-
1
-
-
84980022857
-
Deep learning for computational biology
-
Angermueller, C., Pärnamaa, T., Parts, L. & Stegle, O. Deep learning for computational biology. Mol. Syst. Biol. 12, 878 (2016)
-
(2016)
Mol. Syst. Biol.
, vol.12
, pp. 878
-
-
Angermueller, C.1
Pärnamaa, T.2
Parts, L.3
Stegle, O.4
-
2
-
-
85045190865
-
Opportunities and obstacles for deep learning in biology and medicine
-
Ching, T. et al. Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 15, 20170387 (2018)
-
(2018)
J. R. Soc. Interface
, vol.15
, pp. 20170387
-
-
Ching, T.1
-
3
-
-
85048632046
-
Deep learning of genomic variation and regulatory network data
-
COI: 1:CAS:528:DC%2BC1cXitlGmtb7P
-
Telenti, A., Lippert, C., Chang, P. C. & DePristo, M. Deep learning of genomic variation and regulatory network data. Hum. Mol. Genet. 27, R63–R71 (2018)
-
(2018)
Hum. Mol. Genet.
, vol.27
, pp. R63-R71
-
-
Telenti, A.1
Lippert, C.2
Chang, P.C.3
DePristo, M.4
-
5
-
-
85047752833
-
Next-generation machine learning for biological networks
-
COI: 1:CAS:528:DC%2BC1cXhtV2ltrrI
-
Camacho, D. M., Collins, K. M., Powers, R. K., Costello, J. C. & Collins, J. J. Next-generation machine learning for biological networks. Cell 173, 1581–1592 (2018)
-
(2018)
Cell
, vol.173
, pp. 1581-1592
-
-
Camacho, D.M.1
Collins, K.M.2
Powers, R.K.3
Costello, J.C.4
Collins, J.J.5
-
6
-
-
84929510967
-
Machine learning applications in genetics and genomics
-
COI: 1:CAS:528:DC%2BC2MXnvFSqtbo%3D
-
Libbrecht, M. W. & Noble, W. S. Machine learning applications in genetics and genomics. Nat. Rev. Genet. 16, 321–332 (2015)
-
(2015)
Nat. Rev. Genet.
, vol.16
, pp. 321-332
-
-
Libbrecht, M.W.1
Noble, W.S.2
-
7
-
-
84944735469
-
-
MIT Press, Cambridge
-
Goodfellow, I., Bengio, Y., Courville, A. & Bengio, Y. Deep Learning Vol. 1 (MIT Press, Cambridge, 2016)
-
(2016)
Deep Learning
-
-
Goodfellow, I.1
Bengio, Y.2
Courville, A.3
Bengio, Y.4
-
8
-
-
84930630277
-
Deep learning
-
COI: 1:CAS:528:DC%2BC2MXht1WlurzP
-
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015)
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
9
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 1, 1097–1105 (2012)
-
(2012)
Adv. Neural Inf. Process. Syst.
, vol.1
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
10
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
COI: 1:CAS:528:DC%2BD28Xnt1KntrY%3D
-
Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)
-
(2006)
Science
, vol.313
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
11
-
-
84904163933
-
Dropout: a simple way to prevent neural networks from overfitting
-
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
13
-
-
84958257565
-
Predicting effects of noncoding variants with deep learning-based sequence model
-
COI: 1:CAS:528:DC%2BC2MXhtlynsL%2FL
-
Zhou, J. & Troyanskaya, O. G. Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods 12, 931–934 (2015)
-
(2015)
Nat. Methods
, vol.12
, pp. 931-934
-
-
Zhou, J.1
Troyanskaya, O.G.2
-
14
-
-
84864758525
-
Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation
-
Powers, D. M. W. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. J. Mach. Learn. Technol. 2, 37–63 (2011)
-
(2011)
J. Mach. Learn. Technol.
, vol.2
, pp. 37-63
-
-
Powers, D.M.W.1
-
15
-
-
84976908652
-
Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks
-
COI: 1:CAS:528:DC%2BC28XhsFOhsb7F
-
Kelley, D. R., Snoek, J. & Rinn, J. L. Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res. 26, 990–999 (2016)
-
(2016)
Genome Res.
