-
1
-
-
85030648051
-
Single-cell transcriptomics to explore the immune system in health and disease
-
1:CAS:528:DC%2BC2sXhsF2jtLrI
-
Stubbington MJT, Rozenblatt-Rosen O, Regev A, Teichmann SA. Single-cell transcriptomics to explore the immune system in health and disease. Science. 2017;358:58-63.
-
(2017)
Science
, vol.358
, pp. 58-63
-
-
Stubbington, M.J.T.1
Rozenblatt-Rosen, O.2
Regev, A.3
Teichmann, S.A.4
-
2
-
-
85017360311
-
Scaling single-cell genomics from phenomenology to mechanism
-
1:CAS:528:DC%2BC2sXht1Olu7k%3D
-
Tanay A, Regev A. Scaling single-cell genomics from phenomenology to mechanism. Nature. 2017;541:331-8.
-
(2017)
Nature
, vol.541
, pp. 331-338
-
-
Tanay, A.1
Regev, A.2
-
3
-
-
85018582872
-
Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors
-
Villani A-C, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science. 2017;356:eaah4573.
-
(2017)
Science
, vol.356
, pp. eaah4573
-
-
Villani, A.-C.1
-
4
-
-
85015695567
-
Human haematopoietic stem cell lineage commitment is a continuous process
-
1:CAS:528:DC%2BC2sXltVWnsr0%3D
-
Velten L, et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol. 2017;19:271-81.
-
(2017)
Nat Cell Biol
, vol.19
, pp. 271-281
-
-
Velten, L.1
-
5
-
-
85028303209
-
Comprehensive single-cell transcriptional profiling of a multicellular organism
-
1:CAS:528:DC%2BC2sXhtlehtL7P
-
Cao J, et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science. 2017;357:661-7.
-
(2017)
Science
, vol.357
, pp. 661-667
-
-
Cao, J.1
-
6
-
-
85055510629
-
The Drosophila embryo at single-cell transcriptome resolution
-
Karaiskos N, et al. The Drosophila embryo at single-cell transcriptome resolution. Science. 2017;8:eaan3235-14.
-
(2017)
Science
, vol.8
, pp. eaan3235-eaan3214
-
-
Karaiskos, N.1
-
7
-
-
84929684999
-
Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
-
1:CAS:528:DC%2BC2MXpt1Sgt7o%3D
-
Macosko EZ, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161:1202-14.
-
(2015)
Cell
, vol.161
, pp. 1202-1214
-
-
Macosko, E.Z.1
-
8
-
-
84929684998
-
Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
-
1:CAS:528:DC%2BC2MXpt1SgtL0%3D
-
Klein AM, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161:1187-201.
-
(2015)
Cell
, vol.161
, pp. 1187-1201
-
-
Klein, A.M.1
-
9
-
-
85009446777
-
Massively parallel digital transcriptional profiling of single cells
-
Zheng GXY, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8:1-12.
-
(2017)
Nat Commun
, vol.8
, pp. 1-12
-
-
Zheng, G.X.Y.1
-
10
-
-
85040459896
-
Science forum: The human cell atlas
-
Regev A, et al. Science forum: the human cell atlas. eLife. 2017;6:e27041.
-
(2017)
ELife
, vol.6
, pp. e27041
-
-
Regev, A.1
-
11
-
-
84923647450
-
Computational and analytical challenges in single-cell transcriptomics
-
1:CAS:528:DC%2BC2MXhs1Shur4%3D
-
Stegle O, Teichmann SA, Marioni JC. Computational and analytical challenges in single-cell transcriptomics. Nat Publ Group. 2015;16:133-45.
-
(2015)
Nat Publ Group
, vol.16
, pp. 133-145
-
-
Stegle, O.1
Teichmann, S.A.2
Marioni, J.C.3
-
12
-
-
85054726691
-
Missing data and technical variability in single-cell RNA-sequencing experiments
-
Hicks SC, Townes FW, Teng M, Irizarry RA. Missing data and technical variability in single-cell RNA-sequencing experiments. Biostatistics. 2017. https://doi.org/10.1093/biostatistics/kxx053.
-
(2017)
Biostatistics
-
-
Hicks, S.C.1
Townes, F.W.2
Teng, M.3
Irizarry, R.A.4
-
13
-
-
85040446434
-
Multiplexed droplet single-cell RNA-sequencing using natural genetic variation
-
Kang HM, et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat Publ Group. 2017. https://doi.org/10.1038/nbt.4042.
