메뉴 건너뛰기




Volumn 23, Issue 5, 2019, Pages 2091-2098

Large-Scale Multi-Class Image-Based Cell Classification with Deep Learning

Author keywords

bright field imaging; Cell classification; convolutional neural network; multiclass classification

Indexed keywords

CELLS; CONVOLUTION; CONVOLUTIONAL NEURAL NETWORKS; CYTOLOGY; DEEP LEARNING; IMAGE CLASSIFICATION; LARGE DATASET; LEARNING ALGORITHMS; NEAREST NEIGHBOR SEARCH; SUPPORT VECTOR MACHINES;

EID: 85055863346     PISSN: 21682194     EISSN: 21682208     Source Type: Journal    
DOI: 10.1109/JBHI.2018.2878878     Document Type: Article
Times cited : (74)

References (44)
  • 1
    • 85028727120 scopus 로고    scopus 로고
    • Data-analysis strategies for image-based cell profiling
    • Sep.
    • J. C. Caicedo et al., "Data-analysis strategies for image-based cell profiling," Nat. Methods, vol. 14, no. 9, pp. 849-863, Sep. 2017.
    • (2017) Nat. Methods , vol.14 , Issue.9 , pp. 849-863
    • Caicedo, J.C.1
  • 2
    • 84949495449 scopus 로고    scopus 로고
    • Microscopy-based high-content screening
    • Dec.
    • M. Boutros, F. Heigwer, and C. Laufer, "Microscopy-based high-content screening," Cell, vol. 163, no. 6, pp. 1314-1325, Dec. 2015.
    • (2015) Cell , vol.163 , Issue.6 , pp. 1314-1325
    • Boutros, M.1    Heigwer, F.2    Laufer, C.3
  • 3
    • 84892595285 scopus 로고    scopus 로고
    • Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow
    • Jan.
    • T. T. Wong et al., "Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow," Sci. Rep., vol. 4, Jan. 2014, Art. no. 3656.
    • (2014) Sci. Rep. , vol.4
    • Wong, T.T.1
  • 4
    • 85006141636 scopus 로고    scopus 로고
    • High-throughput time-stretch imaging flow cytometry for multi-class classification of phytoplankton
    • Dec.
    • Q. T. K. Lai, K. C. M. Lee, A. H. L. Tang, K. K. Y. Wong, H. K.-H. So, and K. K. Tsia, "High-throughput time-stretch imaging flow cytometry for multi-class classification of phytoplankton," Opt. Express, vol. 24, no. 25, pp. 28170-28184, Dec. 2016.
    • (2016) Opt. Express , vol.24 , Issue.25 , pp. 28170-28184
    • Lai, Q.T.K.1    Lee, K.C.M.2    Tang, A.H.L.3    Wong, K.K.Y.4    So, H.K.-H.5    Tsia, K.K.6
  • 6
    • 85039070736 scopus 로고    scopus 로고
    • Ultrafast laser-scanning time-stretch imaging at visible wavelengths
    • Jan.
    • J.-L. Wu et al., "Ultrafast laser-scanning time-stretch imaging at visible wavelengths," Light: Sci. Appl., vol. 6, no. 9, Jan. 2017, Art. no. e16196.
    • (2017) Light: Sci. Appl. , vol.6 , Issue.9
    • Wu, J.-L.1
  • 7
    • 84958048475 scopus 로고    scopus 로고
    • Computer vision for high content screening
    • Jan.
    • O. Z. Kraus and B. J. Frey, "Computer vision for high content screening," Crit. Rev. Biochem. Mol. Biol., vol. 51, pp. 102-109, Jan. 2016.
    • (2016) Crit. Rev. Biochem. Mol. Biol. , vol.51 , pp. 102-109
    • Kraus, O.Z.1    Frey, B.J.2
  • 8
    • 85018293362 scopus 로고    scopus 로고
    • Automated analysis of high-content microscopy data with deep learning
    • Apr.
    • O. Z. Kraus et al., "Automated analysis of high-content microscopy data with deep learning," Mol. Syst. Biol., vol. 13, Apr. 2017, Art. no. 924.
    • (2017) Mol. Syst. Biol. , vol.13
    • Kraus, O.Z.1
  • 9
    • 53049092388 scopus 로고    scopus 로고
    • A fast, fully automated cell segmentation algorithm for high-throughput and high-content screening
    • Aug.
    • D. Fenistein, B. Lenseigne, T. Christophe, P. Brodin, and A. Genovesio, "A fast, fully automated cell segmentation algorithm for high-throughput and high-content screening," Cytometry Part A, vol. 73A, pp. 958-964, Aug. 2008.
    • (2008) Cytometry Part A , vol.73 A , pp. 958-964
    • Fenistein, D.1    Lenseigne, B.2    Christophe, T.3    Brodin, P.4    Genovesio, A.5
  • 10
    • 79953691831 scopus 로고    scopus 로고
    • A rapid fluorescence-based assay for classification of iNKT cell activating glycolipids
    • Mar.
