메뉴 건너뛰기




Volumn 44, Issue 1, 2019, Pages 21-32

A Primer on Data Analytics in Functional Genomics: How to Move from Data to Insight?

Author keywords

data integration; data science; functional genomics; machine learning; systems biology

Indexed keywords

CLASSIFIER; DATA ANALYSIS; DATA BASE; DATA PROCESSING; EPIGENETICS; FUNCTIONAL GENOMICS; HUMAN; LEARNING ALGORITHM; MACHINE LEARNING; NEXT GENERATION SEQUENCING; NONHUMAN; PRIORITY JOURNAL; PROTEOMICS; REVIEW; SOFTWARE; TRANSCRIPTOMICS; ANIMAL; GENOMICS; HIGH THROUGHPUT SCREENING;

EID: 85057555111     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2018.10.010     Document Type: Review
Times cited : (15)

References (48)
  • 1
    • 84885096471 scopus 로고    scopus 로고
    • Data reuse and the open data citation advantage
    • Piwowar, H.A., Vision, T.J., Data reuse and the open data citation advantage. PeerJ, 1, 2013, e175.
    • (2013) PeerJ , vol.1 , pp. e175
    • Piwowar, H.A.1    Vision, T.J.2
  • 2
    • 85018787862 scopus 로고    scopus 로고
    • Multi-omics approaches to disease
    • Hasin, Y., et al. Multi-omics approaches to disease. Genome Biol., 18, 2017, 83.
    • (2017) Genome Biol. , vol.18 , pp. 83
    • Hasin, Y.1
  • 3
    • 85052832389 scopus 로고    scopus 로고
    • Data integration and predictive modeling methods for multi-omics datasets
    • Kim, M., Tagkopoulos, I., Data integration and predictive modeling methods for multi-omics datasets. Mol. Omics 14 (2018), 8–25.
    • (2018) Mol. Omics , vol.14 , pp. 8-25
    • Kim, M.1    Tagkopoulos, I.2
  • 4
    • 84927125938 scopus 로고    scopus 로고
    • Single-cell and multivariate approaches in genetic perturbation screens
    • Liberali, P., et al. Single-cell and multivariate approaches in genetic perturbation screens. Nat. Rev. Genet. 16 (2015), 18–32.
    • (2015) Nat. Rev. Genet. , vol.16 , pp. 18-32
    • Liberali, P.1
  • 5
    • 84958606331 scopus 로고    scopus 로고
    • Single-cell genome sequencing: current state of the science
    • Gawad, C., et al. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17 (2016), 175–188.
    • (2016) Nat. Rev. Genet. , vol.17 , pp. 175-188
    • Gawad, C.1
  • 6
    • 85046346648 scopus 로고    scopus 로고
    • Single-cell DNA methylation profiling: technologies and biological applications
    • Karemaker, I.D., Vermeulen, M., Single-cell DNA methylation profiling: technologies and biological applications. Trends Biotechnol. 36 (2018), 952–965.
    • (2018) Trends Biotechnol. , vol.36 , pp. 952-965
    • Karemaker, I.D.1    Vermeulen, M.2
  • 7
    • 84964321113 scopus 로고    scopus 로고
    • On the dependency of cellular protein levels on mRNA abundance
    • Liu, Y., et al. On the dependency of cellular protein levels on mRNA abundance. Cell 165 (2016), 535–550.
    • (2016) Cell , vol.165 , pp. 535-550
    • Liu, Y.1
  • 8
    • 84960449036 scopus 로고    scopus 로고
    • Integration of metabolomics and proteomics in multiple sclerosis: from biomarkers discovery to personalized medicine
    • Boccio, P., et al. Integration of metabolomics and proteomics in multiple sclerosis: from biomarkers discovery to personalized medicine. Proteom. Clin. Appl. 10 (2016), 470–484.
    • (2016) Proteom. Clin. Appl. , vol.10 , pp. 470-484
    • Boccio, P.1
  • 9
    • 85034840760 scopus 로고    scopus 로고
    • Integrated proteomic and metabolomic prediction of term preeclampsia
    • 16189
    • Bahado-Singh, R., et al. Integrated proteomic and metabolomic prediction of term preeclampsia. Sci. Rep., 7, 2017 16189.
    • (2017) Sci. Rep. , vol.7
    • Bahado-Singh, R.1
  • 10
    • 85028321914 scopus 로고    scopus 로고
    • Pervasive coexpression of spatially proximal genes is buffered at the protein level
    • Kustatscher, G., et al. Pervasive coexpression of spatially proximal genes is buffered at the protein level. Mol. Syst. Biol., 13, 2017, 937.
    • (2017) Mol. Syst. Biol. , vol.13 , pp. 937
    • Kustatscher, G.1
  • 11
    • 85049264663 scopus 로고    scopus 로고
