-
1
-
-
85028727120
-
Data-analysis strategies for image-based cell profiling
-
Sep.
-
J. C. Caicedo et al., "Data-analysis strategies for image-based cell profiling," Nat. Methods, vol. 14, no. 9, pp. 849-863, Sep. 2017.
-
(2017)
Nat. Methods
, vol.14
, Issue.9
, pp. 849-863
-
-
Caicedo, J.C.1
-
2
-
-
84949495449
-
Microscopy-based high-content screening
-
Dec.
-
M. Boutros, F. Heigwer, and C. Laufer, "Microscopy-based high-content screening," Cell, vol. 163, no. 6, pp. 1314-1325, Dec. 2015.
-
(2015)
Cell
, vol.163
, Issue.6
, pp. 1314-1325
-
-
Boutros, M.1
Heigwer, F.2
Laufer, C.3
-
3
-
-
84892595285
-
Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow
-
Jan.
-
T. T. Wong et al., "Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow," Sci. Rep., vol. 4, Jan. 2014, Art. no. 3656.
-
(2014)
Sci. Rep.
, vol.4
-
-
Wong, T.T.1
-
4
-
-
85006141636
-
High-throughput time-stretch imaging flow cytometry for multi-class classification of phytoplankton
-
Dec.
-
Q. T. K. Lai, K. C. M. Lee, A. H. L. Tang, K. K. Y. Wong, H. K.-H. So, and K. K. Tsia, "High-throughput time-stretch imaging flow cytometry for multi-class classification of phytoplankton," Opt. Express, vol. 24, no. 25, pp. 28170-28184, Dec. 2016.
-
(2016)
Opt. Express
, vol.24
, Issue.25
, pp. 28170-28184
-
-
Lai, Q.T.K.1
Lee, K.C.M.2
Tang, A.H.L.3
Wong, K.K.Y.4
So, H.K.-H.5
Tsia, K.K.6
-
5
-
-
85015260374
-
All-passive pixel super-resolution of time-stretch imaging
-
Mar.
-
A. C. Chan, H.-C. Ng, S. C. Bogaraju, H. K.-H. So, E. Y. Lam, and K. K. Tsia, "All-passive pixel super-resolution of time-stretch imaging," Sci. Rep., vol. 7, Mar. 2017, Art. no. 44608.
-
(2017)
Sci. Rep.
, vol.7
-
-
Chan, A.C.1
Ng, H.-C.2
Bogaraju, S.C.3
So, H.K.-H.4
Lam, E.Y.5
Tsia, K.K.6
-
6
-
-
85039070736
-
Ultrafast laser-scanning time-stretch imaging at visible wavelengths
-
Jan.
-
J.-L. Wu et al., "Ultrafast laser-scanning time-stretch imaging at visible wavelengths," Light: Sci. Appl., vol. 6, no. 9, Jan. 2017, Art. no. e16196.
-
(2017)
Light: Sci. Appl.
, vol.6
, Issue.9
-
-
Wu, J.-L.1
-
7
-
-
84958048475
-
Computer vision for high content screening
-
Jan.
-
O. Z. Kraus and B. J. Frey, "Computer vision for high content screening," Crit. Rev. Biochem. Mol. Biol., vol. 51, pp. 102-109, Jan. 2016.
-
(2016)
Crit. Rev. Biochem. Mol. Biol.
, vol.51
, pp. 102-109
-
-
Kraus, O.Z.1
Frey, B.J.2
-
8
-
-
85018293362
-
Automated analysis of high-content microscopy data with deep learning
-
Apr.
-
O. Z. Kraus et al., "Automated analysis of high-content microscopy data with deep learning," Mol. Syst. Biol., vol. 13, Apr. 2017, Art. no. 924.
-
(2017)
Mol. Syst. Biol.
, vol.13
-
-
Kraus, O.Z.1
-
9
-
-
53049092388
-
A fast, fully automated cell segmentation algorithm for high-throughput and high-content screening
-
Aug.
-
D. Fenistein, B. Lenseigne, T. Christophe, P. Brodin, and A. Genovesio, "A fast, fully automated cell segmentation algorithm for high-throughput and high-content screening," Cytometry Part A, vol. 73A, pp. 958-964, Aug. 2008.