    • P. Arora et al., "A rapid fluorescence-based assay for classification of iNKT cell activating glycolipids," J. Amer. Chem. Soc., vol. 133, pp. 5198-5201, Mar. 2011.
    • (2011) J. Amer. Chem. Soc. , vol.133 , pp. 5198-5201
    • Arora, P.1
  • 11
    • 79959608343 scopus 로고    scopus 로고
    • Laser scanning cytometry and its applications: A pioneering technology in the field of quantitative imaging cytometry
    • M. Henriksen, B. Miller, J. Newmark, Y. Al-Kofahi, and E. Holden, "Laser scanning cytometry and its applications: A pioneering technology in the field of quantitative imaging cytometry," Methods Cell Biol., vol. 102, pp. 159-205, 2011.
    • (2011) Methods Cell Biol. , vol.102 , pp. 159-205
    • Henriksen, M.1    Miller, B.2    Newmark, J.3    Al-Kofahi, Y.4    Holden, E.5
  • 13
    • 67349187542 scopus 로고    scopus 로고
    • Aggregation of classifiers for staining pattern recognition in antinuclear autoantibodies analysis
    • Jan.
    • P. Soda and G. Iannello, "Aggregation of classifiers for staining pattern recognition in antinuclear autoantibodies analysis," IEEE Trans. Inf. Technol. Biomed., vol. 13, pp. 322-329, Jan. 2009.
    • (2009) IEEE Trans. Inf. Technol. Biomed. , vol.13 , pp. 322-329
    • Soda, P.1    Iannello, G.2
  • 15
    • 84885138103 scopus 로고    scopus 로고
    • Benchmarking HEp-2 cells classification methods
    • Jun.
    • P. Foggia, G. Percannella, P. Soda, and M. Vento, "Benchmarking HEp-2 cells classification methods," IEEE Trans. Med. Imag., vol. 32, no. 10, pp. 1878-1889, Jun. 2013.
    • (2013) IEEE Trans. Med. Imag. , vol.32 , Issue.10 , pp. 1878-1889
    • Foggia, P.1    Percannella, G.2    Soda, P.3    Vento, M.4
  • 16
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • M. D. Zeiler and R. Fergus, "Visualizing and understanding convolutional networks," in Proc. Euro. Conf. Comput. Vision, 2014, pp. 818-833.
    • (2014) Proc. Euro. Conf. Comput. Vision , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2
  • 18
    • 85019258369 scopus 로고    scopus 로고
    • Faster R-CNN: Towards realtime object detection with region proposal networks
    • Jun.
    • S. Ren, K. He, R. Girshick, and S. Jian, "Faster R-CNN: Towards realtime object detection with region proposal networks," IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137-1149, Jun. 2016.
    • (2016) IEEE Trans. Pattern Anal. Mach. Intell. , vol.39 , Issue.6 , pp. 1137-1149
    • Ren, S.1    He, K.2    Girshick, R.3    Jian, S.4
  • 19
    • 85045995814 scopus 로고    scopus 로고
    • Learning-based nonparametric autofocusing for digital holography
    • Apr.
    • Z. Ren, Z. Xu, and E. Y. Lam, "Learning-based nonparametric autofocusing for digital holography," Optica, vol. 5, no. 4, pp. 337-344, Apr. 2018.
    • (2018) Optica , vol.5 , Issue.4 , pp. 337-344
    • Ren, Z.1    Xu, Z.2    Lam, E.Y.3
  • 20
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • Feb.
    • A. Esteva et al., "Dermatologist-level classification of skin cancer with deep neural networks," Nature, vol. 542, no. 7639, pp. 115-118, Feb. 2017.
    • (2017) Nature , vol.542 , Issue.7639 , pp. 115-118
    • Esteva, A.1
  • 21
    • 85044647278 scopus 로고    scopus 로고
    • A deeply supervised residual network for HEp-2 cell classification via cross-modal transfer learning
    • Jul.
    • H. Lei et al., "A deeply supervised residual network for HEp-2 cell classification via cross-modal transfer learning," Pattern Recognit., vol. 79, pp. 290-302, Jul. 2018.
    • (2018) Pattern Recognit. , vol.79 , pp. 290-302
    • Lei, H.1
  • 22
    • 85028914209 scopus 로고    scopus 로고
    • Reconstructing cell cycle and disease progression using deep learning
    • P. Eulenberg et al., "Reconstructing cell cycle and disease progression using deep learning," Nat. Commun., vol. 8, no. 1, 2017, Art. no. 463.
    • (2017) Nat. Commun. , vol.8 , Issue.1
    • Eulenberg, P.1
  • 23
    • 85047213221 scopus 로고    scopus 로고
    • A guide to automated apoptosis detection: How to make sense of imaging flow cytometry data