, vol.26
, pp. 990-999
-
-
Kelley, D.R.1
Snoek, J.2
Rinn, J.L.3
-
16
-
-
0003684449
-
-
Springer Science+Business Media, New York
-
Hastie, T., Tibshirani, R. & Friedman, J. H. The Elements of Statistical Learning Vol. 1 (Springer Science+Business Media, New York, 2001)
-
(2001)
The Elements of Statistical Learning
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.H.3
-
17
-
-
84976413226
-
DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences
-
Quang, D. & Xie, X. DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Res. 44, e107 (2016)
-
(2016)
Nucleic Acids Res.
, vol.44
-
-
Quang, D.1
Xie, X.2
-
19
-
-
85031924228
-
Learning important features through propagating activation differences
-
Shrikumar, A., Greenside, P. & Kundaje, A. Learning important features through propagating activation differences. Proc. Int. Conf. Mach. Learn. 70, 3145–3153 (2017)
-
(2017)
Proc. Int. Conf. Mach. Learn.
, vol.70
, pp. 3145-3153
-
-
Shrikumar, A.1
Greenside, P.2
Kundaje, A.3
-
20
-
-
84984985889
-
“Why should I trust you?”: Explaining the predictions of any classifier
-
AAAI Press, Menlo Park, CA, USA
-
Ribeiro, M. T., Singh, S. & Guestrin, C. “Why should I trust you?”: explaining the predictions of any classifier. in KDD 1135–1144 (AAAI Press, Menlo Park, CA, USA, 2016)
-
(2016)
KDD
, pp. 1135-1144
-
-
Ribeiro, M.T.1
Singh, S.2
Guestrin, C.3
-
21
-
-
84938856283
-
Deep learning for regulatory genomics
-
Park, Y. & Kellis, M. Deep learning for regulatory genomics. Nat. Biotechnol. 33, 825–826 (2015)
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 825-826
-
-
Park, Y.1
Kellis, M.2
-
22
-
-
84938888109
-
Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning
-
COI: 1:CAS:528:DC%2BC2MXhtF2murnM
-
Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33, 831–838 (2015)
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 831-838
-
-
Alipanahi, B.1
Delong, A.2
Weirauch, M.T.3
Frey, B.J.4
-
23
-
-
85021859501
-
Deep motif dashboard: visualizing and understanding genomic sequences using deep neural networks
-
PID: 27896980
-
Lanchantin, J., Singh, R., Wang, B. & Qi, Y. Deep motif dashboard: visualizing and understanding genomic sequences using deep neural networks. Pac. Symp. Biocomput. 22, 254–265 (2017)
-
(2017)
Pac. Symp. Biocomput.
, vol.22
, pp. 254-265
-
-
Lanchantin, J.1
Singh, R.2
Wang, B.3
Qi, Y.4
-
24
-
-
84976520648
-
Convolutional neural network architectures for predicting DNA-protein binding
-
COI: 1:CAS:528:DC%2BC28XhsF2lsLjM
-
Zeng, H., Edwards, M. D., Liu, G. & Gifford, D. K. Convolutional neural network architectures for predicting DNA-protein binding. Bioinformatics 32, i121–i127 (2016)
-
(2016)
Bioinformatics
, vol.32
, pp. i121-i127
-
-
Zeng, H.1
Edwards, M.D.2
Liu, G.3
Gifford, D.K.4
-
25
-
-
84975746111
-
PEDLA: predicting enhancers with a deep learning-based algorithmic framework
-
COI: 1:CAS:528:DC%2BC28XhtVKitLjE
-
Liu, F., Li, H., Ren, C., Bo, X. & Shu, W. PEDLA: predicting enhancers with a deep learning-based algorithmic framework. Sci. Rep. 6, 28517 (2016)
-
(2016)
Sci. Rep.
, vol.6
-
-
Liu, F.1
Li, H.2
Ren, C.3
Bo, X.4
Shu, W.5
-
26
-
-
84943143082
-
DEEP: a general computational framework for predicting enhancers
-
Kleftogiannis, D., Kalnis, P. & Bajic, V. B. DEEP: a general computational framework for predicting enhancers. Nucleic Acids Res. 43, e6 (2015)
-
(2015)
Nucleic Acids Res.