-
(2008)
Cytometry Part A
, vol.73 A
, pp. 958-964
-
-
Fenistein, D.1
Lenseigne, B.2
Christophe, T.3
Brodin, P.4
Genovesio, A.5
-
10
-
-
79953691831
-
A rapid fluorescence-based assay for classification of iNKT cell activating glycolipids
-
Mar.
-
P. Arora et al., "A rapid fluorescence-based assay for classification of iNKT cell activating glycolipids," J. Amer. Chem. Soc., vol. 133, pp. 5198-5201, Mar. 2011.
-
(2011)
J. Amer. Chem. Soc.
, vol.133
, pp. 5198-5201
-
-
Arora, P.1
-
11
-
-
79959608343
-
Laser scanning cytometry and its applications: A pioneering technology in the field of quantitative imaging cytometry
-
M. Henriksen, B. Miller, J. Newmark, Y. Al-Kofahi, and E. Holden, "Laser scanning cytometry and its applications: A pioneering technology in the field of quantitative imaging cytometry," Methods Cell Biol., vol. 102, pp. 159-205, 2011.
-
(2011)
Methods Cell Biol.
, vol.102
, pp. 159-205
-
-
Henriksen, M.1
Miller, B.2
Newmark, J.3
Al-Kofahi, Y.4
Holden, E.5
-
12
-
-
85027508633
-
Assessing phototoxicity in live fluorescence imaging
-
P. P. Laissue, R. A. Alghamdi, P. Tomancak, E. G. Reynaud, and H. Shroff, "Assessing phototoxicity in live fluorescence imaging," Nat. Methods, vol. 14, no. 7, pp. 657-661, 2017.
-
(2017)
Nat. Methods
, vol.14
, Issue.7
, pp. 657-661
-
-
Laissue, P.P.1
Alghamdi, R.A.2
Tomancak, P.3
Reynaud, E.G.4
Shroff, H.5
-
13
-
-
67349187542
-
Aggregation of classifiers for staining pattern recognition in antinuclear autoantibodies analysis
-
Jan.
-
P. Soda and G. Iannello, "Aggregation of classifiers for staining pattern recognition in antinuclear autoantibodies analysis," IEEE Trans. Inf. Technol. Biomed., vol. 13, pp. 322-329, Jan. 2009.
-
(2009)
IEEE Trans. Inf. Technol. Biomed.
, vol.13
, pp. 322-329
-
-
Soda, P.1
Iannello, G.2
-
14
-
-
82155191344
-
Feature extraction based on cooccurrence of adjacent local binary patterns
-
R. Nosaka, Y. Ohkawa, and K. Fukui, "Feature extraction based on cooccurrence of adjacent local binary patterns," in Proc. Pacific-Rim Symp. Image Video Technol., 2011, pp. 82-91.
-
(2011)
Proc. Pacific-Rim Symp. Image Video Technol.
, pp. 82-91
-
-
Nosaka, R.1
Ohkawa, Y.2
Fukui, K.3
-
15
-
-
84885138103
-
Benchmarking HEp-2 cells classification methods
-
Jun.
-
P. Foggia, G. Percannella, P. Soda, and M. Vento, "Benchmarking HEp-2 cells classification methods," IEEE Trans. Med. Imag., vol. 32, no. 10, pp. 1878-1889, Jun. 2013.
-
(2013)
IEEE Trans. Med. Imag.
, vol.32
, Issue.10
, pp. 1878-1889
-
-
Foggia, P.1
Percannella, G.2
Soda, P.3
Vento, M.4
-
16
-
-
84906489074
-
Visualizing and understanding convolutional networks
-
M. D. Zeiler and R. Fergus, "Visualizing and understanding convolutional networks," in Proc. Euro. Conf. Comput. Vision, 2014, pp. 818-833.
-
(2014)
Proc. Euro. Conf. Comput. Vision
, pp. 818-833
-
-
Zeiler, M.D.1
Fergus, R.2
-
17
-
-
84986274465
-
Deep residual learning for image recognition
-
Jun.
-
K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proc. Comput. Vision Pattern Recognit., Jun. 2016, pp. 770-778.
