메뉴 건너뛰기




Volumn 5, Issue 3, 2017, Pages 251-267.e3

Gene Regulatory Network Inference from Single-Cell Data Using Multivariate Information Measures

Author keywords

gene regulation; mutual information; network reconstruction; single cell PCR; single cell RNA seq

Indexed keywords

MESSENGER RNA; TRANSCRIPTOME;

EID: 85031092991     PISSN: 24054712     EISSN: 24054720     Source Type: Journal    
DOI: 10.1016/j.cels.2017.08.014     Document Type: Article
Times cited : (401)

References (99)
  • 1
    • 28944434535 scopus 로고    scopus 로고
    • Bayesian inference for categorical data analysis
    • Agresti, A., Hitchcock, D.B., Bayesian inference for categorical data analysis. Stat. Methods Appt. 14 (2005), 297–330.
    • (2005) Stat. Methods Appt. , vol.14 , pp. 297-330
    • Agresti, A.1    Hitchcock, D.B.2
  • 2
    • 84962658087 scopus 로고    scopus 로고
    • Design and computational analysis of single-cell RNA- sequencing experiments
    • Bacher, R., Kendziorski, C., Design and computational analysis of single-cell RNA- sequencing experiments. Genome Biol. 17 (2016), 1–14.
    • (2016) Genome Biol. , vol.17 , pp. 1-14
    • Bacher, R.1    Kendziorski, C.2
  • 3
    • 13844253637 scopus 로고    scopus 로고
    • A Bayesian approach to reconstructing genetic regulatory networks with hidden factors
    • Beal, M.J., Falciani, F., Ghahramani, Z., Rangel, C., Wild, D.L., A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 21 (2005), 349–356.
    • (2005) Bioinformatics , vol.21 , pp. 349-356
    • Beal, M.J.1    Falciani, F.2    Ghahramani, Z.3    Rangel, C.4    Wild, D.L.5
  • 5
  • 6
    • 33747813561 scopus 로고    scopus 로고
    • The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
    • Bonneau, R., Reiss, D.J., Shannon, P., Facciotti, M., Hood, L., Baliga, N.S., Thorsson, V., The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol., 7, 2006, R36.
    • (2006) Genome Biol. , vol.7 , pp. R36
    • Bonneau, R.1    Reiss, D.J.2    Shannon, P.3    Facciotti, M.4    Hood, L.5    Baliga, N.S.6    Thorsson, V.7
  • 7
    • 85020941675 scopus 로고    scopus 로고
    • An expanded view of complex traits: from polygenic to omnigenic
    • Boyle, E.A., Li, Y.I., Pritchard, J.K., An expanded view of complex traits: from polygenic to omnigenic. Cell 169 (2017), 1177–1186.
    • (2017) Cell , vol.169 , pp. 1177-1186
    • Boyle, E.A.1    Li, Y.I.2    Pritchard, J.K.3
  • 10
    • 0034710924 scopus 로고    scopus 로고
    • Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks
    • Butte, A.J., Tamayo, P., Slonim, D., Golub, T.R., Kohane, I.S., Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc. Natl. Acad. Sci. USA 97 (2000), 12182–12186.
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 12182-12186
    • Butte, A.J.1    Tamayo, P.2    Slonim, D.3    Golub, T.R.4    Kohane, I.S.5
  • 12
    • 84889281816 scopus 로고    scopus 로고
    • Elements of Information Theory
    • John Wiley ISBN 1118585771
    • Cover, T.M., Thomas, J.A., Elements of Information Theory. 2012, John Wiley ISBN 1118585771.
    • (2012)
    • Cover, T.M.1    Thomas, J.A.2
  • 13
    • 33749249600 scopus 로고    scopus 로고
    • The relationship between precision-recall and ROC curves. In Proceedings of the 23rd International Conference on Machine Learning
    • ACM
    • Davis, J., Goadrich, M., The relationship between precision-recall and ROC curves. In Proceedings of the 23rd International Conference on Machine Learning. 2006, ACM.
