Single-cell-based analysis highlights a surge in cell-To-cell molecular variability preceding irreversible commitment in a differentiation process
    • Richard, A. et al. (2016) Single-cell-based analysis highlights a surge in cell-To-cell molecular variability preceding irreversible commitment in a differentiation process. PLOS Biol., 14, e1002585
    • (2016) PLOS Biol , vol.14 , pp. e1002585
    • Richard, A.1
  • 56
    • 85019365266 scopus 로고    scopus 로고
    • Scaling single cell transcriptomics through split pool barcoding
    • Rosenberg, A.B. et al. (2017) Scaling single cell transcriptomics through split pool barcoding. bioRxiv
    • (2017) BioRxiv
    • Rosenberg, A.B.1
  • 57
    • 69349092063 scopus 로고    scopus 로고
    • Developmental and species-divergent globin switching are driven by BCL11A
    • Sankaran, V.G et al. (2009) Developmental and species-divergent globin switching are driven by BCL11A. Nature, 460, 1093-1097
    • (2009) Nature , vol.460 , pp. 1093-1097
    • Sankaran, V.G.1
  • 58
    • 79961200389 scopus 로고    scopus 로고
    • GeneNetWeaver: In silico benchmark generation and performance profiling of network inference methods
    • Schaffter, T. et al. (2011) GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics, 27, 2263-2270
    • (2011) Bioinformatics , vol.27 , pp. 2263-2270
    • Schaffter, T.1
  • 59
    • 84903185013 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals dynamic paracrine control of cellular variation
    • Shalek, A.K. et al. (2014) Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature, 510, 363-369
    • (2014) Nature , vol.510 , pp. 363-369
    • Shalek, A.K.1
  • 60
    • 0001745298 scopus 로고
    • The interpretation of interaction in contingency tables
    • Simpson, E.H. (1951) The Interpretation of Interaction in Contingency Tables J. R. Stat. Soc. Ser. B, 13, 238-241
    • (1951) J R Stat. Soc. Ser. B , vol.13 , pp. 238-241
    • Simpson, E.H.1
  • 61
    • 84923647450 scopus 로고    scopus 로고
    • Computational and analytical challenges in single-cell transcriptomics
    • Stegle, O. et al. (2015) Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet., 16, 133-145
    • (2015) Nat. Rev. Genet , vol.16 , pp. 133-145
    • Stegle, O.1
  • 62
    • 84855997910 scopus 로고    scopus 로고
    • Inference of complex biological networks: Distinguishability issues and optimization-based solutions
    • Szederkényi, G. et al. (2011) Inference of complex biological networks: distinguishability issues and optimization-based solutions. BMC Syst. Biol., 5, 177
    • (2011) BMC Syst. Biol , vol.5 , pp. 177
    • Szederkényi, G.1
  • 63
    • 0034117144 scopus 로고    scopus 로고
    • Red blood cell surface adhesion molecules: Their possible roles in normal human physiology and disease
    • Telen, M.J. (2000) Red blood cell surface adhesion molecules: Their possible roles in normal human physiology and disease. Semin. Hematol., 37, 130-142
    • (2000) Semin Hematol , vol.37 , pp. 130-142
    • Telen, M.J.1
  • 64
    • 84883385125 scopus 로고    scopus 로고
    • Transcriptional regulation of lineage commitment-A stochastic model of cell fate decisions
    • Teles, J. et al. (2013) Transcriptional regulation of lineage commitment-A stochastic model of cell fate decisions. PLoS Comput. Biol., 9, e1003197
    • (2013) PLoS Comput. Biol , vol.9 , pp. e1003197
    • Teles, J.1
  • 65
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J R Stat. Soc. B, 267-288
    • (1996) J R Stat Soc. B , pp. 267-288
    • Tibshirani, R.1
  • 66
    • 76249130293 scopus 로고    scopus 로고
    • Regulatory interdependence of myeloid transcription factors revealed by Matrix RNAi analysis
    • Tomaru, Y et al. (2009) Regulatory interdependence of myeloid transcription factors revealed by Matrix RNAi analysis. Genome Biol., 10, R121
    • (2009) Genome Biol , vol.10 , pp. R121
    • Tomaru, Y.1
  • 67
    • 84900873950 scopus 로고    scopus 로고
    • The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    • Trapnell, C. et al. (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol., 32, 381-386
    • (2014) Nat. Biotechnol , vol.32 , pp. 381-386
    • Trapnell, C.1
  • 68
    • 84905640975 scopus 로고    scopus 로고
    • Ensemble inference and inferability of gene regulatory networks
    • Ud-Dean, S.M.M. and Gunawan, R. (2014) Ensemble inference and inferability of gene regulatory networks. PLoS One, 9, e103812
    • (2014) PLoS One , vol.9 , pp. e103812
    • Ud-Dean, S.M.M.1    Gunawan, R.2
  • 69
    • 84962861088 scopus 로고    scopus 로고
    • Beyond comparisons of means: Understanding changes in gene expression at the single-cell level
    • Vallejos, C.A. et al. (2016) Beyond comparisons of means: understanding changes in gene expression at the single-cell level. Genome Biol., 17, 70
    • (2016) Genome Biol , vol.17 , pp. 70
    • Vallejos, C.A.1
  • 70
    • 78650431604 scopus 로고    scopus 로고
    • Building promoter aware transcriptional regulatory networks using siRNA perturbation and deepCAGE
    • Vitezic, M. et al. (2010) Building promoter aware transcriptional regulatory networks using siRNA perturbation and deepCAGE. Nucleic Acids Res., 38, 8141-8148
    • (2010) Nucleic Acids Res , vol.38 , pp. 8141-8148
    • Vitezic, M.1
  • 71
    • 58549110252 scopus 로고    scopus 로고
    • Stochastic modelling for quantitative description of heterogeneous biological systems
    • Wilkinson, D.J. (2009) Stochastic modelling for quantitative description of heterogeneous biological systems. Nat. Rev. Genet., 10, 122-133
    • (2009) Nat Rev. Genet , vol.10 , pp. 122-133
    • Wilkinson, D.J.1
  • 72
    • 84981278185 scopus 로고    scopus 로고
    • A fast algorithm for two-dimensional Kolmogorov-Smirnov two sample tests
    • Xiao, Y. (2017) A fast algorithm for two-dimensional Kolmogorov-Smirnov two sample tests. Comput. Stat. Data Anal., 105, 53-58
    • (2017) Comput. Stat. Data Anal , vol.105 , pp. 53-58
    • Xiao, Y.1
  • 73
    • 84931072284 scopus 로고    scopus 로고
    • Identification of cell types from single-cell transcriptomes using a novel clustering method
    • Xu, C. and Su, Z. (2015) Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics, 31, 1974-1980
    • (2015) Bioinformatics , vol.31 , pp. 1974-1980
    • Xu, C.1    Su, Z.2
  • 74
    • 77249124301 scopus 로고    scopus 로고
    • An unbiased Cp criterion for multivariate ridge regression
    • Yanagihara, H. and Satoh, K. (2010) An unbiased Cp criterion for multivariate ridge regression. J. Multivar. Anal., 101, 1226-1238
    • (2010) J. Multivar. Anal , vol.101 , pp. 1226-1238
    • Yanagihara, H.1    Satoh, K.2
  • 75
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou, H. and Hastie, T. (2005) Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B, 67, 301-320
    • (2005) J R. Stat. Soc. Ser. B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.