-
(2017)
Nat Publ Group
-
-
Kang, H.M.1
-
14
-
-
85008384488
-
Batch effects and the effective design of single-cell gene expression studies
-
39921 1:CAS:528:DC%2BC2sXkslChtg%3D%3D
-
Tung P-Y, et al. Batch effects and the effective design of single-cell gene expression studies. Sci Rep. 2017;7:39921.
-
(2017)
Sci Rep
, vol.7
-
-
Tung, P.-Y.1
-
15
-
-
84922496751
-
Barcoding of live human peripheral blood mononuclear cells for multiplexed mass cytometry
-
1:CAS:528:DC%2BC2MXit1SlsLY%3D
-
Mei HE, Leipold MD, Schulz AR, Chester C, Maecker HT. Barcoding of live human peripheral blood mononuclear cells for multiplexed mass cytometry. J Immunol. 2015;194:2022-31.
-
(2015)
J Immunol
, vol.194
, pp. 2022-2031
-
-
Mei, H.E.1
Leipold, M.D.2
Schulz, A.R.3
Chester, C.4
Maecker, H.T.5
-
16
-
-
84925301811
-
A CD45-based barcoding approach to multiplex mass-cytometry (CyTOF)
-
1:CAS:528:DC%2BC2MXkvF2isL8%3D
-
Lai L, Ong R, Li J, Albani S. A CD45-based barcoding approach to multiplex mass-cytometry (CyTOF). Cytometry. 2015;87:369-74.
-
(2015)
Cytometry
, vol.87
, pp. 369-374
-
-
Lai, L.1
Ong, R.2
Li, J.3
Albani, S.4
-
17
-
-
33646029128
-
Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling
-
1:CAS:528:DC%2BD28XjslSksbk%3D
-
Krutzik PO, Nolan GP. Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat Meth. 2006;3:361-8.
-
(2006)
Nat Meth
, vol.3
, pp. 361-368
-
-
Krutzik, P.O.1
Nolan, G.P.2
-
18
-
-
85028316331
-
Simultaneous epitope and transcriptome measurement in single cells
-
Stoeckius M, et al. Simultaneous epitope and transcriptome measurement in single cells. Nat Meth. 2017;9:2579-10.
-
(2017)
Nat Meth
, vol.9
, pp. 2510-2579
-
-
Stoeckius, M.1
-
19
-
-
84960367336
-
A covalent and cleavable antibody- DNA conjugation strategy for sensitive protein detection via immuno-PCR
-
van Buggenum JAGL, et al. A covalent and cleavable antibody- DNA conjugation strategy for sensitive protein detection via immuno-PCR. Nat Publ Group. 2016:1-12. https://doi.org/10.1038/srep22675.
-
(2016)
Nat Publ Group
, pp. 1-12
-
-
Van Buggenum, J.A.G.L.1
-
20
-
-
79953172890
-
Titration of fluorochrome-conjugated antibodies for labeling cell surface markers on live cells
-
20938920
-
Hulspas R. Titration of fluorochrome-conjugated antibodies for labeling cell surface markers on live cells. Curr Protoc Cytom. 2010;Chapter 6(Unit 6):29.
-
(2010)
Curr Protoc Cytom
, vol.6
, Issue.UNIT 6
, pp. 29
-
-
Hulspas, R.1
-
22
-
-
85050139413
-
A universal live cell barcoding-platform for multiplexed human single cell analysis
-
(10770)
-
Hartmann FJ, Simonds EF, Bendall SC. A universal live cell barcoding-platform for multiplexed human single cell analysis. Sci Rep. 2018;8(10770).
-
(2018)
Sci Rep
, vol.8
-
-
Hartmann, F.J.1
Simonds, E.F.2
Bendall, S.C.3
-
23
-
-
85025441550
-
A comparative strategy for single-nucleus and single-cell transcriptomes confirms accuracy in predicted cell-type expression from nuclear RNA
-
Lake BB, et al. A comparative strategy for single-nucleus and single-cell transcriptomes confirms accuracy in predicted cell-type expression from nuclear RNA. Sci Rep. 2017:1-8. https://doi.org/10.1038/s41598-017-04426-w.
-
(2017)
Sci Rep
, pp. 1-8
-
-
Lake, B.B.1
-
24
-
-
85031046570
-
Massively parallel single-nucleus RNA-seq with DroNc-seq
-
PMID: 28846088
-
Habib et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat Methods. 2017;14(10):955-8. PMID: 28846088.
-
(2017)
Nat Methods
, vol.14
, Issue.10
, pp. 955-958
-
-
Et, Al.H.1
-
25
-
-
85058926188
-
Combined aptamer and transcriptome sequencing of single cells
-
Delley CL, liu L, Sarhan MF, Abate AR. Combined aptamer and transcriptome sequencing of single cells. bioRxiv. 2017:1-10. https://doi.org/10.1101/228338.