    • (2006)
    • Davis, J.1    Goadrich, M.2
  • 14
    • 77957110013 scopus 로고    scopus 로고
    • Advantages and limitations of current network inference methods
    • De Smet, R., Marchal, K., Advantages and limitations of current network inference methods. Nat. Rev. Microbiol. 8 (2010), 717–729.
    • (2010) Nat. Rev. Microbiol. , vol.8 , pp. 717-729
    • De Smet, R.1    Marchal, K.2
  • 15
    • 0009525409 scopus 로고    scopus 로고
    • How to measure the information gained from one symbol
    • Deweese, M.R., Meister, M., How to measure the information gained from one symbol. Network 10 (1999), 325–340.
    • (1999) Network , vol.10 , pp. 325-340
    • Deweese, M.R.1    Meister, M.2
  • 17
    • 85031118324 scopus 로고    scopus 로고
    • A Bayesian nonparametric approach to testing for dependence between random variables
    • Filippi, S., Holmes, C.C., A Bayesian nonparametric approach to testing for dependence between random variables. Bayesian Anal., 2017, 10.1214/16-BA1027.
    • (2017) Bayesian Anal.
    • Filippi, S.1    Holmes, C.C.2
  • 18
    • 84951574149 scopus 로고    scopus 로고
    • MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
    • Finak, G., McDavid, A., Yajima, M., Deng, J., Gersuk, V., Shalek, A.K., Slichter, C.K., Miller, H.W., McElrath, M.J., Prlic, M., et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol., 16, 2015, 278.
    • (2015) Genome Biol. , vol.16 , pp. 278
    • Finak, G.1    McDavid, A.2    Yajima, M.3    Deng, J.4    Gersuk, V.5    Shalek, A.K.6    Slichter, C.K.7    Miller, H.W.8    McElrath, M.J.9    Prlic, M.10
  • 19
    • 84999264545 scopus 로고    scopus 로고
    • Estimating intrinsic and extrinsic noise from single-cell gene expression measurements
    • Fu, A.Q., Pachter, L., Estimating intrinsic and extrinsic noise from single-cell gene expression measurements. Stat. Appl. Genet. Mol. Biol. 15 (2016), 447–471.
    • (2016) Stat. Appl. Genet. Mol. Biol. , vol.15 , pp. 447-471
    • Fu, A.Q.1    Pachter, L.2
  • 20
    • 33645429016 scopus 로고
    • Exact stochastic simulation of coupled chemical reactions
    • Gillespie, D., Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81 (1977), 2340–2361.
    • (1977) J. Phys. Chem. , vol.81 , pp. 2340-2361
    • Gillespie, D.1
  • 21
    • 84928901821 scopus 로고    scopus 로고
    • Regulatory network control of blood stem cells
    • Göttgens, B., Regulatory network control of blood stem cells. Blood 125 (2015), 2614–2620.
    • (2015) Blood , vol.125 , pp. 2614-2620
    • Göttgens, B.1
  • 22
    • 84930474868 scopus 로고    scopus 로고
    • The route to spinal cord cell types: a tale of signals and switches
    • Gouti, M., Metzis, V., Briscoe, J., The route to spinal cord cell types: a tale of signals and switches. Trends Genet. 31 (2015), 282–289.
    • (2015) Trends Genet. , vol.31 , pp. 282-289
    • Gouti, M.1    Metzis, V.2    Briscoe, J.3
  • 23
    • 84946226911 scopus 로고    scopus 로고
    • Design and analysis of single-cell sequencing experiments
    • Grün, D., van Oudenaarden, A., Design and analysis of single-cell sequencing experiments. Cell 163 (2015), 799–810.
    • (2015) Cell , vol.163 , pp. 799-810
    • Grün, D.1    van Oudenaarden, A.2
  • 24
    • 77951912210 scopus 로고    scopus 로고
    • Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst
    • Guo, G., Huss, M., Tong, G.Q., Wang, C., Sun, L.L., Clarke, N.D., Robson, P., Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev. Cell 18 (2010), 675–685.