, vol.43
-
-
Kleftogiannis, D.1
Kalnis, P.2
Bajic, V.B.3
-
27
-
-
85036450976
-
Predicting enhancers with deep convolutional neural networks
-
Min, X. et al. Predicting enhancers with deep convolutional neural networks. BMC Bioinformatics 18 (Suppl. 13), 478 (2017)
-
(2017)
BMC Bioinformatics
, vol.18
, pp. 478
-
-
Min, X.1
-
29
-
-
85047942208
-
Genome-wide prediction of cis-regulatory regions using supervised deep learning methods
-
Li, Y., Shi, W. & Wasserman, W. W. Genome-wide prediction of cis-regulatory regions using supervised deep learning methods. BMC Bioinformatics 19, 202 (2018)
-
(2018)
BMC Bioinformatics
, vol.19
-
-
Li, Y.1
Shi, W.2
Wasserman, W.W.3
-
30
-
-
84955475516
-
Predicting DNA methylation state of CpG dinucleotide using genome topological features and deep networks
-
COI: 1:CAS:528:DC%2BC28Xhtl2ntbg%3D
-
Wang, Y. et al. Predicting DNA methylation state of CpG dinucleotide using genome topological features and deep networks. Sci. Rep. 6, 19598 (2016)
-
(2016)
Sci. Rep.
, vol.6
-
-
Wang, Y.1
-
31
-
-
85042353227
-
-
Schreiber, J., Libbrecht, M., Bilmes, J. & Noble, W. Nucleotide sequence and DNaseI sensitivity are predictive of 3D chromatin architecture. Preprint at https://www.biorxiv.org/content/early/2017/01/30/103614 (2017)
-
(2017)
Nucleotide Sequence and Dnasei Sensitivity are Predictive of 3D Chromatin Architecture
-
-
Schreiber, J.1
Libbrecht, M.2
Bilmes, J.3
Noble, W.4
-
32
-
-
85046700344
-
Prediction of enhancer-promoter interactions via natural language processing
-
Zeng, W., Wu, M. & Jiang, R. Prediction of enhancer-promoter interactions via natural language processing. BMC Genomics 19 (Suppl. 2), 84 (2018)
-
(2018)
BMC Genomics
, vol.19
, pp. 84
-
-
Zeng, W.1
Wu, M.2
Jiang, R.3
-
34
-
-
84991259184
-
ADAGE-based integration of publicly available Pseudomonas aeruginosa gene expression data with denoising autoencoders illuminates microbe-host interactions
-
e00025-15
-
Tan, J., Hammond, J. H., Hogan, D. A. & Greene, C. S. ADAGE-based integration of publicly available Pseudomonas aeruginosa gene expression data with denoising autoencoders illuminates microbe-host interactions. mSystems 1, e00025-15 (2016)
-
(2016)
mSystems
, vol.1
-
-
Tan, J.1
Hammond, J.H.2
Hogan, D.A.3
Greene, C.S.4
-
35
-
-
84976420628
-
Gene expression inference with deep learning
-
COI: 1:CAS:528:DC%2BC28XhsF2jsrbO
-
Chen, Y., Li, Y., Narayan, R., Subramanian, A. & Xie, X. Gene expression inference with deep learning. Bioinformatics 32, 1832–1839 (2016)
-
(2016)
Bioinformatics
, vol.32
, pp. 1832-1839
-
-
Chen, Y.1
Li, Y.2
Narayan, R.3
Subramanian, A.4
Xie, X.5
-
36
-
-
84953744675
-
Learning a hierarchical representation of the yeast transcriptomic machinery using an autoencoder model
-
Chen, L., Cai, C., Chen, V. & Lu, X. Learning a hierarchical representation of the yeast transcriptomic machinery using an autoencoder model. BMC Bioinformatics 17 (Suppl. 1), 9 (2016)
-
(2016)
BMC Bioinformatics
, vol.17
-
-
Chen, L.1
Cai, C.2
Chen, V.3
Lu, X.4
-
38
-
-
85034028837
-
A deep auto-encoder model for gene expression prediction
-
Xie, R., Wen, J., Quitadamo, A., Cheng, J. & Shi, X. A deep auto-encoder model for gene expression prediction. BMC Genomics 18 (Suppl. 9), 845 (2017)
-
(2017)
BMC Genomics
, vol.18
, pp. 845
-
-
Xie, R.1
Wen, J.2
Quitadamo, A.3
Cheng, J.4
Shi, X.5
-
39
-
-
85024472425
-
Integrative deep models for alternative splicing
-
COI: 1:CAS:528:DC%2BC1cXhvV2ntbjL
-
Jha, A., Gazzara, M. R. & Barash, Y. Integrative deep models for alternative splicing. Bioinformatics 33, i274–i282 (2017)
-
(2017)
Bioinformatics
, vol.33
, pp. i274-i282
-
-
Jha, A.1
Gazzara, M.R.2
Barash, Y.3
-
40
-
-
85029360191
-
DeepLNC, a long non-coding RNA prediction tool using deep neural network
-
Tripathi, R., Patel, S., Kumari, V., Chakraborty, P. & Varadwaj, P. K. DeepLNC, a long non-coding RNA prediction tool using deep neural network. Netw. Model. Anal. Health Inform. Bioinform. 5, 21 (2016)
-
(2016)
Netw. Model. Anal. Health Inform. Bioinform.