-
(2017)
BioRxiv
, pp. 1-10
-
-
Delley, C.L.1
Liu, L.2
Sarhan, M.F.3
Abate, A.R.4
-
26
-
-
85058914498
-
-
10.1101/359851 biorxiv.org
-
Shin, D., Lee, W., Lee, J. H., bioRxiv, D. B.2018. Multiplexed single-cell RNA-seq via transient barcoding for drug screening. biorxiv.org doi: https://doi.org/10.1101/359851.
-
(2018)
Multiplexed Single-cell RNA-seq Via Transient Barcoding for Drug Screening
-
-
Shin, D.1
Lee, W.2
Lee, J.H.3
Biorxiv, D.B.4
-
27
-
-
85058912853
-
Highly multiplexed single-cell RNA-seq for defining cell population and transcriptional spaces
-
Gehring J, Park JH, Chen S, Thomson M, Pachter L. Highly multiplexed single-cell RNA-seq for defining cell population and transcriptional spaces. bioRxiv. 2018:1-19. https://doi.org/10.1101/315333.
-
(2018)
BioRxiv
, pp. 1-19
-
-
Gehring, J.1
Park, J.H.2
Chen, S.3
Thomson, M.4
Pachter, L.5
-
29
-
-
85058917218
-
Comprehensive integration of single cell data
-
Stuart et al. Comprehensive integration of single cell data. biorxiv. 2018. https://doi.org/10.1101/460147.
-
(2018)
Biorxiv
-
-
Et, Al.S.1
-
30
-
-
85058907679
-
-
Guo C, Biddy BA, Kamimoto K, Kong W, Morris SA. CellTag indexing: a genetic barcode-based multiplexing tool for single-cell technologies. 2018:1-20. https://doi.org/10.1101/335547.
-
(2018)
CellTag Indexing: A Genetic Barcode-based Multiplexing Tool for Single-cell Technologies
, pp. 1-20
-
-
Guo, C.1
Biddy, B.A.2
Kamimoto, K.3
Kong, W.4
Morris, S.A.5
-
31
-
-
84929151009
-
Spatial reconstruction of single-cell gene expression data
-
1:CAS:528:DC%2BC2MXmtlKktLo%3D
-
Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 2015;33:495-502.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 495-502
-
-
Satija, R.1
Farrell, J.A.2
Gennert, D.3
Schier, A.F.4
Regev, A.5
-
32
-
-
85041108250
-
Integrated analysis of single cell transcriptomic data across conditions, technologies, and species
-
Butler A, Satija R. Integrated analysis of single cell transcriptomic data across conditions, technologies, and species. bioRxiv. 2017. https://doi.org/10.1101/164889.
-
(2017)
BioRxiv
-
-
Butler, A.1
Satija, R.2
-
34
-
-
84934442835
-
Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis
-
1:CAS:528:DC%2BC2MXhtV2it7jE
-
Levine JH, et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell. 2015;162:184-97.
-
(2015)
Cell
, vol.162
, pp. 184-197
-
-
Levine, J.H.1
-
35
-
-
84983741021
-
Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics
-
1:CAS:528:DC%2BC28XhsVehu73M e30
-
Shekhar K, et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell. 2016;166:1308-23.e30.
-
(2016)
Cell
, vol.166
, pp. 1308-1323
-
-
Shekhar, K.1
-
36
-
-
85016782791
-
Ranger: A fast implementation of random forests for high dimensional data in C and R
-
Wright MN, Ziegler A. Ranger: a fast implementation of random forests for high dimensional data in C and R. J Stat Softw. 2017;77:1-17.
-
(2017)
J Stat Softw
, vol.77
, pp. 1-17
-
-
Wright, M.N.1
Ziegler, A.2
-
37
-
-
85058915284
-
Cell hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics
-
Stoeckius M, Zheng S, Houck-Loomis B, Hao S, Yeung B, Smibert P, and Satija R. Cell hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Gene Expression Omnibus. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108313 (2018).
-
(2018)
Gene Expression Omnibus
-
-
Stoeckius, M.1
Zheng, S.2
Houck-Loomis, B.3
Hao, S.4
Yeung, B.5
Smibert, P.6
Satija, R.7
-
38
-
-
85058917288
-
Integrating single-cell transcriptomic data across different conditions, technologies, and species
-
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Github Repository. https://github.com/satijalab/seurat (2018).
-
(2018)
Github Repository
-
-
Butler, A.1
Hoffman, P.2
Smibert, P.3
Papalexi, E.4
Satija, R.5
|