메뉴 건너뛰기




Volumn 15, Issue 12, 2018, Pages 1053-1058

Deep generative modeling for single-cell transcriptomics

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; GENE EXPRESSION; STOCHASTIC MODEL; TRANSCRIPTOMICS; ALGORITHM; ANIMAL; BIOLOGICAL MODEL; BIOLOGY; BRAIN; CLUSTER ANALYSIS; CYTOLOGY; GENETIC VARIATION; HEMATOPOIETIC STEM CELL; HIGH THROUGHPUT SEQUENCING; HUMAN; METABOLISM; MONONUCLEAR CELL; MOUSE; PROCEDURES; SEQUENCE ANALYSIS; SINGLE CELL ANALYSIS;

EID: 85057586270     PISSN: 15487091     EISSN: 15487105     Source Type: Journal    
DOI: 10.1038/s41592-018-0229-2     Document Type: Article
Times cited : (1170)

References (47)
  • 1
    • 85032197721 scopus 로고    scopus 로고
    • Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells
    • Semrau, S. et al. Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells. Nat. Commun. 8, 1096 (2017)
    • (2017) Nat. Commun. , vol.8
    • Semrau, S.1
  • 2
    • 84949252174 scopus 로고    scopus 로고
    • Single-cell genomics unveils critical regulators of Th17 cell pathogenicity
    • COI: 1:CAS:528:DC%2BC2MXhvVOqsLbJ
    • Gaublomme, J. T. et al. Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell 163, 1400–1412 (2015)
    • (2015) Cell , vol.163 , pp. 1400-1412
    • Gaublomme, J.T.1
  • 3
    • 84902668801 scopus 로고    scopus 로고
    • Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
    • COI: 1:CAS:528:DC%2BC2cXpslygsL4%3D
    • Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014)
    • (2014) Science , vol.344 , pp. 1396-1401
    • Patel, A.P.1
  • 4
    • 84903574951 scopus 로고    scopus 로고
    • Bayesian approach to single-cell differential expression analysis
    • COI: 1:CAS:528:DC%2BC2cXotFCjs70%3D
    • Kharchenko, P. V., Silberstein, L. & Scadden, D. T. Bayesian approach to single-cell differential expression analysis. Nat. Methods 11, 740–742 (2014)
    • (2014) Nat. Methods , vol.11 , pp. 740-742
    • Kharchenko, P.V.1    Silberstein, L.2    Scadden, D.T.3
  • 5
    • 85021816036 scopus 로고    scopus 로고
    • Normalizing single-cell RNA sequencing data: challenges and opportunities
    • COI: 1:CAS:528:DC%2BC2sXnslKkt7o%3D
    • Vallejos, C. A., Risso, D., Scialdone, A., Dudoit, S. & Marioni, J. C. Normalizing single-cell RNA sequencing data: challenges and opportunities. Nat. Methods 14, 565–571 (2017)
    • (2017) Nat. Methods , vol.14 , pp. 565-571
    • Vallejos, C.A.1    Risso, D.2    Scialdone, A.3    Dudoit, S.4    Marioni, J.C.5
  • 6
    • 85040695740 scopus 로고    scopus 로고
    • Removal of batch effects using distribution-matching residual networks
    • COI: 1:CAS:528:DC%2BC1cXitFOntLrL
    • Shaham, U. et al. Removal of batch effects using distribution-matching residual networks. Bioinformatics 33, 2539–2546 (2017)
    • (2017) Bioinformatics , vol.33 , pp. 2539-2546
    • Shaham, U.1
  • 7
    • 84994860357 scopus 로고    scopus 로고
    • Revealing the vectors of cellular identity with single-cell genomics
    • COI: 1:CAS:528:DC%2BC28XhvVWhsr7I
    • Wagner, A., Regev, A. & Yosef, N. Revealing the vectors of cellular identity with single-cell genomics. Nat. Biotechnol. 34, 1145–1160 (2016)
    • (2016) Nat. Biotechnol. , vol.34 , pp. 1145-1160
    • Wagner, A.1    Regev, A.2    Yosef, N.3
  • 8
    • 84992108405 scopus 로고    scopus 로고
    • Dirichlet process mixture model for correcting technical variation in single-cell gene expression data
    • Prabhakaran, S., Azizi, E., Carr, A. & Pe’er, D. Dirichlet process mixture model for correcting technical variation in single-cell gene expression data. PMLR 48, 1070–1079 (2016)
    • (2016) PMLR , vol.48 , pp. 1070-1079
    • Prabhakaran, S.1    Azizi, E.2    Carr, A.3    Pe’er, D.4
  • 9
    • 84955706109 scopus 로고    scopus 로고
    • ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis
    • Pierson, E. & Yau, C. ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome. Biol. 16, 241 (2015)
    • (2015) Genome. Biol. , vol.16
    • Pierson, E.1    Yau, C.2
  • 10
    • 85040785722 scopus 로고    scopus 로고
    • A general and flexible method for signal extraction from single-cell RNA-seq data
    • Risso, D., Perraudeau, F., Gribkova, S., Dudoit, S. & Vert, J.-P. A general and flexible method for signal extraction from single-cell RNA-seq data. Nat. Commun. 9, 284 (2018)
    • (2018) Nat. Commun. , vol.9
    • Risso, D.1    Perraudeau, F.2    Gribkova, S.3    Dudoit, S.4    Vert, J.P.5
  • 11
    • 85014528252 scopus 로고    scopus 로고
    • Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning
    • COI: 1:CAS:528:DC%2BC2sXltVWgt7c%3D
    • Wang, B., Zhu, J., Pierson, E., Ramazzotti, D. & Batzoglou, S. Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat. Methods 14, 414–416 (2017)
    • (2017) Nat. Methods , vol.14 , pp. 414-416
    • Wang, B.1    Zhu, J.2    Pierson, E.3    Ramazzotti, D.4    Batzoglou, S.5