    • (2010) Dev. Cell , vol.18 , pp. 675-685
    • Guo, G.1    Huss, M.2    Tong, G.Q.3    Wang, C.4    Sun, L.L.5    Clarke, N.D.6    Robson, P.7
  • 27
    • 68949161935 scopus 로고    scopus 로고
    • Entropy inference and the James-Stein estimator, with application to nonlinear Gene Association Networks
    • Hausser, J., Strimmer, K., Entropy inference and the James-Stein estimator, with application to nonlinear Gene Association Networks. J. Machine Learn. Res. 10 (2009), 1469–1484.
    • (2009) J. Machine Learn. Res. , vol.10 , pp. 1469-1484
    • Hausser, J.1    Strimmer, K.2
  • 30
    • 77952927123 scopus 로고    scopus 로고
    • Cell lineage determination in state space: a systems view brings flexibility to dogmatic canonical rules
    • Huang, S., Cell lineage determination in state space: a systems view brings flexibility to dogmatic canonical rules. PLoS Biol., 8, 2010, e1000380.
    • (2010) PLoS Biol. , vol.8 , pp. e1000380
    • Huang, S.1
  • 31
    • 84989225461 scopus 로고    scopus 로고
    • Inferring cellular regulatory networks with Bayesian model averaging for linear regression (BMALR)
    • Huang, X., Zi, Z., Inferring cellular regulatory networks with Bayesian model averaging for linear regression (BMALR). Mol. Biosyst. 10 (2014), 2023–2030.
    • (2014) Mol. Biosyst. , vol.10 , pp. 2023-2030
    • Huang, X.1    Zi, Z.2
  • 32
    • 33745780500 scopus 로고    scopus 로고
    • Network motifs: structure does not determine function
    • Ingram, P.J., Stumpf, M.P.H., Stark, J., Network motifs: structure does not determine function. BMC Genomics, 7, 2006, 108.
    • (2006) BMC Genomics , vol.7 , pp. 108
    • Ingram, P.J.1    Stumpf, M.P.H.2    Stark, J.3
  • 33
    • 84903574951 scopus 로고    scopus 로고
    • Bayesian approach to single-cell differential expression analysis
    • Kharchenko, P.V., Silberstein, L., Scadden, D.T., Bayesian approach to single-cell differential expression analysis. Nat. Methods 11 (2014), 740–742.
    • (2014) Nat. Methods , vol.11 , pp. 740-742
    • Kharchenko, P.V.1    Silberstein, L.2    Scadden, D.T.3
  • 34
    • 84895815806 scopus 로고    scopus 로고
    • Equitability, mutual information, and the maximal information coefficient
    • Kinney, J., Atwal, G.S., Equitability, mutual information, and the maximal information coefficient. Proc. Natl. Acad. Sci. USA 111 (2014), 3354–3359.
    • (2014) Proc. Natl. Acad. Sci. USA , vol.111 , pp. 3354-3359
    • Kinney, J.1    Atwal, G.S.2
  • 37
    • 84992327075 scopus 로고    scopus 로고
    • A statistical approach for identifying differential distributions in single-cell RNA-seq experiments
    • Korthauer, K.D., Chu, L.F., Newton, M.A., Li, Y., Thomson, J., Stewart, R., Kendziorski, C., A statistical approach for identifying differential distributions in single-cell RNA-seq experiments. Genome Biol., 17, 2016, 222.
    • (2016) Genome Biol. , vol.17 , pp. 222
    • Korthauer, K.D.1    Chu, L.F.2    Newton, M.A.3    Li, Y.4    Thomson, J.5    Stewart, R.6    Kendziorski, C.7
  • 39
    • 77957930628 scopus 로고    scopus 로고
    • Statistical inference of the time-varying structure of gene-regulation networks
    • Lebre, S., Becq, J., Devaux, F., Stumpf, M.P.H., Lelandais, G., Statistical inference of the time-varying structure of gene-regulation networks. BMC Syst. Biol., 4, 2010, 130.
