메뉴 건너뛰기




Volumn 51, Issue 1, 2019, Pages 12-18

A primer on deep learning in genomics

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; GENOME ANALYSIS; GENOMICS; LEARNING; PATHOGENICITY; GENETICS; HUMAN; HUMAN GENOME; MACHINE LEARNING; PROCEDURES; STANDARDS;

EID: 85057333353     PISSN: 10614036     EISSN: 15461718     Source Type: Journal    
DOI: 10.1038/s41588-018-0295-5     Document Type: Article
Times cited : (569)

References (65)
  • 2
    • 85045190865 scopus 로고    scopus 로고
    • Opportunities and obstacles for deep learning in biology and medicine
    • Ching, T. et al. Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 15, 20170387 (2018)
    • (2018) J. R. Soc. Interface , vol.15 , pp. 20170387
    • Ching, T.1
  • 3
    • 85048632046 scopus 로고    scopus 로고
    • Deep learning of genomic variation and regulatory network data
    • COI: 1:CAS:528:DC%2BC1cXitlGmtb7P
    • Telenti, A., Lippert, C., Chang, P. C. & DePristo, M. Deep learning of genomic variation and regulatory network data. Hum. Mol. Genet. 27, R63–R71 (2018)
    • (2018) Hum. Mol. Genet. , vol.27 , pp. R63-R71
    • Telenti, A.1    Lippert, C.2    Chang, P.C.3    DePristo, M.4
  • 5
    • 85047752833 scopus 로고    scopus 로고
    • Next-generation machine learning for biological networks
    • COI: 1:CAS:528:DC%2BC1cXhtV2ltrrI
    • Camacho, D. M., Collins, K. M., Powers, R. K., Costello, J. C. & Collins, J. J. Next-generation machine learning for biological networks. Cell 173, 1581–1592 (2018)
    • (2018) Cell , vol.173 , pp. 1581-1592
    • Camacho, D.M.1    Collins, K.M.2    Powers, R.K.3    Costello, J.C.4    Collins, J.J.5
  • 6
    • 84929510967 scopus 로고    scopus 로고
    • Machine learning applications in genetics and genomics
    • COI: 1:CAS:528:DC%2BC2MXnvFSqtbo%3D
    • Libbrecht, M. W. & Noble, W. S. Machine learning applications in genetics and genomics. Nat. Rev. Genet. 16, 321–332 (2015)
    • (2015) Nat. Rev. Genet. , vol.16 , pp. 321-332
    • Libbrecht, M.W.1    Noble, W.S.2
  • 8
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • COI: 1:CAS:528:DC%2BC2MXht1WlurzP
    • LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015)
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 10
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • COI: 1:CAS:528:DC%2BD28Xnt1KntrY%3D
    • Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 13
    • 84958257565 scopus 로고    scopus 로고
    • Predicting effects of noncoding variants with deep learning-based sequence model
    • COI: 1:CAS:528:DC%2BC2MXhtlynsL%2FL
    • Zhou, J. & Troyanskaya, O. G. Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods 12, 931–934 (2015)
    • (2015) Nat. Methods , vol.12 , pp. 931-934
    • Zhou, J.1    Troyanskaya, O.G.2
  • 14
    • 84864758525 scopus 로고    scopus 로고
    • Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation
    • Powers, D. M. W. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. J. Mach. Learn. Technol. 2, 37–63 (2011)
    • (2011) J. Mach. Learn. Technol. , vol.2 , pp. 37-63
    • Powers, D.M.W.1
  • 15
    • 84976908652 scopus 로고    scopus 로고
    • Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks
    • COI: 1:CAS:528:DC%2BC28XhsFOhsb7F
    • Kelley, D. R., Snoek, J. & Rinn, J. L. Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res. 26, 990–999 (2016)
    • (2016) Genome Res. , vol.26 , pp. 990-999
    • Kelley, D.R.1    Snoek, J.2    Rinn, J.L.3
  • 17
    • 84976413226 scopus 로고    scopus 로고
    • DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences
    • Quang, D. & Xie, X. DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Res. 44, e107 (2016)
    • (2016) Nucleic Acids Res. , vol.44
    • Quang, D.1    Xie, X.2
  • 19
    • 85031924228 scopus 로고    scopus 로고
    • Learning important features through propagating activation differences
    • Shrikumar, A., Greenside, P. & Kundaje, A. Learning important features through propagating activation differences. Proc. Int. Conf. Mach. Learn. 70, 3145–3153 (2017)
