-
1
-
-
85032197721
-
Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells
-
Semrau, S. et al. Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells. Nat. Commun. 8, 1096 (2017)
-
(2017)
Nat. Commun.
, vol.8
-
-
Semrau, S.1
-
2
-
-
84949252174
-
Single-cell genomics unveils critical regulators of Th17 cell pathogenicity
-
COI: 1:CAS:528:DC%2BC2MXhvVOqsLbJ
-
Gaublomme, J. T. et al. Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell 163, 1400–1412 (2015)
-
(2015)
Cell
, vol.163
, pp. 1400-1412
-
-
Gaublomme, J.T.1
-
3
-
-
84902668801
-
Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
-
COI: 1:CAS:528:DC%2BC2cXpslygsL4%3D
-
Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014)
-
(2014)
Science
, vol.344
, pp. 1396-1401
-
-
Patel, A.P.1
-
4
-
-
84903574951
-
Bayesian approach to single-cell differential expression analysis
-
COI: 1:CAS:528:DC%2BC2cXotFCjs70%3D
-
Kharchenko, P. V., Silberstein, L. & Scadden, D. T. Bayesian approach to single-cell differential expression analysis. Nat. Methods 11, 740–742 (2014)
-
(2014)
Nat. Methods
, vol.11
, pp. 740-742
-
-
Kharchenko, P.V.1
Silberstein, L.2
Scadden, D.T.3
-
5
-
-
85021816036
-
Normalizing single-cell RNA sequencing data: challenges and opportunities
-
COI: 1:CAS:528:DC%2BC2sXnslKkt7o%3D
-
Vallejos, C. A., Risso, D., Scialdone, A., Dudoit, S. & Marioni, J. C. Normalizing single-cell RNA sequencing data: challenges and opportunities. Nat. Methods 14, 565–571 (2017)
-
(2017)
Nat. Methods
, vol.14
, pp. 565-571
-
-
Vallejos, C.A.1
Risso, D.2
Scialdone, A.3
Dudoit, S.4
Marioni, J.C.5
-
6
-
-
85040695740
-
Removal of batch effects using distribution-matching residual networks
-
COI: 1:CAS:528:DC%2BC1cXitFOntLrL
-
Shaham, U. et al. Removal of batch effects using distribution-matching residual networks. Bioinformatics 33, 2539–2546 (2017)
-
(2017)
Bioinformatics
, vol.33
, pp. 2539-2546
-
-
Shaham, U.1
-
7
-
-
84994860357
-
Revealing the vectors of cellular identity with single-cell genomics
-
COI: 1:CAS:528:DC%2BC28XhvVWhsr7I
-
Wagner, A., Regev, A. & Yosef, N. Revealing the vectors of cellular identity with single-cell genomics. Nat. Biotechnol. 34, 1145–1160 (2016)
-
(2016)
Nat. Biotechnol.
, vol.34
, pp. 1145-1160
-
-
Wagner, A.1
Regev, A.2
Yosef, N.3
-
8
-
-
84992108405
-
Dirichlet process mixture model for correcting technical variation in single-cell gene expression data
-
Prabhakaran, S., Azizi, E., Carr, A. & Pe’er, D. Dirichlet process mixture model for correcting technical variation in single-cell gene expression data. PMLR 48, 1070–1079 (2016)
-
(2016)
PMLR
, vol.48
, pp. 1070-1079
-
-
Prabhakaran, S.1
Azizi, E.2
Carr, A.3
Pe’er, D.4
-
9
-
-
84955706109
-
ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis
-
Pierson, E. & Yau, C. ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome. Biol. 16, 241 (2015)
-
(2015)
Genome. Biol.
, vol.16
-
-
Pierson, E.1
Yau, C.2
-
10
-
-
85040785722
-
A general and flexible method for signal extraction from single-cell RNA-seq data
-
Risso, D., Perraudeau, F., Gribkova, S., Dudoit, S. & Vert, J.-P. A general and flexible method for signal extraction from single-cell RNA-seq data. Nat. Commun. 9, 284 (2018)
-
(2018)
Nat. Commun.