    • (2010) BMC Syst. Biol. , vol.4 , pp. 130
    • Lebre, S.1    Becq, J.2    Devaux, F.3    Stumpf, M.P.H.4    Lelandais, G.5
  • 40
    • 48849090016 scopus 로고    scopus 로고
    • Gene Regulatory Network reconstruction using conditional mutual information
    • Liang, K.C., Wang, X., Gene Regulatory Network reconstruction using conditional mutual information. EURASIP J. Bioinform Syst. Biol., 2008, 2008, 253894.
    • (2008) EURASIP J. Bioinform Syst. Biol. , vol.2008 , pp. 253894
    • Liang, K.C.1    Wang, X.2
  • 41
    • 84964545059 scopus 로고    scopus 로고
    • Single-cell transcriptome sequencing: recent advances and remaining challenges
    • Liu, S., Trapnell, C., Single-cell transcriptome sequencing: recent advances and remaining challenges. F1000Res., 5, 2016, 182.
    • (2016) F1000Res. , vol.5 , pp. 182
    • Liu, S.1    Trapnell, C.2
  • 43
    • 78149461178 scopus 로고    scopus 로고
    • DREAM3: network inference using dynamic context likelihood of relatedness and the inferelator
    • Madar, A., Greenfield, A., Vanden-Eijnden, E., Bonneau, R., DREAM3: network inference using dynamic context likelihood of relatedness and the inferelator. PLoS One 5 (2010), e9803–e9813.
    • (2010) PLoS One , vol.5 , pp. e9803-e9813
    • Madar, A.1    Greenfield, A.2    Vanden-Eijnden, E.3    Bonneau, R.4
  • 48
    • 84942021497 scopus 로고    scopus 로고
    • Information processing by simple molecular motifs and susceptibility to noise
    • Mc Mahon, S.S., Lenive, O., Filippi, S., Stumpf, M.P.H., Information processing by simple molecular motifs and susceptibility to noise. J. R. Soc. Interf., 12, 2015, 20150597.
    • (2015) J. R. Soc. Interf. , vol.12 , pp. 20150597
    • Mc Mahon, S.S.1    Lenive, O.2    Filippi, S.3    Stumpf, M.P.H.4
  • 49
    • 84908897496 scopus 로고    scopus 로고
    • Information theory and signal transduction systems: from molecular information processing to network inference
    • Mc Mahon, S.S., Sim, A., Johnson, R., Liepe, J., Stumpf, M.P.H., Information theory and signal transduction systems: from molecular information processing to network inference. Semin. Cell Dev. Biol. 35 (2014), 98–108.
    • (2014) Semin. Cell Dev. Biol. , vol.35 , pp. 98-108
    • Mc Mahon, S.S.1    Sim, A.2    Johnson, R.3    Liepe, J.4    Stumpf, M.P.H.5
  • 52
  • 53
    • 59949086432 scopus 로고    scopus 로고
    • minet: a R/Bioconductor package for inferring large transcriptional networks using mutual information
    • Meyer, P.E., Lafitte, F., Bontempi, G., minet: a R/Bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinformatics, 9, 2008, 461.
    • (2008) BMC Bioinformatics , vol.9 , pp. 461
    • Meyer, P.E.1    Lafitte, F.2    Bontempi, G.3
  • 56
    • 84991585454 scopus 로고    scopus 로고
    • Transition states and cell fate decisions in epigenetic landscapes
    • Moris, N., Pina, C., Martinez Arias, A., Transition states and cell fate decisions in epigenetic landscapes. Nat. Rev. Genet., 17, 2016, 693.
    • (2016) Nat. Rev. Genet. , vol.17 , pp. 693
    • Moris, N.1    Pina, C.2    Martinez Arias, A.3
  • 57
    • 0004103979 scopus 로고
    • Data Analysis and Regression: A Second Course in Statistics
    • Addison-Wesley
    • Mosteller, F., Tukey, J.W., Data Analysis and Regression: A Second Course in Statistics. 1977, Addison-Wesley.