    • (2017) Proc. Int. Conf. Mach. Learn. , vol.70 , pp. 3145-3153
    • Shrikumar, A.1    Greenside, P.2    Kundaje, A.3
  • 20
    • 84984985889 scopus 로고    scopus 로고
    • “Why should I trust you?”: Explaining the predictions of any classifier
    • AAAI Press, Menlo Park, CA, USA
    • Ribeiro, M. T., Singh, S. & Guestrin, C. “Why should I trust you?”: explaining the predictions of any classifier. in KDD 1135–1144 (AAAI Press, Menlo Park, CA, USA, 2016)
    • (2016) KDD , pp. 1135-1144
    • Ribeiro, M.T.1    Singh, S.2    Guestrin, C.3
  • 21
    • 84938856283 scopus 로고    scopus 로고
    • Deep learning for regulatory genomics
    • Park, Y. & Kellis, M. Deep learning for regulatory genomics. Nat. Biotechnol. 33, 825–826 (2015)
    • (2015) Nat. Biotechnol. , vol.33 , pp. 825-826
    • Park, Y.1    Kellis, M.2
  • 22
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning
    • COI: 1:CAS:528:DC%2BC2MXhtF2murnM
    • Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33, 831–838 (2015)
    • (2015) Nat. Biotechnol. , vol.33 , pp. 831-838
    • Alipanahi, B.1    Delong, A.2    Weirauch, M.T.3    Frey, B.J.4
  • 23
    • 85021859501 scopus 로고    scopus 로고
    • Deep motif dashboard: visualizing and understanding genomic sequences using deep neural networks
    • PID: 27896980
    • Lanchantin, J., Singh, R., Wang, B. & Qi, Y. Deep motif dashboard: visualizing and understanding genomic sequences using deep neural networks. Pac. Symp. Biocomput. 22, 254–265 (2017)
    • (2017) Pac. Symp. Biocomput. , vol.22 , pp. 254-265
    • Lanchantin, J.1    Singh, R.2    Wang, B.3    Qi, Y.4
  • 24
    • 84976520648 scopus 로고    scopus 로고
    • Convolutional neural network architectures for predicting DNA-protein binding
    • COI: 1:CAS:528:DC%2BC28XhsF2lsLjM
    • Zeng, H., Edwards, M. D., Liu, G. & Gifford, D. K. Convolutional neural network architectures for predicting DNA-protein binding. Bioinformatics 32, i121–i127 (2016)
    • (2016) Bioinformatics , vol.32 , pp. i121-i127
    • Zeng, H.1    Edwards, M.D.2    Liu, G.3    Gifford, D.K.4
  • 25
    • 84975746111 scopus 로고    scopus 로고
    • PEDLA: predicting enhancers with a deep learning-based algorithmic framework
    • COI: 1:CAS:528:DC%2BC28XhtVKitLjE
    • Liu, F., Li, H., Ren, C., Bo, X. & Shu, W. PEDLA: predicting enhancers with a deep learning-based algorithmic framework. Sci. Rep. 6, 28517 (2016)
    • (2016) Sci. Rep. , vol.6
    • Liu, F.1    Li, H.2    Ren, C.3    Bo, X.4    Shu, W.5
  • 26
    • 84943143082 scopus 로고    scopus 로고
    • DEEP: a general computational framework for predicting enhancers
    • Kleftogiannis, D., Kalnis, P. & Bajic, V. B. DEEP: a general computational framework for predicting enhancers. Nucleic Acids Res. 43, e6 (2015)
    • (2015) Nucleic Acids Res. , vol.43
    • Kleftogiannis, D.1    Kalnis, P.2    Bajic, V.B.3
  • 27
    • 85036450976 scopus 로고    scopus 로고
    • Predicting enhancers with deep convolutional neural networks
    • Min, X. et al. Predicting enhancers with deep convolutional neural networks. BMC Bioinformatics 18 (Suppl. 13), 478 (2017)
    • (2017) BMC Bioinformatics , vol.18 , pp. 478
    • Min, X.1
  • 29
    • 85047942208 scopus 로고    scopus 로고
    • Genome-wide prediction of cis-regulatory regions using supervised deep learning methods
    • Li, Y., Shi, W. & Wasserman, W. W. Genome-wide prediction of cis-regulatory regions using supervised deep learning methods. BMC Bioinformatics 19, 202 (2018)
    • (2018) BMC Bioinformatics , vol.19
    • Li, Y.1    Shi, W.2    Wasserman, W.W.3
  • 30
    • 84955475516 scopus 로고    scopus 로고
    • Predicting DNA methylation state of CpG dinucleotide using genome topological features and deep networks
    • COI: 1:CAS:528:DC%2BC28Xhtl2ntbg%3D
    • Wang, Y. et al. Predicting DNA methylation state of CpG dinucleotide using genome topological features and deep networks. Sci. Rep. 6, 19598 (2016)