, vol.9
-
-
Risso, D.1
Perraudeau, F.2
Gribkova, S.3
Dudoit, S.4
Vert, J.P.5
-
11
-
-
85014528252
-
Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning
-
COI: 1:CAS:528:DC%2BC2sXltVWgt7c%3D
-
Wang, B., Zhu, J., Pierson, E., Ramazzotti, D. & Batzoglou, S. Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat. Methods 14, 414–416 (2017)
-
(2017)
Nat. Methods
, vol.14
, pp. 414-416
-
-
Wang, B.1
Zhu, J.2
Pierson, E.3
Ramazzotti, D.4
Batzoglou, S.5
-
13
-
-
84951574149
-
MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
-
Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome. Biol. 16, 278 (2015)
-
(2015)
Genome. Biol.
, vol.16
-
-
Finak, G.1
-
14
-
-
85040459896
-
The Human Cell Atlas
-
Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017)
-
(2017)
eLife
, vol.6
-
-
Regev, A.1
-
16
-
-
84901831004
-
Validation of noise models for single-cell transcriptomics
-
Grün, D., Kester, L. & van Oudenaarden, A. Validation of noise models for single-cell transcriptomics. Nat. Methods 11, 637–640 (2014)
-
(2014)
Nat. Methods
, vol.11
, pp. 637-640
-
-
Grün, D.1
Kester, L.2
van Oudenaarden, A.3
-
17
-
-
84924629414
-
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
-
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome. Biol. 15, 550 (2014)
-
(2014)
Genome. Biol.
, vol.15
-
-
Love, M.I.1
Huber, W.2
Anders, S.3
-
18
-
-
85047423831
-
Interpretable dimensionality reduction of single cell transcriptome data with deep generative models
-
Ding, J., Condon, A. & Shah, S. P. Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nat. Commun. 9, 2002 (2018)
-
(2018)
Nat. Commun.
, vol.9
-
-
Ding, J.1
Condon, A.2
Shah, S.P.3
-
19
-
-
85057627346
-
VASC: Dimension reduction and visualization of single cell RNA sequencing data by deep variational autoencoder
-
Preprint at
-
Wang, D. & Gu, J. VASC: dimension reduction and visualization of single cell RNA sequencing data by deep variational autoencoder. bioRxiv Preprint at https://www.biorxiv.org/content/early/2017/10/06/199315 (2017)
-
(2017)
Biorxiv
-
-
Wang, D.1
Gu, J.2
-
20
-
-
85052140907
-
-
bioRxiv Preprint at
-
Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S. & Theis, F. J. Single cell RNA-seq denoising using a deep count autoencoder. bioRxiv Preprint at https://www.biorxiv.org/content/early/2018/04/13/300681 (2018)
-
(2018)
Single Cell Rna-Seq Denoising Using a Deep Count Autoencoder
-
-
Eraslan, G.1
Simon, L.M.2
Mircea, M.3
Mueller, N.S.4
Theis, F.J.5
-
24
-
-
85083951172
-
The variational fair autoencoder. Oral presentation at the International Conference on Learning Representations, San Juan
-
2–4 May 2016
-
Louizos, C., Swersky, K., Li, Y., Welling, M. & Zemel, R. The variational fair autoencoder. Oral presentation at the International Conference on Learning Representations, San Juan, Puerto Rico, 2–4 May 2016
-
Puerto Rico
-
-
Louizos, C.1
Swersky, K.2
Li, Y.3
Welling, M.4
Zemel, R.5
-
25
-
-
85083952489
-
Auto-encoding variational Bayes
-
April 2014
-
Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. Oral presentation at the International Conference on Learning Representations, Banff, Alberta, Canada, 14–16 April 2014
-
Oral Presentation at the International Conference on Learning Representations, Banff, Alberta, Canada
, pp. 14-16
-
-
Kingma, D.P.1
Welling, M.2
-
26
-
-
85023644081
-
Variational inference: a review for statisticians
-
COI: 1:CAS:528:DC%2BC2sXhtFKrtrzM
-
Blei, D. M., Kucukelbir, A. & McAuliffe, J. D. Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112, 859–877 (2017)
-
(2017)