    • (1977)
    • Mosteller, F.1    Tukey, J.W.2
  • 58
    • 84857466151 scopus 로고    scopus 로고
    • Machine Learning. A Probabilistic Perspective
    • MIT Press ISBN 0262018020
    • Murphy, K.P., Machine Learning. A Probabilistic Perspective. 2012, MIT Press ISBN 0262018020.
    • (2012)
    • Murphy, K.P.1
  • 59
    • 84907859546 scopus 로고    scopus 로고
    • Quantifying the multi-scale performance of network inference algorithms
    • Oates, C.J., Amos, R., Spencer, S.E.F., Quantifying the multi-scale performance of network inference algorithms. Stat. Appl. Genet. Mol. Biol. 13 (2014), 611–631.
    • (2014) Stat. Appl. Genet. Mol. Biol. , vol.13 , pp. 611-631
    • Oates, C.J.1    Amos, R.2    Spencer, S.E.F.3
  • 60
    • 84866463900 scopus 로고    scopus 로고
    • Network inference and biological dynamics
    • Oates, C.J., Mukherjee, S., Network inference and biological dynamics. Ann. Appl. Stat. 6 (2012), 1209–1235.
    • (2012) Ann. Appl. Stat. , vol.6 , pp. 1209-1235
    • Oates, C.J.1    Mukherjee, S.2
  • 61
    • 84931084251 scopus 로고    scopus 로고
    • Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data
    • Ocone, A., Haghverdi, L., Mueller, N.S., Theis, F.J., Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data. Bioinformatics 31 (2015), i89–i96.
    • (2015) Bioinformatics , vol.31 , pp. i89-i96
    • Ocone, A.1    Haghverdi, L.2    Mueller, N.S.3    Theis, F.J.4
  • 62
    • 59849099039 scopus 로고    scopus 로고
    • On the impact of entropy estimation on transcriptional regulatory network inference based on mutual information
    • Olsen, C., Meyer, P.E., Bontempi, G., On the impact of entropy estimation on transcriptional regulatory network inference based on mutual information. EURASIP J. Bioinform Syst. Biol. 2009 (2009), 1–9.
    • (2009) EURASIP J. Bioinform Syst. Biol. , vol.2009 , pp. 1-9
    • Olsen, C.1    Meyer, P.E.2    Bontempi, G.3
  • 63
    • 34848903220 scopus 로고    scopus 로고
    • From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data
    • Opgen-Rhein, R., Strimmer, K., From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst. Biol., 1, 2007, 37.
    • (2007) BMC Syst. Biol. , vol.1 , pp. 37
    • Opgen-Rhein, R.1    Strimmer, K.2
  • 64
    • 0041877169 scopus 로고    scopus 로고
    • Estimation of entropy and mutual information
    • Paninski, L., Estimation of entropy and mutual information. Neural Comput. 15 (2003), 1191–1253.
    • (2003) Neural Comput. , vol.15 , pp. 1191-1253
    • Paninski, L.1
  • 65
    • 84930732632 scopus 로고    scopus 로고
    • CSI: a nonpara- metric Bayesian approach to network inference from multiple perturbed time series gene expression data
    • Penfold, C.A., Shifaz, A., Brown, P.E., Nicholson, A., Wild, D.L., CSI: a nonpara- metric Bayesian approach to network inference from multiple perturbed time series gene expression data. Stat. Appl. Genet. Mol. Biol. 14 (2015), 307–310.
    • (2015) Stat. Appl. Genet. Mol. Biol. , vol.14 , pp. 307-310
    • Penfold, C.A.1    Shifaz, A.2    Brown, P.E.3    Nicholson, A.4    Wild, D.L.5
  • 66
    • 84859149116 scopus 로고    scopus 로고
    • How to infer gene networks from expression profiles, revisited
    • Penfold, C.A., Wild, D.L., How to infer gene networks from expression profiles, revisited. Interf. Focus 1 (2011), 857–870.