-
(2016)
Proc. Comput. Vision Pattern Recognit.
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
18
-
-
85019258369
-
Faster R-CNN: Towards realtime object detection with region proposal networks
-
Jun.
-
S. Ren, K. He, R. Girshick, and S. Jian, "Faster R-CNN: Towards realtime object detection with region proposal networks," IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137-1149, Jun. 2016.
-
(2016)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.39
, Issue.6
, pp. 1137-1149
-
-
Ren, S.1
He, K.2
Girshick, R.3
Jian, S.4
-
19
-
-
85045995814
-
Learning-based nonparametric autofocusing for digital holography
-
Apr.
-
Z. Ren, Z. Xu, and E. Y. Lam, "Learning-based nonparametric autofocusing for digital holography," Optica, vol. 5, no. 4, pp. 337-344, Apr. 2018.
-
(2018)
Optica
, vol.5
, Issue.4
, pp. 337-344
-
-
Ren, Z.1
Xu, Z.2
Lam, E.Y.3
-
20
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
Feb.
-
A. Esteva et al., "Dermatologist-level classification of skin cancer with deep neural networks," Nature, vol. 542, no. 7639, pp. 115-118, Feb. 2017.
-
(2017)
Nature
, vol.542
, Issue.7639
, pp. 115-118
-
-
Esteva, A.1
-
21
-
-
85044647278
-
A deeply supervised residual network for HEp-2 cell classification via cross-modal transfer learning
-
Jul.
-
H. Lei et al., "A deeply supervised residual network for HEp-2 cell classification via cross-modal transfer learning," Pattern Recognit., vol. 79, pp. 290-302, Jul. 2018.
-
(2018)
Pattern Recognit.
, vol.79
, pp. 290-302
-
-
Lei, H.1
-
22
-
-
85028914209
-
Reconstructing cell cycle and disease progression using deep learning
-
P. Eulenberg et al., "Reconstructing cell cycle and disease progression using deep learning," Nat. Commun., vol. 8, no. 1, 2017, Art. no. 463.
-
(2017)
Nat. Commun.
, vol.8
, Issue.1
-
-
Eulenberg, P.1
-
23
-
-
85047213221
-
A guide to automated apoptosis detection: How to make sense of imaging flow cytometry data
-
D. Pischel, J. H. Buchbinder, K. Sundmacher, I. N. Lavrik, and R. J. Flassig, "A guide to automated apoptosis detection: How to make sense of imaging flow cytometry data," PLoS One, vol. 13, no. 5, 2018, Art. no. e0197208.
-
(2018)
PLoS One
, vol.13
, Issue.5
-
-
Pischel, D.1
Buchbinder, J.H.2
Sundmacher, K.3
Lavrik, I.N.4
Flassig, R.J.5
-
24
-
-
85023165788
-
Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-stretch microscopy
-
Y. Jiang et al., "Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-stretch microscopy," Lab Chip, vol. 17, no. 14, pp. 2426-2434, 2017.
-
(2017)
Lab Chip
, vol.17
, Issue.14
, pp. 2426-2434
-
-
Jiang, Y.1
-
25
-
-
84908537903
-
CNN features off-The-shelf: An astounding baseline for recognition
-
Jun.
-
A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, "CNN features off-the-shelf: An astounding baseline for recognition," in Proc. Comput. Vision Pattern Recognit. Workshops, Jun. 2014, pp. 512-519.
-
(2014)
Proc. Comput. Vision Pattern Recognit. Workshops
, pp. 512-519
-
-
Razavian, A.S.1
Azizpour, H.2
Sullivan, J.3
Carlsson, S.4
-
26
-
-
85027845354
-
Computational single-cell classification using deep learning on bright-field and phase images
-
May
-
N. Meng, H. K.-H. So, and E. Y. Lam, "Computational single-cell classification using deep learning on bright-field and phase images," in Proc. IAPR Conf. Mach. Vision Appl., May 2017, pp. 164-167.
-
(2017)
Proc. IAPR Conf. Mach. Vision Appl.
