-
1
-
-
84885096471
-
Data reuse and the open data citation advantage
-
Piwowar, H.A., Vision, T.J., Data reuse and the open data citation advantage. PeerJ, 1, 2013, e175.
-
(2013)
PeerJ
, vol.1
, pp. e175
-
-
Piwowar, H.A.1
Vision, T.J.2
-
2
-
-
85018787862
-
Multi-omics approaches to disease
-
Hasin, Y., et al. Multi-omics approaches to disease. Genome Biol., 18, 2017, 83.
-
(2017)
Genome Biol.
, vol.18
, pp. 83
-
-
Hasin, Y.1
-
3
-
-
85052832389
-
Data integration and predictive modeling methods for multi-omics datasets
-
Kim, M., Tagkopoulos, I., Data integration and predictive modeling methods for multi-omics datasets. Mol. Omics 14 (2018), 8–25.
-
(2018)
Mol. Omics
, vol.14
, pp. 8-25
-
-
Kim, M.1
Tagkopoulos, I.2
-
4
-
-
84927125938
-
Single-cell and multivariate approaches in genetic perturbation screens
-
Liberali, P., et al. Single-cell and multivariate approaches in genetic perturbation screens. Nat. Rev. Genet. 16 (2015), 18–32.
-
(2015)
Nat. Rev. Genet.
, vol.16
, pp. 18-32
-
-
Liberali, P.1
-
5
-
-
84958606331
-
Single-cell genome sequencing: current state of the science
-
Gawad, C., et al. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17 (2016), 175–188.
-
(2016)
Nat. Rev. Genet.
, vol.17
, pp. 175-188
-
-
Gawad, C.1
-
6
-
-
85046346648
-
Single-cell DNA methylation profiling: technologies and biological applications
-
Karemaker, I.D., Vermeulen, M., Single-cell DNA methylation profiling: technologies and biological applications. Trends Biotechnol. 36 (2018), 952–965.
-
(2018)
Trends Biotechnol.
, vol.36
, pp. 952-965
-
-
Karemaker, I.D.1
Vermeulen, M.2
-
7
-
-
84964321113
-
On the dependency of cellular protein levels on mRNA abundance
-
Liu, Y., et al. On the dependency of cellular protein levels on mRNA abundance. Cell 165 (2016), 535–550.
-
(2016)
Cell
, vol.165
, pp. 535-550
-
-
Liu, Y.1
-
8
-
-
84960449036
-
Integration of metabolomics and proteomics in multiple sclerosis: from biomarkers discovery to personalized medicine
-
Boccio, P., et al. Integration of metabolomics and proteomics in multiple sclerosis: from biomarkers discovery to personalized medicine. Proteom. Clin. Appl. 10 (2016), 470–484.
-
(2016)
Proteom. Clin. Appl.
, vol.10
, pp. 470-484
-
-
Boccio, P.1
-
9
-
-
85034840760
-
Integrated proteomic and metabolomic prediction of term preeclampsia
-
16189
-
Bahado-Singh, R., et al. Integrated proteomic and metabolomic prediction of term preeclampsia. Sci. Rep., 7, 2017 16189.
-
(2017)
Sci. Rep.
, vol.7
-
-
Bahado-Singh, R.1
-
10
-
-
85028321914
-
Pervasive coexpression of spatially proximal genes is buffered at the protein level
-
Kustatscher, G., et al. Pervasive coexpression of spatially proximal genes is buffered at the protein level. Mol. Syst. Biol., 13, 2017, 937.
-
(2017)
Mol. Syst. Biol.
, vol.13
, pp. 937
-
-
Kustatscher, G.1
-
11
-
-
85049264663
-
Integrative multi‐omics analysis of intestinal organoid differentiation
-
Lindeboom, R.G.H., et al. Integrative multi‐omics analysis of intestinal organoid differentiation. Mol. Syst. Biol., 14, 2018, e8227.
-
(2018)
Mol. Syst. Biol.