    • Integrative multi‐omics analysis of intestinal organoid differentiation
    • Lindeboom, R.G.H., et al. Integrative multi‐omics analysis of intestinal organoid differentiation. Mol. Syst. Biol., 14, 2018, e8227.
    • (2018) Mol. Syst. Biol. , vol.14
    • Lindeboom, R.G.H.1
  • 12
    • 84991445590 scopus 로고    scopus 로고
    • Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase
    • Li, D., et al. Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), E6026–E6035.
    • (2016) Proc. Natl. Acad. Sci. U. S. A. , vol.113 , pp. E6026-E6035
    • Li, D.1
  • 13
    • 85045272055 scopus 로고    scopus 로고
    • Massive mining of publicly available RNA-seq data from human and mouse
    • Lachmann, A., et al. Massive mining of publicly available RNA-seq data from human and mouse. Nat. Commun., 9, 2018, 1366.
    • (2018) Nat. Commun. , vol.9 , pp. 1366
    • Lachmann, A.1
  • 14
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • ENCODE Project Consortium, An integrated encyclopedia of DNA elements in the human genome. Nature 489 (2012), 57–74.
    • (2012) Nature , vol.489 , pp. 57-74
    • ENCODE Project Consortium1
  • 15
    • 84976871411 scopus 로고    scopus 로고
    • 2016 update of the PRIDE database and its related tools
    • 11033
    • Vizcaíno, J.A., et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res., 44, 2016 11033.
    • (2016) Nucleic Acids Res. , vol.44
    • Vizcaíno, J.A.1
  • 16
    • 84933036123 scopus 로고    scopus 로고
    • The European Genome-phenome Archive of human data consented for biomedical research
    • Lappalainen, I., et al. The European Genome-phenome Archive of human data consented for biomedical research. Nat. Genet. 47 (2015), 692–695.
    • (2015) Nat. Genet. , vol.47 , pp. 692-695
    • Lappalainen, I.1
  • 17
    • 84945292900 scopus 로고    scopus 로고
    • A novel approach to high-quality postmortem tissue procurement: the GTEx project
    • Carithers, L.J., et al. A novel approach to high-quality postmortem tissue procurement: the GTEx project. Biopreserv. Biobank. 13 (2015), 311–319.
    • (2015) Biopreserv. Biobank. , vol.13 , pp. 311-319
    • Carithers, L.J.1
  • 18
    • 34748848639 scopus 로고    scopus 로고
    • The NCBI dbGaP database of genotypes and phenotypes
    • Mailman, M.D., et al. The NCBI dbGaP database of genotypes and phenotypes. Nat. Genet. 39 (2007), 1181–1186.
    • (2007) Nat. Genet. , vol.39 , pp. 1181-1186
    • Mailman, M.D.1
  • 19
    • 85019158200 scopus 로고    scopus 로고
    • Discovering and linking public omics data sets using the Omics Discovery index
    • Perez-Riverol, Y., et al. Discovering and linking public omics data sets using the Omics Discovery index. Nat. Biotechnol. 35 (2017), 406–409.
    • (2017) Nat. Biotechnol. , vol.35 , pp. 406-409
    • Perez-Riverol, Y.1
  • 20
    • 84973094812 scopus 로고    scopus 로고
    • The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update
    • Afgan, E., et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res. 44 (2016), W3–W10.
    • (2016) Nucleic Acids Res. , vol.44 , pp. W3-W10
    • Afgan, E.1
  • 21
    • 78651076564 scopus 로고    scopus 로고
    • KNIME – the Konstanz Information Miner: version 2.0 and Beyond
    • Berthold, M.R., et al. KNIME – the Konstanz Information Miner: version 2.0 and Beyond. SIGKDD Explor. Newsl. 11 (2009), 26–31.
    • (2009) SIGKDD Explor. Newsl. , vol.11 , pp. 26-31
    • Berthold, M.R.1
  • 22
    • 85028043725 scopus 로고    scopus 로고
    • KNIME for reproducible cross-domain analysis of life science data
    • Fillbrunn, A., et al. KNIME for reproducible cross-domain analysis of life science data. J. Biotechnol. 261 (2017), 149–156.
    • (2017) J. Biotechnol. , vol.261 , pp. 149-156
    • Fillbrunn, A.1
  • 23
    • 84955439663 scopus 로고    scopus 로고
    • A survey of best practices for RNA-seq data analysis
    • Conesa, A., et al. A survey of best practices for RNA-seq data analysis. Genome Biol., 17, 2016, 13.