, pp. 164-167
-
-
Meng, N.1
So, H.K.-H.2
Lam, E.Y.3
-
27
-
-
84920921065
-
Assessment of algorithms for mitosis detection in breast cancer histopathology images
-
M. Veta et al., "Assessment of algorithms for mitosis detection in breast cancer histopathology images," Med. Image Anal., vol. 20, no. 1, pp. 237-248, 2015.
-
(2015)
Med. Image Anal.
, vol.20
, Issue.1
, pp. 237-248
-
-
Veta, M.1
-
28
-
-
85015719821
-
HEp-2 cell image classification with deep convolutional neural networks
-
Feb.
-
Z. Gao, L. Wang, L. Zhou, and J. Zhang, "HEp-2 cell image classification with deep convolutional neural networks," IEEE J. Biomed. Health Inform., vol. 21, no. 2, pp. 416-428, Feb. 2017.
-
(2017)
IEEE J. Biomed. Health Inform.
, vol.21
, Issue.2
, pp. 416-428
-
-
Gao, Z.1
Wang, L.2
Zhou, L.3
Zhang, J.4
-
29
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Nov.
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
30
-
-
85023168524
-
HEp-2 cell classification based on a deep autoencoding-classification convolutional neural network
-
Jun.
-
J. Liu, B. Xu, L. Shen, J. Garibaldi, and G. Qiu, "HEp-2 cell classification based on a deep autoencoding-classification convolutional neural network," in Proc. Int. Symp. Biomed. Imag., Jun. 2017, pp. 1019-1023.
-
(2017)
Proc. Int. Symp. Biomed. Imag.
, pp. 1019-1023
-
-
Liu, J.1
Xu, B.2
Shen, L.3
Garibaldi, J.4
Qiu, G.5
-
31
-
-
84925831382
-
Lineage correlations of single cell division time as a probe of cell-cycle dynamics
-
Mar.
-
O. Sandler, S. P. Mizrahi, N. Weiss, O. Agam, I. Simon, and N.Q. Balaban, "Lineage correlations of single cell division time as a probe of cell-cycle dynamics," Nature, vol. 519, pp. 468-471, Mar. 2015.
-
(2015)
Nature
, vol.519
, pp. 468-471
-
-
Sandler, O.1
Mizrahi, S.P.2
Weiss, N.3
Agam, O.4
Simon, I.5
Balaban, N.Q.6
-
32
-
-
84926665080
-
High-throughput fluorescence correlation spectroscopy enables analysis of proteome dynamics in living cells
-
Mar.
-
M. Wachsmuth et al., "High-throughput fluorescence correlation spectroscopy enables analysis of proteome dynamics in living cells," Nat. Biotechnol., vol. 33, pp. 384-389, Mar. 2015.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 384-389
-
-
Wachsmuth, M.1
-
33
-
-
84999836246
-
Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments
-
Nov.
-
D. A. Van Valen et al., "Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments," PLoS Comput. Biol., vol. 12, Nov. 2016, Art. no. e1005177.
-
(2016)
PLoS Comput. Biol.
, vol.12
-
-
Van Valen, D.A.1
-
34
-
-
77649263847
-
Computational prediction of neural progenitor cell fates
-
Feb.
-
A. R. Cohen, F. L. A. F. G. Gomes, B. Roysam, and M. Cayouette, "Computational prediction of neural progenitor cell fates," Nat. Methods, vol. 7, no. 3, pp. 213-218, Feb. 2010.
-
(2010)
Nat. Methods
, vol.7
, Issue.3
, pp. 213-218
-
-
Cohen, A.R.1
Gomes, F.L.A.F.G.2
Roysam, B.3
Cayouette, M.4
-
35
-
-
84866443845
-
Imaging, quantification and visualization of spatiotemporal patterning in mESC colonies under different culture conditions
-
Sep.
-
N. Scherf et al., "Imaging, quantification and visualization of spatiotemporal patterning in mESC colonies under different culture conditions," Bioinformatics, vol. 28, pp. i556-i561, Sep. 2012.
-
(2012)
Bioinformatics
, vol.28
, pp. i556-i561
-
-
Scherf, N.1
-
36
-
-
84963591541
-
Accelerated cell imaging and classification on FPGAS for quantitative-phase asymmetricdetection time-stretch optical microscopy
-
Dec.