, vol.14
-
-
Lindeboom, R.G.H.1
-
12
-
-
84991445590
-
Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase
-
Li, D., et al. Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), E6026–E6035.
-
(2016)
Proc. Natl. Acad. Sci. U. S. A.
, vol.113
, pp. E6026-E6035
-
-
Li, D.1
-
13
-
-
85045272055
-
Massive mining of publicly available RNA-seq data from human and mouse
-
Lachmann, A., et al. Massive mining of publicly available RNA-seq data from human and mouse. Nat. Commun., 9, 2018, 1366.
-
(2018)
Nat. Commun.
, vol.9
, pp. 1366
-
-
Lachmann, A.1
-
14
-
-
84865790047
-
An integrated encyclopedia of DNA elements in the human genome
-
ENCODE Project Consortium, An integrated encyclopedia of DNA elements in the human genome. Nature 489 (2012), 57–74.
-
(2012)
Nature
, vol.489
, pp. 57-74
-
-
ENCODE Project Consortium1
-
15
-
-
84976871411
-
2016 update of the PRIDE database and its related tools
-
11033
-
Vizcaíno, J.A., et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res., 44, 2016 11033.
-
(2016)
Nucleic Acids Res.
, vol.44
-
-
Vizcaíno, J.A.1
-
16
-
-
84933036123
-
The European Genome-phenome Archive of human data consented for biomedical research
-
Lappalainen, I., et al. The European Genome-phenome Archive of human data consented for biomedical research. Nat. Genet. 47 (2015), 692–695.
-
(2015)
Nat. Genet.
, vol.47
, pp. 692-695
-
-
Lappalainen, I.1
-
17
-
-
84945292900
-
A novel approach to high-quality postmortem tissue procurement: the GTEx project
-
Carithers, L.J., et al. A novel approach to high-quality postmortem tissue procurement: the GTEx project. Biopreserv. Biobank. 13 (2015), 311–319.
-
(2015)
Biopreserv. Biobank.
, vol.13
, pp. 311-319
-
-
Carithers, L.J.1
-
18
-
-
34748848639
-
The NCBI dbGaP database of genotypes and phenotypes
-
Mailman, M.D., et al. The NCBI dbGaP database of genotypes and phenotypes. Nat. Genet. 39 (2007), 1181–1186.
-
(2007)
Nat. Genet.
, vol.39
, pp. 1181-1186
-
-
Mailman, M.D.1
-
19
-
-
85019158200
-
Discovering and linking public omics data sets using the Omics Discovery index
-
Perez-Riverol, Y., et al. Discovering and linking public omics data sets using the Omics Discovery index. Nat. Biotechnol. 35 (2017), 406–409.
-
(2017)
Nat. Biotechnol.
, vol.35
, pp. 406-409
-
-
Perez-Riverol, Y.1
-
20
-
-
84973094812
-
The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update
-
Afgan, E., et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res. 44 (2016), W3–W10.
-
(2016)
Nucleic Acids Res.
, vol.44
, pp. W3-W10
-
-
Afgan, E.1
-
21
-
-
78651076564
-
KNIME – the Konstanz Information Miner: version 2.0 and Beyond
-
Berthold, M.R., et al. KNIME – the Konstanz Information Miner: version 2.0 and Beyond. SIGKDD Explor. Newsl. 11 (2009), 26–31.
-
(2009)
SIGKDD Explor. Newsl.
, vol.11
, pp. 26-31
-
-
Berthold, M.R.1
-
22
-
-
85028043725
-
KNIME for reproducible cross-domain analysis of life science data
-
Fillbrunn, A., et al. KNIME for reproducible cross-domain analysis of life science data. J. Biotechnol. 261 (2017), 149–156.
-
(2017)
J. Biotechnol.
, vol.261
, pp. 149-156
-
-
Fillbrunn, A.1
-
23
-
-
84955439663
-
A survey of best practices for RNA-seq data analysis
-
Conesa, A., et al. A survey of best practices for RNA-seq data analysis. Genome Biol., 17, 2016, 13.