    • (2016) Genome Biol. , vol.17 , pp. 13
    • Conesa, A.1
  • 24
    • 84888264156 scopus 로고    scopus 로고
    • Practical guidelines for the comprehensive analysis of ChIP-seq data
    • Bailey, T., et al. Practical guidelines for the comprehensive analysis of ChIP-seq data. PLoS Comput. Biol., 9, 2013, e1003326.
    • (2013) PLoS Comput. Biol. , vol.9
    • Bailey, T.1
  • 25
    • 84980022857 scopus 로고    scopus 로고
    • Deep learning for computational biology
    • Angermueller, C., et al. Deep learning for computational biology. Mol. Syst. Biol., 12, 2016, 878.
    • (2016) Mol. Syst. Biol. , vol.12 , pp. 878
    • Angermueller, C.1
  • 26
    • 85021210336 scopus 로고    scopus 로고
    • More is better: recent progress in multi-omics data integration methods
    • Huang, S., et al. More is better: recent progress in multi-omics data integration methods. Front. Genet., 8, 2017, 84.
    • (2017) Front. Genet. , vol.8 , pp. 84
    • Huang, S.1
  • 27
    • 85047752833 scopus 로고    scopus 로고
    • Next-generation machine learning for biological networks
    • Camacho, D.M., et al. Next-generation machine learning for biological networks. Cell 173 (2018), 1581–1592.
    • (2018) Cell , vol.173 , pp. 1581-1592
    • Camacho, D.M.1
  • 28
    • 85019675158 scopus 로고    scopus 로고
    • Using hyperLOPIT to perform high-resolution mapping of the spatial proteome
    • Mulvey, C.M., et al. Using hyperLOPIT to perform high-resolution mapping of the spatial proteome. Nat. Protoc. 12 (2017), 1110–1135.
    • (2017) Nat. Protoc. , vol.12 , pp. 1110-1135
    • Mulvey, C.M.1
  • 29
    • 84979673478 scopus 로고    scopus 로고
    • Global, quantitative and dynamic mapping of protein subcellular localization
    • Itzhak, D.N., et al. Global, quantitative and dynamic mapping of protein subcellular localization. Elife, 2016, 5.
    • (2016) Elife , pp. 5
    • Itzhak, D.N.1
  • 30
    • 77956167600 scopus 로고    scopus 로고
    • The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics
    • Ohta, S., et al. The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. Cell 142 (2010), 810–821.
    • (2010) Cell , vol.142 , pp. 810-821
    • Ohta, S.1
  • 31
    • 77957344062 scopus 로고    scopus 로고
    • Training, selection, and robust calibration of retention time models for targeted proteomics
    • Moruz, L., et al. Training, selection, and robust calibration of retention time models for targeted proteomics. J. Proteome Res. 9 (2010), 5209–5216.
    • (2010) J. Proteome Res. , vol.9 , pp. 5209-5216
    • Moruz, L.1
  • 32
    • 84908328316 scopus 로고    scopus 로고
    • Regression analysis of combined gene expression regulation in acute myeloid leukemia
    • Li, Y., et al. Regression analysis of combined gene expression regulation in acute myeloid leukemia. PLoS Comput. Biol., 10, 2014, e1003908.
    • (2014) PLoS Comput. Biol. , vol.10
    • Li, Y.1
  • 33
    • 85031086623 scopus 로고    scopus 로고
    • Detection of dysregulated protein-association networks by high-throughput proteomics predicts cancer vulnerabilities
    • Lapek, J.D. Jr, et al. Detection of dysregulated protein-association networks by high-throughput proteomics predicts cancer vulnerabilities. Nat. Biotechnol. 35 (2017), 983–989.
    • (2017) Nat. Biotechnol. , vol.35 , pp. 983-989
    • Lapek, J.D.1
  • 34
    • 84876395914 scopus 로고    scopus 로고
    • Interplay of microRNAs, transcription factors and target genes: linking dynamic expression changes to function
    • Nazarov, P.V., et al. Interplay of microRNAs, transcription factors and target genes: linking dynamic expression changes to function. Nucleic Acids Res. 41 (2013), 2817–2831.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 2817-2831
    • Nazarov, P.V.1
  • 35
    • 85044737247 scopus 로고    scopus 로고
    • Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer
    • 291–304.e6
    • Hoadley, K.A., et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell, 304, 2018 291–304.e6.