    • (2016) Sci. Rep. , vol.6
    • Wang, Y.1
  • 32
    • 85046700344 scopus 로고    scopus 로고
    • Prediction of enhancer-promoter interactions via natural language processing
    • Zeng, W., Wu, M. & Jiang, R. Prediction of enhancer-promoter interactions via natural language processing. BMC Genomics 19 (Suppl. 2), 84 (2018)
    • (2018) BMC Genomics , vol.19 , pp. 84
    • Zeng, W.1    Wu, M.2    Jiang, R.3
  • 34
    • 84991259184 scopus 로고    scopus 로고
    • ADAGE-based integration of publicly available Pseudomonas aeruginosa gene expression data with denoising autoencoders illuminates microbe-host interactions
    • e00025-15
    • Tan, J., Hammond, J. H., Hogan, D. A. & Greene, C. S. ADAGE-based integration of publicly available Pseudomonas aeruginosa gene expression data with denoising autoencoders illuminates microbe-host interactions. mSystems 1, e00025-15 (2016)
    • (2016) mSystems , vol.1
    • Tan, J.1    Hammond, J.H.2    Hogan, D.A.3    Greene, C.S.4
  • 35
    • 84976420628 scopus 로고    scopus 로고
    • Gene expression inference with deep learning
    • COI: 1:CAS:528:DC%2BC28XhsF2jsrbO
    • Chen, Y., Li, Y., Narayan, R., Subramanian, A. & Xie, X. Gene expression inference with deep learning. Bioinformatics 32, 1832–1839 (2016)
    • (2016) Bioinformatics , vol.32 , pp. 1832-1839
    • Chen, Y.1    Li, Y.2    Narayan, R.3    Subramanian, A.4    Xie, X.5
  • 36
    • 84953744675 scopus 로고    scopus 로고
    • Learning a hierarchical representation of the yeast transcriptomic machinery using an autoencoder model
    • Chen, L., Cai, C., Chen, V. & Lu, X. Learning a hierarchical representation of the yeast transcriptomic machinery using an autoencoder model. BMC Bioinformatics 17 (Suppl. 1), 9 (2016)
    • (2016) BMC Bioinformatics , vol.17
    • Chen, L.1    Cai, C.2    Chen, V.3    Lu, X.4
  • 38
    • 85034028837 scopus 로고    scopus 로고
    • A deep auto-encoder model for gene expression prediction
    • Xie, R., Wen, J., Quitadamo, A., Cheng, J. & Shi, X. A deep auto-encoder model for gene expression prediction. BMC Genomics 18 (Suppl. 9), 845 (2017)
    • (2017) BMC Genomics , vol.18 , pp. 845
    • Xie, R.1    Wen, J.2    Quitadamo, A.3    Cheng, J.4    Shi, X.5
  • 39
    • 85024472425 scopus 로고    scopus 로고
    • Integrative deep models for alternative splicing
    • COI: 1:CAS:528:DC%2BC1cXhvV2ntbjL
    • Jha, A., Gazzara, M. R. & Barash, Y. Integrative deep models for alternative splicing. Bioinformatics 33, i274–i282 (2017)
    • (2017) Bioinformatics , vol.33 , pp. i274-i282
    • Jha, A.1    Gazzara, M.R.2    Barash, Y.3
  • 41
    • 85043237608 scopus 로고    scopus 로고
    • A deep learning method for lincRNA detection using auto-encoder algorithm
    • Yu, N., Yu, Z. & Pan, Y. A deep learning method for lincRNA detection using auto-encoder algorithm. BMC Bioinformatics 18 (Suppl. 15), 511 (2017)
    • (2017) BMC Bioinformatics , vol.18 , pp. 511
    • Yu, N.1    Yu, Z.2    Pan, Y.3
  • 42
    • 85057336960 scopus 로고    scopus 로고
    • A deep recurrent neural network discovers complex biological rules to decipher RNA protein-coding potential
    • Hill, S. T. et al. A deep recurrent neural network discovers complex biological rules to decipher RNA protein-coding potential. Nucleic Acids Res. 46, 8105–8113 (2018)
    • (2018) Nucleic Acids Res. , vol.46 , pp. 8105-8113
    • Hill, S.T.1
  • 43
    • 85018466550 scopus 로고    scopus 로고
    • DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning
    • Angermueller, C., Lee, H. J., Reik, W. & Stegle, O. DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol. 18, 67 (2017)
    • (2017) Genome Biol. , vol.18
    • Angermueller, C.1    Lee, H.J.2    Reik, W.3    Stegle, O.4
  • 44
    • 85040695740 scopus 로고    scopus 로고
    • Removal of batch effects using distribution-matching residual networks
    • COI: 1:CAS:528:DC%2BC1cXitFOntLrL
    • Shaham, U. et al. Removal of batch effects using distribution-matching residual networks. Bioinformatics 33, 2539–2546 (2017)