-
(2016)
Genome Biol.
, vol.17
, pp. 13
-
-
Conesa, A.1
-
24
-
-
84888264156
-
Practical guidelines for the comprehensive analysis of ChIP-seq data
-
Bailey, T., et al. Practical guidelines for the comprehensive analysis of ChIP-seq data. PLoS Comput. Biol., 9, 2013, e1003326.
-
(2013)
PLoS Comput. Biol.
, vol.9
-
-
Bailey, T.1
-
25
-
-
84980022857
-
Deep learning for computational biology
-
Angermueller, C., et al. Deep learning for computational biology. Mol. Syst. Biol., 12, 2016, 878.
-
(2016)
Mol. Syst. Biol.
, vol.12
, pp. 878
-
-
Angermueller, C.1
-
26
-
-
85021210336
-
More is better: recent progress in multi-omics data integration methods
-
Huang, S., et al. More is better: recent progress in multi-omics data integration methods. Front. Genet., 8, 2017, 84.
-
(2017)
Front. Genet.
, vol.8
, pp. 84
-
-
Huang, S.1
-
27
-
-
85047752833
-
Next-generation machine learning for biological networks
-
Camacho, D.M., et al. Next-generation machine learning for biological networks. Cell 173 (2018), 1581–1592.
-
(2018)
Cell
, vol.173
, pp. 1581-1592
-
-
Camacho, D.M.1
-
28
-
-
85019675158
-
Using hyperLOPIT to perform high-resolution mapping of the spatial proteome
-
Mulvey, C.M., et al. Using hyperLOPIT to perform high-resolution mapping of the spatial proteome. Nat. Protoc. 12 (2017), 1110–1135.
-
(2017)
Nat. Protoc.
, vol.12
, pp. 1110-1135
-
-
Mulvey, C.M.1
-
29
-
-
84979673478
-
Global, quantitative and dynamic mapping of protein subcellular localization
-
Itzhak, D.N., et al. Global, quantitative and dynamic mapping of protein subcellular localization. Elife, 2016, 5.
-
(2016)
Elife
, pp. 5
-
-
Itzhak, D.N.1
-
30
-
-
77956167600
-
The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics
-
Ohta, S., et al. The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. Cell 142 (2010), 810–821.
-
(2010)
Cell
, vol.142
, pp. 810-821
-
-
Ohta, S.1
-
31
-
-
77957344062
-
Training, selection, and robust calibration of retention time models for targeted proteomics
-
Moruz, L., et al. Training, selection, and robust calibration of retention time models for targeted proteomics. J. Proteome Res. 9 (2010), 5209–5216.
-
(2010)
J. Proteome Res.
, vol.9
, pp. 5209-5216
-
-
Moruz, L.1
-
32
-
-
84908328316
-
Regression analysis of combined gene expression regulation in acute myeloid leukemia
-
Li, Y., et al. Regression analysis of combined gene expression regulation in acute myeloid leukemia. PLoS Comput. Biol., 10, 2014, e1003908.
-
(2014)
PLoS Comput. Biol.
, vol.10
-
-
Li, Y.1
-
33
-
-
85031086623
-
Detection of dysregulated protein-association networks by high-throughput proteomics predicts cancer vulnerabilities
-
Lapek, J.D. Jr, et al. Detection of dysregulated protein-association networks by high-throughput proteomics predicts cancer vulnerabilities. Nat. Biotechnol. 35 (2017), 983–989.
-
(2017)
Nat. Biotechnol.
, vol.35
, pp. 983-989
-
-
Lapek, J.D.1
-
34
-
-
84876395914
-
Interplay of microRNAs, transcription factors and target genes: linking dynamic expression changes to function
-
Nazarov, P.V., et al. Interplay of microRNAs, transcription factors and target genes: linking dynamic expression changes to function. Nucleic Acids Res. 41 (2013), 2817–2831.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 2817-2831
-
-
Nazarov, P.V.1
-
35
-
-
85044737247
-
Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer
-
291–304.e6
-
Hoadley, K.A., et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell, 304, 2018 291–304.e6.