J. Am. Stat. Assoc.
, vol.112
, pp. 859-877
-
-
Blei, D.M.1
Kucukelbir, A.2
McAuliffe, J.D.3
-
27
-
-
85019264158
-
Ladder variational autoencoders
-
eds Lee, D. D. et al., NIPS Foundation, La Jolla, CA
-
Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby, S. K. & Winther, O. Ladder variational autoencoders. In Advances in Neural Information Processing Systems (eds Lee, D. D. et al.) 3738–3746 (NIPS Foundation, La Jolla, CA, 2016)
-
(2016)
Advances in Neural Information Processing Systems
, pp. 3738-3746
-
-
Sønderby, C.K.1
Raiko, T.2
Maaløe, L.3
Sønderby, S.K.4
Winther, O.5
-
28
-
-
85057588286
-
Support: Single cell gene expression datasets
-
10x Genomics. Support: single cell gene expression datasets. 10x Genomics https://support.10xgenomics.com/single-cell-gene-expression/datasets (2017)
-
(2017)
10X Genomics
-
-
-
29
-
-
84924565530
-
Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
-
COI: 1:CAS:528:DC%2BC2MXjsF2hsro%3D
-
Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015)
-
(2015)
Science
, vol.347
, pp. 1138-1142
-
-
Zeisel, A.1
-
30
-
-
85009446777
-
Massively parallel digital transcriptional profiling of single cells
-
COI: 1:CAS:528:DC%2BC2sXht1WlsLo%3D
-
Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017)
-
(2017)
Nat. Commun.
, vol.8
-
-
Zheng, G.X.Y.1
-
31
-
-
84983741021
-
Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics
-
COI: 1:CAS:528:DC%2BC28XhsVehu73M
-
Shekhar, K. et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166, 1308–1323 (2016)
-
(2016)
Cell
, vol.166
, pp. 1308-1323
-
-
Shekhar, K.1
-
32
-
-
85042750225
-
Population snapshots predict early haematopoietic and erythroid hierarchies
-
COI: 1:CAS:528:DC%2BC1cXjtFCktr0%3D
-
Tusi, B. K. et al. Population snapshots predict early haematopoietic and erythroid hierarchies. Nature 555, 54–60 (2018)
-
(2018)
Nature
, vol.555
, pp. 54-60
-
-
Tusi, B.K.1
-
33
-
-
85028316331
-
Simultaneous epitope and transcriptome measurement in single cells
-
COI: 1:CAS:528:DC%2BC2sXht1CkurzK
-
Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017)
-
(2017)
Nat. Methods
, vol.14
, pp. 865-868
-
-
Stoeckius, M.1
-
34
-
-
33845432928
-
Adjusting batch effects in microarray expression data using empirical Bayes methods
-
Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007)
-
(2007)
Biostatistics
, vol.8
, pp. 118-127
-
-
Johnson, W.E.1
Li, C.2
Rabinovic, A.3
-
35
-
-
85046289733
-
Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors
-
COI: 1:CAS:528:DC%2BC1cXmslKrtLo%3D
-
Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 (2018)
-
(2018)
Nat. Biotechnol.
, vol.36
, pp. 421-427
-
-
Haghverdi, L.1
Lun, A.T.L.2
Morgan, M.D.3
Marioni, J.C.4
-
37
-
-
85040814901
-
On p-values and Bayes factors
-
Held, L. & Ott, M. On p-values and Bayes factors. Annu. Rev. Stat. Appl. 5, 393–419 (2018)
-
(2018)
Annu. Rev. Stat. Appl.