-
J. Xie, X. Niu, A. K. S. Lau, K. K. Tsia, and H. K.-H. So, "Accelerated cell imaging and classification on fpgas for quantitative-phase asymmetricdetection time-stretch optical microscopy," in Proc. Int. Conf. Field Programmable Technol., Dec. 2015, pp. 1-8.
-
(2015)
Proc. Int. Conf. Field Programmable Technol.
, pp. 1-8
-
-
Xie, J.1
Niu, X.2
Lau, A.K.S.3
Tsia, K.K.4
So, H.K.-H.5
-
37
-
-
85015079938
-
High-throughput cellular imaging with high-speed asymmetric-detection time-stretch optical microscopy under FPGA platform
-
Nov.
-
H. C. Ng et al., "High-throughput cellular imaging with high-speed asymmetric-detection time-stretch optical microscopy under FPGA platform," in Proc. Int. Conf. ReConFigurable Comput. FPGAs, Nov. 2016, pp. 1-6.
-
(2016)
Proc. Int. Conf. ReConFigurable Comput. FPGAS
, pp. 1-6
-
-
Ng, H.C.1
-
38
-
-
85021415330
-
Real-time object detection and classification for high-speed asymmetric-detection time-stretch optical microscopy on FPGA
-
Dec.
-
M. Wang et al., "Real-time object detection and classification for high-speed asymmetric-detection time-stretch optical microscopy on FPGA," in Proc. Int. Conf. Field-Programmable Technol., Dec. 2016, pp. 261-264.
-
(2016)
Proc. Int. Conf. Field-Programmable Technol.
, pp. 261-264
-
-
Wang, M.1
-
39
-
-
85050891012
-
Image super-resolution for ultrafast optical time-stretch imaging
-
Aug. Paper W1F-08
-
R. Shi, A. C. Chan, E. Y. Lam, and H. K.-H. So, "Image super-resolution for ultrafast optical time-stretch imaging," in Proc. Congr. Int. Commission Opt., Aug. 2017, Paper W1F-08.
-
(2017)
Proc. Congr. Int. Commission Opt.
-
-
Shi, R.1
Chan, A.C.2
Lam, E.Y.3
So, H.K.-H.4
-
40
-
-
84874581854
-
Multiclass boosting SVM using different texture features in HEp-2 cell staining pattern classification
-
Feb.
-
K. Li, J. Yin, Z. Lu, X. Kong, R. Zhang, and W. Liu, "Multiclass boosting SVM using different texture features in HEp-2 cell staining pattern classification," in Proc. Int. Conf. Pattern Recognit., Feb. 2012, pp. 170-173.
-
(2012)
Proc. Int. Conf. Pattern Recognit.
, pp. 170-173
-
-
Li, K.1
Yin, J.2
Lu, Z.3
Kong, X.4
Zhang, R.5
Liu, W.6
-
41
-
-
77956502203
-
A theoretical analysis of feature pooling in visual recognition
-
Jul.
-
Y.-L. Boureau, J. Ponce, and Y. LeCun, "A theoretical analysis of feature pooling in visual recognition," in Proc. Int. Conf. Mach. Learn., Jul. 2010, pp. 111-118.
-
(2010)
Proc. Int. Conf. Mach. Learn.
, pp. 111-118
-
-
Boureau, Y.-L.1
Ponce, J.2
LeCun, Y.3
-
42
-
-
85045344891
-
Autofocusing in digital holography using deep learning
-
Proc, Jan.
-
Z. Ren, Z. Xu, and E. Y. Lam, "Autofocusing in digital holography using deep learning," in Proc. SPIE Three-Dimensional Multidimensional Microsc.: Image Acquisition Process., Proc, Jan. 2018, p. 104991V.
-
(2018)
Proc. SPIE Three-Dimensional Multidimensional Microsc.: Image Acquisition Process.
, pp. 104991V
-
-
Ren, Z.1
Xu, Z.2
Lam, E.Y.3
-
43
-
-
85083951076
-
Adam: A method for stochastic optimization
-
D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," CoRR, vol. abs/1412.6980, 2014. [Online]. Available: http://arxiv.org/abs/1412.6980
-
(2014)
CoRR
-
-
Kingma, D.P.1
Ba, J.2
|