, vol.5
, pp. 21
-
-
Tripathi, R.1
Patel, S.2
Kumari, V.3
Chakraborty, P.4
Varadwaj, P.K.5
-
41
-
-
85043237608
-
A deep learning method for lincRNA detection using auto-encoder algorithm
-
Yu, N., Yu, Z. & Pan, Y. A deep learning method for lincRNA detection using auto-encoder algorithm. BMC Bioinformatics 18 (Suppl. 15), 511 (2017)
-
(2017)
BMC Bioinformatics
, vol.18
, pp. 511
-
-
Yu, N.1
Yu, Z.2
Pan, Y.3
-
42
-
-
85057336960
-
A deep recurrent neural network discovers complex biological rules to decipher RNA protein-coding potential
-
Hill, S. T. et al. A deep recurrent neural network discovers complex biological rules to decipher RNA protein-coding potential. Nucleic Acids Res. 46, 8105–8113 (2018)
-
(2018)
Nucleic Acids Res.
, vol.46
, pp. 8105-8113
-
-
Hill, S.T.1
-
43
-
-
85018466550
-
DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning
-
Angermueller, C., Lee, H. J., Reik, W. & Stegle, O. DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol. 18, 67 (2017)
-
(2017)
Genome Biol.
, vol.18
-
-
Angermueller, C.1
Lee, H.J.2
Reik, W.3
Stegle, O.4
-
44
-
-
85040695740
-
Removal of batch effects using distribution-matching residual networks
-
COI: 1:CAS:528:DC%2BC1cXitFOntLrL
-
Shaham, U. et al. Removal of batch effects using distribution-matching residual networks. Bioinformatics 33, 2539–2546 (2017)
-
(2017)
Bioinformatics
, vol.33
, pp. 2539-2546
-
-
Shaham, U.1
-
45
-
-
85031687901
-
Using neural networks for reducing the dimensions of single-cell RNA-Seq data
-
Lin, C., Jain, S., Kim, H. & Bar-Joseph, Z. Using neural networks for reducing the dimensions of single-cell RNA-Seq data. Nucleic Acids Res. 45, e156 (2017)
-
(2017)
Nucleic Acids Res.