    • (2011) Interf. Focus , vol.1 , pp. 857-870
    • Penfold, C.A.1    Wild, D.L.2
  • 67
    • 84955706109 scopus 로고    scopus 로고
    • ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis
    • Pierson, E., Yau, C., ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol., 16, 2015, 241.
    • (2015) Genome Biol. , vol.16 , pp. 241
    • Pierson, E.1    Yau, C.2
  • 68
  • 69
    • 85008168844 scopus 로고    scopus 로고
    • Single-cell profiling of human megakaryocyte-erythroid progenitors identifies distinct megakaryocyte and erythroid differentiation pathways
    • Psaila, B., Barkas, N., Iskander, D., Roy, A., Anderson, S., Ashley, N., Caputo, V.S., Lichtenberg, J., Loaiza, S., Bodine, D.M., et al. Single-cell profiling of human megakaryocyte-erythroid progenitors identifies distinct megakaryocyte and erythroid differentiation pathways. Genome Biol., 17, 2016, 1.
    • (2016) Genome Biol. , vol.17 , pp. 1
    • Psaila, B.1    Barkas, N.2    Iskander, D.3    Roy, A.4    Anderson, S.5    Ashley, N.6    Caputo, V.S.7    Lichtenberg, J.8    Loaiza, S.9    Bodine, D.M.10
  • 70
    • 84983497196 scopus 로고    scopus 로고
    • Pseudotime estimation: deconfounding single cell time series
    • Reid, J.E., Wernisch, L., Pseudotime estimation: deconfounding single cell time series. Bioinformatics 32 (2016), 2973–2980.
    • (2016) Bioinformatics , vol.32 , pp. 2973-2980
    • Reid, J.E.1    Wernisch, L.2
  • 71
    • 84923647413 scopus 로고    scopus 로고
    • Cell dynamics and gene expression control in tissue homeostasis and development
    • Rue, P., Martinez Arias, A., Cell dynamics and gene expression control in tissue homeostasis and development. Mol. Syst. Biol., 11, 2015, 792.
    • (2015) Mol. Syst. Biol. , vol.11 , pp. 792
    • Rue, P.1    Martinez Arias, A.2
  • 72
    • 84874044042 scopus 로고    scopus 로고
    • Studies in astronomical time series analysis. VI. Bayesian block representations
    • Scargle, J.D., Norris, J.P., Jackson, B., Chiang, J., Studies in astronomical time series analysis. VI. Bayesian block representations. Astrophys. J., 764, 2013, 167.
    • (2013) Astrophys. J. , vol.764 , pp. 167
    • Scargle, J.D.1    Norris, J.P.2    Jackson, B.3    Chiang, J.4
  • 73
    • 15944364151 scopus 로고    scopus 로고
    • An empirical Bayes approach to inferring large-scale gene association networks
    • Schafer, J., Strimmer, K., An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21 (2005), 754–764.
    • (2005) Bioinformatics , vol.21 , pp. 754-764
    • Schafer, J.1    Strimmer, K.2
  • 74
    • 79961200389 scopus 로고    scopus 로고
    • GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods
    • Schaffter, T., Marbach, D., Floreano, D., GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics 27 (2011), 2263–2270.
    • (2011) Bioinformatics , vol.27 , pp. 2263-2270
    • Schaffter, T.1    Marbach, D.2    Floreano, D.3
  • 77
    • 84897389995 scopus 로고    scopus 로고
    • Assessment of network inference methods: how to cope with an underdetermined problem
    • Siegenthaler, C., Gunawan, R., Assessment of network inference methods: how to cope with an underdetermined problem. PLoS One, 9, 2014, e90481.
    • (2014) PLoS One , vol.9 , pp. e90481
    • Siegenthaler, C.1    Gunawan, R.2
  • 78
    • 84855265038 scopus 로고    scopus 로고
    • Influence of statistical estimators of mutual information and data heterogeneity on the inference of gene regulatory networks
    • Simoes, R.d.M., Emmert-Streib, F., Influence of statistical estimators of mutual information and data heterogeneity on the inference of gene regulatory networks. PLoS One, 6, 2011, e29279.