    • (2018) Cell , vol.304
    • Hoadley, K.A.1
  • 36
    • 40449141013 scopus 로고    scopus 로고
    • What is principal component analysis?
    • Ringnér, M., What is principal component analysis?. Nat. Biotechnol. 26 (2008), 303–304.
    • (2008) Nat. Biotechnol. , vol.26 , pp. 303-304
    • Ringnér, M.1
  • 37
    • 84987641578 scopus 로고    scopus 로고
    • The rules and impact of nonsense-mediated mRNA decay in human cancers
    • Lindeboom, R.G.H., et al. The rules and impact of nonsense-mediated mRNA decay in human cancers. Nat. Genet. 48 (2016), 1112–1118.
    • (2016) Nat. Genet. , vol.48 , pp. 1112-1118
    • Lindeboom, R.G.H.1
  • 38
    • 77958449045 scopus 로고    scopus 로고
    • Stable feature selection for biomarker discovery
    • He, Z., Yu, W., Stable feature selection for biomarker discovery. Comput. Biol. Chem. 34 (2010), 215–225.
    • (2010) Comput. Biol. Chem. , vol.34 , pp. 215-225
    • He, Z.1    Yu, W.2
  • 39
    • 76749092270 scopus 로고    scopus 로고
    • The WEKA data mining software: an update
    • Hall, M., et al. The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11 (2009), 10–18.
    • (2009) ACM SIGKDD Explor. Newsl. , vol.11 , pp. 10-18
    • Hall, M.1
  • 40
    • 80555140075 scopus 로고    scopus 로고
    • Scikit-learn: machine learning in Python
    • Pedregosa, F., et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12 (2011), 2825–2830.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2825-2830
    • Pedregosa, F.1
  • 41
    • 68449101067 scopus 로고    scopus 로고
    • Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt
    • Durinck, S., et al. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4 (2009), 1184–1191.
    • (2009) Nat. Protoc. , vol.4 , pp. 1184-1191
    • Durinck, S.1
  • 42
    • 84900352039 scopus 로고    scopus 로고
    • BioServices: a common Python package to access biological Web Services programmatically
    • Cokelaer, T., et al. BioServices: a common Python package to access biological Web Services programmatically. Bioinformatics 29 (2013), 3241–3242.
    • (2013) Bioinformatics , vol.29 , pp. 3241-3242
    • Cokelaer, T.1
  • 43
    • 85021857514 scopus 로고    scopus 로고
    • The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible
    • Szklarczyk, D., et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45 (2017), D362–D368.
    • (2017) Nucleic Acids Res. , vol.45 , pp. D362-D368
    • Szklarczyk, D.1
  • 44
    • 85016136235 scopus 로고    scopus 로고
    • The BioGRID interaction database: 2017 update
    • Chatr-Aryamontri, A., et al. The BioGRID interaction database: 2017 update. Nucleic Acids Res. 45 (2017), D369–D379.
    • (2017) Nucleic Acids Res. , vol.45 , pp. D369-D379
    • Chatr-Aryamontri, A.1
  • 45
    • 61449172037 scopus 로고    scopus 로고
    • Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
    • Huang, D.W., et al. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4 (2009), 44–57.
    • (2009) Nat. Protoc. , vol.4 , pp. 44-57
    • Huang, D.W.1
  • 46
    • 84987663170 scopus 로고    scopus 로고
    • Enrichr: a comprehensive gene set enrichment analysis web server 2016 update
    • Kuleshov, M.V., et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44 (2016), W90–W97.
    • (2016) Nucleic Acids Res. , vol.44 , pp. W90-W97
    • Kuleshov, M.V.1
  • 47
    • 27344435774 scopus 로고    scopus 로고
    • Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
    • Subramanian, A., et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102 (2005), 15545–15550.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 15545-15550
    • Subramanian, A.1
  • 48
    • 85040921180 scopus 로고    scopus 로고
    • Ten simple rules for biologists learning to program
    • Carey, M.A., Papin, J.A., Ten simple rules for biologists learning to program. PLoS Comput. Biol., 14, 2018, e1005871.
    • (2018) PLoS Comput. Biol. , vol.14
    • Carey, M.A.1    Papin, J.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.