    • (2017) Bioinformatics , vol.33 , pp. 2539-2546
    • Shaham, U.1
  • 45
    • 85031687901 scopus 로고    scopus 로고
    • Using neural networks for reducing the dimensions of single-cell RNA-Seq data
    • Lin, C., Jain, S., Kim, H. & Bar-Joseph, Z. Using neural networks for reducing the dimensions of single-cell RNA-Seq data. Nucleic Acids Res. 45, e156 (2017)
    • (2017) Nucleic Acids Res. , vol.45
    • Lin, C.1    Jain, S.2    Kim, H.3    Bar-Joseph, Z.4
  • 50
    • 85020469555 scopus 로고    scopus 로고
    • DeepNano: deep recurrent neural networks for base calling in MinION nanopore reads
    • Boža, V., Brejová, B. & Vinař, T. DeepNano: deep recurrent neural networks for base calling in MinION nanopore reads. PLoS One 12, e0178751 (2017)
    • (2017) PLoS One , vol.12
    • Boža, V.1    Brejová, B.2    Vinař, T.3
  • 53
    • 84928997067 scopus 로고    scopus 로고
    • DANN: a deep learning approach for annotating the pathogenicity of genetic variants
    • COI: 1:CAS:528:DC%2BC28Xht1GntLfP
    • Quang, D., Chen, Y. & Xie, X. DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics 31, 761–763 (2015)
    • (2015) Bioinformatics , vol.31 , pp. 761-763
    • Quang, D.1    Chen, Y.2    Xie, X.3
  • 54
    • 85043772279 scopus 로고    scopus 로고
    • Generalising better: applying deep learning to integrate deleteriousness prediction scores for whole-exome SNV studies
    • Korvigo, I., Afanasyev, A., Romashchenko, N. & Skoblov, M. Generalising better: applying deep learning to integrate deleteriousness prediction scores for whole-exome SNV studies. PLoS One 13, e0192829 (2018)
    • (2018) PLoS One , vol.13
    • Korvigo, I.1    Afanasyev, A.2    Romashchenko, N.3    Skoblov, M.4
  • 55
    • 85006839848 scopus 로고    scopus 로고
    • DeepGene: an advanced cancer type classifier based on deep learning and somatic point mutations
    • Yuan, Y. et al. DeepGene: an advanced cancer type classifier based on deep learning and somatic point mutations. BMC Bioinformatics 17, 476 (2016)
    • (2016) BMC Bioinformatics , vol.17 , pp. 476
    • Yuan, Y.1
  • 56
    • 85029478351 scopus 로고    scopus 로고
    • Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models
    • Yousefi, S. et al. Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models. Sci. Rep. 7, 11707 (2017)
    • (2017) Sci. Rep. , vol.7
    • Yousefi, S.1
  • 59
    • 85049967126 scopus 로고    scopus 로고
    • Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk
    • COI: 1:CAS:528:DC%2BC1cXhtlCmt7zO
    • Zhou, J. et al. Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. Nat. Genet. 50, 1171–1179 (2018)
    • (2018) Nat. Genet. , vol.50 , pp. 1171-1179
    • Zhou, J.1
  • 60
    • 85050539279 scopus 로고    scopus 로고
    • Predicting the clinical impact of human mutation with deep neural networks
    • COI: 1:CAS:528:DC%2BC1cXhtlOis7zE
    • Sundaram, L. et al. Predicting the clinical impact of human mutation with deep neural networks. Nat. Genet. 50, 1161–1170 (2018)
    • (2018) Nat. Genet. , vol.50 , pp. 1161-1170
    • Sundaram, L.1
  • 62
    • 85042487006 scopus 로고    scopus 로고
    • Deep learning for biology
    • COI: 1:CAS:528:DC%2BC1cXjtFCrsLc%3D
    • Webb, S. Deep learning for biology. Nature 554, 555–557 (2018)
    • (2018) Nature , vol.554 , pp. 555-557
    • Webb, S.1
  • 63
    • 85058983366 scopus 로고    scopus 로고
    • Ghorbani, A., Abid, A. & Zou, J. Interpretation of neural networks is fragile. Preprint at https://arxiv.org/abs/1710.10547 (2017)
  • 65
    • 85033771672 scopus 로고    scopus 로고
    • Enhancing GTEx by bridging the gaps between genotype, gene expression, and disease
    • eGTEx Project,.,.
    • Stranger, B. et al.; eGTEx Project. Enhancing GTEx by bridging the gaps between genotype, gene expression, and disease. Nat. Genet. 49, 1664–1670 (2017)
    • (2017) Nat. Genet. , vol.49 , pp. 1664-1670
    • Stranger, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.