, vol.45
-
-
Lin, C.1
Jain, S.2
Kim, H.3
Bar-Joseph, Z.4
-
47
-
-
85048288236
-
-
Luo, R., Sedlazeck, F.J., Lam, T.-W. & Schatz, M. Clairvoyante: a multi-task convolutional deep neural network for variant calling in single molecule sequencing. Preprint at https://www.biorxiv.org/content/early/2018/09/26/310458 (2018)
-
(2018)
Clairvoyante: A Multi-Task Convolutional Deep Neural Network for Variant Calling in Single Molecule Sequencing
-
-
Luo, R.1
Sedlazeck, F.J.2
Lam, T.-W.3
Schatz, M.4
-
50
-
-
85020469555
-
DeepNano: deep recurrent neural networks for base calling in MinION nanopore reads
-
Boža, V., Brejová, B. & Vinař, T. DeepNano: deep recurrent neural networks for base calling in MinION nanopore reads. PLoS One 12, e0178751 (2017)
-
(2017)
PLoS One
, vol.12
-
-
Boža, V.1
Brejová, B.2
Vinař, T.3
-
51
-
-
85040786242
-
-
Preprint at
-
Teng, H., Hall, M.B., Duarte, T., Cao, M.D. & Coin, L. Chiron: translating nanopore raw signal directly into nucleotide sequence using deep learning. Preprint at https://www.biorxiv.org/content/early/2017/08/23/179531 (2017)
-
(2017)
Chiron: Translating Nanopore Raw Signal Directly into Nucleotide Sequence Using Deep Learning
-
-
Teng, H.1
Hall, M.B.2
Duarte, T.3
Cao, M.D.4
Coin, L.5
-
53
-
-
84928997067
-
DANN: a deep learning approach for annotating the pathogenicity of genetic variants
-
COI: 1:CAS:528:DC%2BC28Xht1GntLfP
-
Quang, D., Chen, Y. & Xie, X. DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics 31, 761–763 (2015)
-
(2015)
Bioinformatics
, vol.31
, pp. 761-763
-
-
Quang, D.1
Chen, Y.2
Xie, X.3
-
54
-
-
85043772279
-
Generalising better: applying deep learning to integrate deleteriousness prediction scores for whole-exome SNV studies
-
Korvigo, I., Afanasyev, A., Romashchenko, N. & Skoblov, M. Generalising better: applying deep learning to integrate deleteriousness prediction scores for whole-exome SNV studies. PLoS One 13, e0192829 (2018)
-
(2018)
PLoS One
, vol.13
-
-
Korvigo, I.1
Afanasyev, A.2
Romashchenko, N.3
Skoblov, M.4
-
55
-
-
85006839848
-
DeepGene: an advanced cancer type classifier based on deep learning and somatic point mutations
-
Yuan, Y. et al. DeepGene: an advanced cancer type classifier based on deep learning and somatic point mutations. BMC Bioinformatics 17, 476 (2016)
-
(2016)
BMC Bioinformatics
, vol.17
, pp. 476
-
-
Yuan, Y.1
-
56
-
-
85029478351
-
Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models
-
Yousefi, S. et al. Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models. Sci. Rep. 7, 11707 (2017)
-
(2017)
Sci. Rep.
, vol.7
-
-
Yousefi, S.1
-
57
-
-
85047017521
-
-
Ma, W., Qiu, Z., Song, J., Cheng, Q. & Ma, C. DeepGS: predicting phenotypes from genotypes using deep learning. Preprint at https://www.biorxiv.org/content/early/2017/12/31/241414 (2017)
-
(2017)
Deepgs: Predicting Phenotypes from Genotypes Using Deep Learning
-
-
Ma, W.1
Qiu, Z.2
Song, J.3
Cheng, Q.4
Ma, C.5
-
59
-
-
85049967126
-
Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk
-
COI: 1:CAS:528:DC%2BC1cXhtlCmt7zO
-
Zhou, J. et al. Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. Nat. Genet. 50, 1171–1179 (2018)
-
(2018)
Nat. Genet.
, vol.50
, pp. 1171-1179
-
-
Zhou, J.1
-
60
-
-
85050539279
-
Predicting the clinical impact of human mutation with deep neural networks
-
COI: 1:CAS:528:DC%2BC1cXhtlOis7zE
-
Sundaram, L. et al. Predicting the clinical impact of human mutation with deep neural networks. Nat. Genet. 50, 1161–1170 (2018)
-
(2018)
Nat. Genet.
, vol.50
, pp. 1161-1170
-
-
Sundaram, L.1
-
62
-
-
85042487006
-
Deep learning for biology
-
COI: 1:CAS:528:DC%2BC1cXjtFCrsLc%3D
-
Webb, S. Deep learning for biology. Nature 554, 555–557 (2018)
-
(2018)
Nature
, vol.554
, pp. 555-557
-
-
Webb, S.1
-
63
-
-
85058983366
-
-
Ghorbani, A., Abid, A. & Zou, J. Interpretation of neural networks is fragile. Preprint at https://arxiv.org/abs/1710.10547 (2017)
-
-
-
-
65
-
-
85033771672
-
Enhancing GTEx by bridging the gaps between genotype, gene expression, and disease
-
eGTEx Project,.,.
-
Stranger, B. et al.; eGTEx Project. Enhancing GTEx by bridging the gaps between genotype, gene expression, and disease. Nat. Genet. 49, 1664–1670 (2017)
-
(2017)
Nat. Genet.
, vol.49
, pp. 1664-1670
-
-
Stranger, B.1
|