, vol.5
, pp. 393-419
-
-
Held, L.1
Ott, M.2
-
38
-
-
75249087100
-
edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
-
COI: 1:CAS:528:DC%2BD1MXhs1WlurvO
-
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010)
-
(2010)
Bioinformatics
, vol.26
, pp. 139-140
-
-
Robinson, M.D.1
McCarthy, D.J.2
Smyth, G.K.3
-
39
-
-
80051989398
-
Systems biology of vaccination for seasonal influenza in humans
-
COI: 1:CAS:528:DC%2BC3MXos1Oms7o%3D
-
Nakaya, H. I. et al. Systems biology of vaccination for seasonal influenza in humans. Nat. Immunol. 12, 786–795 (2011)
-
(2011)
Nat. Immunol.
, vol.12
, pp. 786-795
-
-
Nakaya, H.I.1
-
40
-
-
22144489127
-
Chronic lymphocytic leukemia cells induce changes in gene expression of CD4 and CD8 T cells
-
Görgün, G., Holderried, T. A. W., Zahrieh, D., Neuberg, D. & Gribben, J. G. Chronic lymphocytic leukemia cells induce changes in gene expression of CD4 and CD8 T cells. J. Clin. Invest. 115, 1797–1805 (2005)
-
(2005)
J. Clin. Invest.
, vol.115
, pp. 1797-1805
-
-
Görgün, G.1
Holderried, T.A.W.2
Zahrieh, D.3
Neuberg, D.4
Gribben, J.G.5
-
41
-
-
79955564639
-
Measuring reproducibility of high-throughput experiments
-
Li, Q., Brown, J. B., Huang, H. & Bickel, P. J. Measuring reproducibility of high-throughput experiments. Ann. Appl. Stat. 5, 1752–1779 (2011)
-
(2011)
Ann. Appl. Stat.
, vol.5
, pp. 1752-1779
-
-
Li, Q.1
Brown, J.B.2
Huang, H.3
Bickel, P.J.4
-
43
-
-
85162384813
-
Algorithms for hyper-parameter optimization
-
eds Shawe-Taylor, J. et al, NIPS Foundation, La Jolla, CA
-
Bergstra, J. S., Bardenet, R., Bengio, Y. & Kégl, B. Algorithms for hyper-parameter optimization. In Advances in Neural Information Processing Systems 24 (eds Shawe-Taylor, J. et al.) 2546–2554 (NIPS Foundation, La Jolla, CA, 2011)
-
(2011)
Advances in Neural Information Processing Systems
, vol.24
, pp. 2546-2554
-
-
Bergstra, J.S.1
Bardenet, R.2
Bengio, Y.3
Kégl, B.4
-
44
-
-
85017360311
-
Scaling single-cell genomics from phenomenology to mechanism
-
COI: 1:CAS:528:DC%2BC2sXht1Olu7k%3D
-
Tanay, A. & Regev, A. Scaling single-cell genomics from phenomenology to mechanism. Nature 541, 331–338 (2017)
-
(2017)
Nature
, vol.541
, pp. 331-338
-
-
Tanay, A.1
Regev, A.2
-
45
-
-
84983250200
-
FastProject: a tool for low-dimensional analysis of single-cell RNA-Seq data
-
DeTomaso, D. & Yosef, N. FastProject: a tool for low-dimensional analysis of single-cell RNA-Seq data. BMC Bioinformatics 17, 315 (2016)
-
(2016)
BMC Bioinformatics
, vol.17
-
-
DeTomaso, D.1
Yosef, N.2
-
46
-
-
84959189722
-
Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis
-
COI: 1:CAS:528:DC%2BC28Xps1Gjtw%3D%3D
-
Fan, J. et al. Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat. Methods 13, 241–244 (2016)
-
(2016)
Nat. Methods
, vol.13
, pp. 241-244
-
-
Fan, J.1
-
47
-
-
85041394976
-
SCANPY: large-scale single-cell gene expression data analysis
-
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome. Biol. 19, 15 (2018)
-
(2018)
Genome. Biol.
, vol.19
-
-
Wolf, F.A.1
Angerer, P.2
Theis, F.J.3
|