    • D. Pischel, J. H. Buchbinder, K. Sundmacher, I. N. Lavrik, and R. J. Flassig, "A guide to automated apoptosis detection: How to make sense of imaging flow cytometry data," PLoS One, vol. 13, no. 5, 2018, Art. no. e0197208.
    • (2018) PLoS One , vol.13 , Issue.5
    • Pischel, D.1    Buchbinder, J.H.2    Sundmacher, K.3    Lavrik, I.N.4    Flassig, R.J.5
  • 24
    • 85023165788 scopus 로고    scopus 로고
    • Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-stretch microscopy
    • Y. Jiang et al., "Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-stretch microscopy," Lab Chip, vol. 17, no. 14, pp. 2426-2434, 2017.
    • (2017) Lab Chip , vol.17 , Issue.14 , pp. 2426-2434
    • Jiang, Y.1
  • 26
    • 85027845354 scopus 로고    scopus 로고
    • Computational single-cell classification using deep learning on bright-field and phase images
    • May
    • N. Meng, H. K.-H. So, and E. Y. Lam, "Computational single-cell classification using deep learning on bright-field and phase images," in Proc. IAPR Conf. Mach. Vision Appl., May 2017, pp. 164-167.
    • (2017) Proc. IAPR Conf. Mach. Vision Appl. , pp. 164-167
    • Meng, N.1    So, H.K.-H.2    Lam, E.Y.3
  • 27
    • 84920921065 scopus 로고    scopus 로고
    • Assessment of algorithms for mitosis detection in breast cancer histopathology images
    • M. Veta et al., "Assessment of algorithms for mitosis detection in breast cancer histopathology images," Med. Image Anal., vol. 20, no. 1, pp. 237-248, 2015.
    • (2015) Med. Image Anal. , vol.20 , Issue.1 , pp. 237-248
    • Veta, M.1
  • 28
    • 85015719821 scopus 로고    scopus 로고
    • HEp-2 cell image classification with deep convolutional neural networks
    • Feb.
    • Z. Gao, L. Wang, L. Zhou, and J. Zhang, "HEp-2 cell image classification with deep convolutional neural networks," IEEE J. Biomed. Health Inform., vol. 21, no. 2, pp. 416-428, Feb. 2017.
    • (2017) IEEE J. Biomed. Health Inform. , vol.21 , Issue.2 , pp. 416-428
    • Gao, Z.1    Wang, L.2    Zhou, L.3    Zhang, J.4
  • 29
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Nov.
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 30
    • 85023168524 scopus 로고    scopus 로고
    • HEp-2 cell classification based on a deep autoencoding-classification convolutional neural network
    • Jun.
    • J. Liu, B. Xu, L. Shen, J. Garibaldi, and G. Qiu, "HEp-2 cell classification based on a deep autoencoding-classification convolutional neural network," in Proc. Int. Symp. Biomed. Imag., Jun. 2017, pp. 1019-1023.
    • (2017) Proc. Int. Symp. Biomed. Imag. , pp. 1019-1023
    • Liu, J.1    Xu, B.2    Shen, L.3    Garibaldi, J.4    Qiu, G.5
  • 31
    • 84925831382 scopus 로고    scopus 로고
    • Lineage correlations of single cell division time as a probe of cell-cycle dynamics
    • Mar.
    • O. Sandler, S. P. Mizrahi, N. Weiss, O. Agam, I. Simon, and N.Q. Balaban, "Lineage correlations of single cell division time as a probe of cell-cycle dynamics," Nature, vol. 519, pp. 468-471, Mar. 2015.
    • (2015) Nature , vol.519 , pp. 468-471
    • Sandler, O.1    Mizrahi, S.P.2    Weiss, N.3    Agam, O.4    Simon, I.5    Balaban, N.Q.6
  • 32
    • 84926665080 scopus 로고    scopus 로고
    • High-throughput fluorescence correlation spectroscopy enables analysis of proteome dynamics in living cells
    • Mar.
    • M. Wachsmuth et al., "High-throughput fluorescence correlation spectroscopy enables analysis of proteome dynamics in living cells," Nat. Biotechnol., vol. 33, pp. 384-389, Mar. 2015.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 384-389
    • Wachsmuth, M.1
  • 33
    • 84999836246 scopus 로고    scopus 로고
    • Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments
    • Nov.
    • D. A. Van Valen et al., "Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments," PLoS Comput. Biol., vol. 12, Nov. 2016, Art. no. e1005177.
    • (2016) PLoS Comput. Biol. , vol.12
    • Van Valen, D.A.1
  • 34
    • 77649263847 scopus 로고    scopus 로고
    • Computational prediction of neural progenitor cell fates