-
(2018)
Cell
, vol.304
-
-
Hoadley, K.A.1
-
36
-
-
40449141013
-
What is principal component analysis?
-
Ringnér, M., What is principal component analysis?. Nat. Biotechnol. 26 (2008), 303–304.
-
(2008)
Nat. Biotechnol.
, vol.26
, pp. 303-304
-
-
Ringnér, M.1
-
37
-
-
84987641578
-
The rules and impact of nonsense-mediated mRNA decay in human cancers
-
Lindeboom, R.G.H., et al. The rules and impact of nonsense-mediated mRNA decay in human cancers. Nat. Genet. 48 (2016), 1112–1118.
-
(2016)
Nat. Genet.
, vol.48
, pp. 1112-1118
-
-
Lindeboom, R.G.H.1
-
38
-
-
77958449045
-
Stable feature selection for biomarker discovery
-
He, Z., Yu, W., Stable feature selection for biomarker discovery. Comput. Biol. Chem. 34 (2010), 215–225.
-
(2010)
Comput. Biol. Chem.
, vol.34
, pp. 215-225
-
-
He, Z.1
Yu, W.2
-
39
-
-
76749092270
-
The WEKA data mining software: an update
-
Hall, M., et al. The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11 (2009), 10–18.
-
(2009)
ACM SIGKDD Explor. Newsl.
, vol.11
, pp. 10-18
-
-
Hall, M.1
-
40
-
-
80555140075
-
Scikit-learn: machine learning in Python
-
Pedregosa, F., et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12 (2011), 2825–2830.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
-
41
-
-
68449101067
-
Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt
-
Durinck, S., et al. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4 (2009), 1184–1191.
-
(2009)
Nat. Protoc.
, vol.4
, pp. 1184-1191
-
-
Durinck, S.1
-
42
-
-
84900352039
-
BioServices: a common Python package to access biological Web Services programmatically
-
Cokelaer, T., et al. BioServices: a common Python package to access biological Web Services programmatically. Bioinformatics 29 (2013), 3241–3242.
-
(2013)
Bioinformatics
, vol.29
, pp. 3241-3242
-
-
Cokelaer, T.1
-
43
-
-
85021857514
-
The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible
-
Szklarczyk, D., et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45 (2017), D362–D368.
-
(2017)
Nucleic Acids Res.
, vol.45
, pp. D362-D368
-
-
Szklarczyk, D.1
-
44
-
-
85016136235
-
The BioGRID interaction database: 2017 update
-
Chatr-Aryamontri, A., et al. The BioGRID interaction database: 2017 update. Nucleic Acids Res. 45 (2017), D369–D379.
-
(2017)
Nucleic Acids Res.
, vol.45
, pp. D369-D379
-
-
Chatr-Aryamontri, A.1
-
45
-
-
61449172037
-
Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
-
Huang, D.W., et al. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4 (2009), 44–57.
-
(2009)
Nat. Protoc.
, vol.4
, pp. 44-57
-
-
Huang, D.W.1
-
46
-
-
84987663170
-
Enrichr: a comprehensive gene set enrichment analysis web server 2016 update
-
Kuleshov, M.V., et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44 (2016), W90–W97.
-
(2016)
Nucleic Acids Res.
, vol.44
, pp. W90-W97
-
-
Kuleshov, M.V.1
-
47
-
-
27344435774
-
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
-
Subramanian, A., et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102 (2005), 15545–15550.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 15545-15550
-
-
Subramanian, A.1
-
48
-
-
85040921180
-
Ten simple rules for biologists learning to program
-
Carey, M.A., Papin, J.A., Ten simple rules for biologists learning to program. PLoS Comput. Biol., 14, 2018, e1005871.
-
(2018)
PLoS Comput. Biol.
, vol.14
-
-
Carey, M.A.1
Papin, J.A.2
|