    • (2011) PLoS One , vol.6 , pp. e29279
    • Simoes, R.D.M.1    Emmert-Streib, F.2
  • 79
    • 84923647450 scopus 로고    scopus 로고
    • Computational and analytical challenges in single-cell transcriptomics
    • Stegle, O., Teichmann, S.A., Marioni, J.C., Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16 (2015), 133–145.
    • (2015) Nat. Rev. Genet. , vol.16 , pp. 133-145
    • Stegle, O.1    Teichmann, S.A.2    Marioni, J.C.3
  • 80
    • 0042526388 scopus 로고    scopus 로고
    • The mutual information: detecting and evaluating dependencies between variables
    • Steuer, R., Kurths, J., Daub, C.O., Weise, J., Selbig, J., The mutual information: detecting and evaluating dependencies between variables. Bioinformatics 18:Suppl 2 (2002), S231–S240.
    • (2002) Bioinformatics , vol.18 , pp. S231-S240
    • Steuer, R.1    Kurths, J.2    Daub, C.O.3    Weise, J.4    Selbig, J.5
  • 83
    • 84870778397 scopus 로고    scopus 로고
    • Inference of temporally varying Bayesian networks
    • Thorne, T.W., Stumpf, M.P.H., Inference of temporally varying Bayesian networks. Bioinformatics 28 (2012), 3298–3305.
    • (2012) Bioinformatics , vol.28 , pp. 3298-3305
    • Thorne, T.W.1    Stumpf, M.P.H.2
  • 84
    • 84896542522 scopus 로고    scopus 로고
    • Synergy, redundancy, and multivariate information measures: an experimentalist's perspective
    • Timme, N., Alford, W., Flecker, B., Beggs, J.M., Synergy, redundancy, and multivariate information measures: an experimentalist's perspective. J. Comput. Neurosci. 36 (2014), 119–140.
    • (2014) J. Comput. Neurosci. , vol.36 , pp. 119-140
    • Timme, N.1    Alford, W.2    Flecker, B.3    Beggs, J.M.4
  • 87
    • 84962861088 scopus 로고    scopus 로고
    • Beyond comparisons of means: understanding changes in gene expression at the single-cell level
    • Vallejos, C., Beyond comparisons of means: understanding changes in gene expression at the single-cell level. Genome Biol., 17, 2016, 70.
    • (2016) Genome Biol. , vol.17 , pp. 70
    • Vallejos, C.1
  • 89
    • 84872373405 scopus 로고    scopus 로고
    • Introduction to astroML: Machine Learning for Astrophysics. In Conference on Intelligent Data Understanding (CIDU)
    • IEEE
    • Vanderplas, J., Connolly, A., IveziC, Z., Gray, A., Introduction to astroML: Machine Learning for Astrophysics. In Conference on Intelligent Data Understanding (CIDU). 2012, IEEE, 47–54, 10.1109/CIDU.2012.6382200.
    • (2012) , pp. 47-54
    • Vanderplas, J.1    Connolly, A.2    IveziC, Z.3    Gray, A.4
  • 90
    • 84891892293 scopus 로고    scopus 로고
    • Reverse engineering cellular networks with information theoretic methods
    • Villaverde, A., Ross, J., Banga, J., Reverse engineering cellular networks with information theoretic methods. Cells 2 (2013), 306–329.
    • (2013) Cells , vol.2 , pp. 306-329
    • Villaverde, A.1    Ross, J.2    Banga, J.3
  • 91
    • 84891892050 scopus 로고    scopus 로고
    • Reverse engineering and identification in systems biology: strategies, perspectives and challenges
    • Villaverde, A.F., Banga, J.R., Reverse engineering and identification in systems biology: strategies, perspectives and challenges. J. R. Soc. Interf., 11, 2013, 20130505.