    • Feb.
    • A. R. Cohen, F. L. A. F. G. Gomes, B. Roysam, and M. Cayouette, "Computational prediction of neural progenitor cell fates," Nat. Methods, vol. 7, no. 3, pp. 213-218, Feb. 2010.
    • (2010) Nat. Methods , vol.7 , Issue.3 , pp. 213-218
    • Cohen, A.R.1    Gomes, F.L.A.F.G.2    Roysam, B.3    Cayouette, M.4
  • 35
    • 84866443845 scopus 로고    scopus 로고
    • Imaging, quantification and visualization of spatiotemporal patterning in mESC colonies under different culture conditions
    • Sep.
    • N. Scherf et al., "Imaging, quantification and visualization of spatiotemporal patterning in mESC colonies under different culture conditions," Bioinformatics, vol. 28, pp. i556-i561, Sep. 2012.
    • (2012) Bioinformatics , vol.28 , pp. i556-i561
    • Scherf, N.1
  • 36
    • 84963591541 scopus 로고    scopus 로고
    • Accelerated cell imaging and classification on FPGAS for quantitative-phase asymmetricdetection time-stretch optical microscopy
    • Dec.
    • J. Xie, X. Niu, A. K. S. Lau, K. K. Tsia, and H. K.-H. So, "Accelerated cell imaging and classification on fpgas for quantitative-phase asymmetricdetection time-stretch optical microscopy," in Proc. Int. Conf. Field Programmable Technol., Dec. 2015, pp. 1-8.
    • (2015) Proc. Int. Conf. Field Programmable Technol. , pp. 1-8
    • Xie, J.1    Niu, X.2    Lau, A.K.S.3    Tsia, K.K.4    So, H.K.-H.5
  • 37
    • 85015079938 scopus 로고    scopus 로고
    • High-throughput cellular imaging with high-speed asymmetric-detection time-stretch optical microscopy under FPGA platform
    • Nov.
    • H. C. Ng et al., "High-throughput cellular imaging with high-speed asymmetric-detection time-stretch optical microscopy under FPGA platform," in Proc. Int. Conf. ReConFigurable Comput. FPGAs, Nov. 2016, pp. 1-6.
    • (2016) Proc. Int. Conf. ReConFigurable Comput. FPGAS , pp. 1-6
    • Ng, H.C.1
  • 38
    • 85021415330 scopus 로고    scopus 로고
    • Real-time object detection and classification for high-speed asymmetric-detection time-stretch optical microscopy on FPGA
    • Dec.
    • M. Wang et al., "Real-time object detection and classification for high-speed asymmetric-detection time-stretch optical microscopy on FPGA," in Proc. Int. Conf. Field-Programmable Technol., Dec. 2016, pp. 261-264.
    • (2016) Proc. Int. Conf. Field-Programmable Technol. , pp. 261-264
    • Wang, M.1
  • 39
    • 85050891012 scopus 로고    scopus 로고
    • Image super-resolution for ultrafast optical time-stretch imaging
    • Aug. Paper W1F-08
    • R. Shi, A. C. Chan, E. Y. Lam, and H. K.-H. So, "Image super-resolution for ultrafast optical time-stretch imaging," in Proc. Congr. Int. Commission Opt., Aug. 2017, Paper W1F-08.
    • (2017) Proc. Congr. Int. Commission Opt.
    • Shi, R.1    Chan, A.C.2    Lam, E.Y.3    So, H.K.-H.4
  • 40
    • 84874581854 scopus 로고    scopus 로고
    • Multiclass boosting SVM using different texture features in HEp-2 cell staining pattern classification
    • Feb.
    • K. Li, J. Yin, Z. Lu, X. Kong, R. Zhang, and W. Liu, "Multiclass boosting SVM using different texture features in HEp-2 cell staining pattern classification," in Proc. Int. Conf. Pattern Recognit., Feb. 2012, pp. 170-173.
    • (2012) Proc. Int. Conf. Pattern Recognit. , pp. 170-173
    • Li, K.1    Yin, J.2    Lu, Z.3    Kong, X.4    Zhang, R.5    Liu, W.6
  • 41
    • 77956502203 scopus 로고    scopus 로고
    • A theoretical analysis of feature pooling in visual recognition
    • Jul.
    • Y.-L. Boureau, J. Ponce, and Y. LeCun, "A theoretical analysis of feature pooling in visual recognition," in Proc. Int. Conf. Mach. Learn., Jul. 2010, pp. 111-118.
    • (2010) Proc. Int. Conf. Mach. Learn. , pp. 111-118
    • Boureau, Y.-L.1    Ponce, J.2    LeCun, Y.3
  • 43
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," CoRR, vol. abs/1412.6980, 2014. [Online]. Available: http://arxiv.org/abs/1412.6980
    • (2014) CoRR
    • Kingma, D.P.1    Ba, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.