    • (2013) J. R. Soc. Interf. , vol.11 , pp. 20130505
    • Villaverde, A.F.1    Banga, J.R.2
  • 92
    • 84900566215 scopus 로고    scopus 로고
    • MIDER: network inference with mutual information distance and entropy reduction
    • Villaverde, A.F., Ross, J., Moran, F., Banga, J.R., MIDER: network inference with mutual information distance and entropy reduction. PLoS One, 9, 2014, e96732.
    • (2014) PLoS One , vol.9 , pp. e96732
    • Villaverde, A.F.1    Ross, J.2    Moran, F.3    Banga, J.R.4
  • 93
    • 84974829089 scopus 로고    scopus 로고
    • Model selection for factorial Gaussian graphical models with an application to dynamic regulatory networks
    • Vinciotti, V., Augugliaro, L., Abbruzzo, A., Wit, E.C., Model selection for factorial Gaussian graphical models with an application to dynamic regulatory networks. Stat. Appl. Genet. Mol. Biol. 15 (2016), 193–212.
    • (2016) Stat. Appl. Genet. Mol. Biol. , vol.15 , pp. 193-212
    • Vinciotti, V.1    Augugliaro, L.2    Abbruzzo, A.3    Wit, E.C.4
  • 94
    • 63849257557 scopus 로고    scopus 로고
    • Inference of regulatory gene interactions from expression data using three-way mutual information
    • Watkinson, J., Liang, K.C., Wang, X., Zheng, T., Anastassiou, D., Inference of regulatory gene interactions from expression data using three-way mutual information. Ann. N. Y. Acad. Sci. 1158 (2009), 302–313.
    • (2009) Ann. N. Y. Acad. Sci. , vol.1158 , pp. 302-313
    • Watkinson, J.1    Liang, K.C.2    Wang, X.3    Zheng, T.4    Anastassiou, D.5
  • 95
    • 80053433934 scopus 로고    scopus 로고
    • Nonnegative decomposition of multivariate information
    • 1004.2515v1
    • Williams, P.L., Beer, R.D., Nonnegative decomposition of multivariate information. arXiv, 2010 1004.2515v1.
    • (2010) arXiv
    • Williams, P.L.1    Beer, R.D.2
  • 96
    • 84899971737 scopus 로고    scopus 로고
    • Fast Bayesian inference for gene regulatory networks using ScanBMA
    • Young, W.C., Raftery, A.E., Yeung, K.Y., Fast Bayesian inference for gene regulatory networks using ScanBMA. BMC Syst. Biol., 8, 2014, 47.
    • (2014) BMC Syst. Biol. , vol.8 , pp. 47
    • Young, W.C.1    Raftery, A.E.2    Yeung, K.Y.3
  • 97
    • 84930733410 scopus 로고    scopus 로고
    • A mutual information estimator with exponentially decaying bias
    • Zhang, Z., Zheng, L., A mutual information estimator with exponentially decaying bias. Stat. Appl. Genet. Mol. Biol. 14 (2015), 243–252.
    • (2015) Stat. Appl. Genet. Mol. Biol. , vol.14 , pp. 243-252
    • Zhang, Z.1    Zheng, L.2
  • 98
    • 84965168859 scopus 로고    scopus 로고
    • Part mutual information for quantifying direct associations in networks
    • Zhao, J., Zhou, Y., Zhang, X., Chen, L., Part mutual information for quantifying direct associations in networks. Proc. Natl. Acad. Sci. USA 113 (2016), 5130–5135.
    • (2016) Proc. Natl. Acad. Sci. USA , vol.113 , pp. 5130-5135
    • Zhao, J.1    Zhou, Y.2    Zhang, X.3    Chen, L.4
  • 99
    • 77952663448 scopus 로고    scopus 로고
    • TimeDelay-ARACNE: reverse engineering of gene networks from time-course data by an information theoretic approach
    • Zoppoli, P., Morganella, S., Ceccarelli, M., TimeDelay-ARACNE: reverse engineering of gene networks from time-course data by an information theoretic approach. BMC Bioinformatics, 11, 2010, 154.
    • (2010) BMC Bioinformatics , vol.11 , pp. 154
    • Zoppoli, P.1    Morganella, S.2    Ceccarelli, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.