  • 13
    • 84951574149 scopus 로고    scopus 로고
    • MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
    • Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome. Biol. 16, 278 (2015)
    • (2015) Genome. Biol. , vol.16
    • Finak, G.1
  • 14
    • 85040459896 scopus 로고    scopus 로고
    • The Human Cell Atlas
    • Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017)
    • (2017) eLife , vol.6
    • Regev, A.1
  • 16
    • 84901831004 scopus 로고    scopus 로고
    • Validation of noise models for single-cell transcriptomics
    • Grün, D., Kester, L. & van Oudenaarden, A. Validation of noise models for single-cell transcriptomics. Nat. Methods 11, 637–640 (2014)
    • (2014) Nat. Methods , vol.11 , pp. 637-640
    • Grün, D.1    Kester, L.2    van Oudenaarden, A.3
  • 17
    • 84924629414 scopus 로고    scopus 로고
    • Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
    • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome. Biol. 15, 550 (2014)
    • (2014) Genome. Biol. , vol.15
    • Love, M.I.1    Huber, W.2    Anders, S.3
  • 18
    • 85047423831 scopus 로고    scopus 로고
    • Interpretable dimensionality reduction of single cell transcriptome data with deep generative models
    • Ding, J., Condon, A. & Shah, S. P. Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nat. Commun. 9, 2002 (2018)
    • (2018) Nat. Commun. , vol.9
    • Ding, J.1    Condon, A.2    Shah, S.P.3
  • 19
    • 85057627346 scopus 로고    scopus 로고
    • VASC: Dimension reduction and visualization of single cell RNA sequencing data by deep variational autoencoder
    • Preprint at
    • Wang, D. & Gu, J. VASC: dimension reduction and visualization of single cell RNA sequencing data by deep variational autoencoder. bioRxiv Preprint at https://www.biorxiv.org/content/early/2017/10/06/199315 (2017)
    • (2017) Biorxiv
    • Wang, D.1    Gu, J.2
  • 24
    • 85083951172 scopus 로고    scopus 로고
    • The variational fair autoencoder. Oral presentation at the International Conference on Learning Representations, San Juan
    • 2–4 May 2016
    • Louizos, C., Swersky, K., Li, Y., Welling, M. & Zemel, R. The variational fair autoencoder. Oral presentation at the International Conference on Learning Representations, San Juan, Puerto Rico, 2–4 May 2016
    • Puerto Rico
    • Louizos, C.1    Swersky, K.2    Li, Y.3    Welling, M.4    Zemel, R.5
  • 26
    • 85023644081 scopus 로고    scopus 로고
    • Variational inference: a review for statisticians
    • COI: 1:CAS:528:DC%2BC2sXhtFKrtrzM
    • Blei, D. M., Kucukelbir, A. & McAuliffe, J. D. Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112, 859–877 (2017)
    • (2017) J. Am. Stat. Assoc. , vol.112 , pp. 859-877
    • Blei, D.M.1    Kucukelbir, A.2    McAuliffe, J.D.3
  • 28
    • 85057588286 scopus 로고    scopus 로고
    • Support: Single cell gene expression datasets
    • 10x Genomics. Support: single cell gene expression datasets. 10x Genomics https://support.10xgenomics.com/single-cell-gene-expression/datasets (2017)
    • (2017) 10X Genomics
  • 29
    • 84924565530 scopus 로고    scopus 로고
    • Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
    • COI: 1:CAS:528:DC%2BC2MXjsF2hsro%3D
    • Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015)
    • (2015) Science , vol.347 , pp. 1138-1142
    • Zeisel, A.1
  • 30
    • 85009446777 scopus 로고    scopus 로고
    • Massively parallel digital transcriptional profiling of single cells
    • COI: 1:CAS:528:DC%2BC2sXht1WlsLo%3D
    • Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017)
    • (2017) Nat. Commun. , vol.8
    • Zheng, G.X.Y.1
  • 31
    • 84983741021 scopus 로고    scopus 로고
    • Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics
    • COI: 1:CAS:528:DC%2BC28XhsVehu73M
    • Shekhar, K. et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166, 1308–1323 (2016)
    • (2016) Cell , vol.166 , pp. 1308-1323
    • Shekhar, K.1
  • 32
    • 85042750225 scopus 로고    scopus 로고
    • Population snapshots predict early haematopoietic and erythroid hierarchies
    • COI: 1:CAS:528:DC%2BC1cXjtFCktr0%3D
    • Tusi, B. K. et al. Population snapshots predict early haematopoietic and erythroid hierarchies. Nature 555, 54–60 (2018)
    • (2018) Nature , vol.555 , pp. 54-60
    • Tusi, B.K.1
  • 33
    • 85028316331 scopus 로고    scopus 로고
    • Simultaneous epitope and transcriptome measurement in single cells
    • COI: 1:CAS:528:DC%2BC2sXht1CkurzK
    • Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017)
    • (2017) Nat. Methods , vol.14 , pp. 865-868
    • Stoeckius, M.1
  • 34
    • 33845432928 scopus 로고    scopus 로고
    • Adjusting batch effects in microarray expression data using empirical Bayes methods
    • Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007)
    • (2007) Biostatistics , vol.8 , pp. 118-127
    • Johnson, W.E.1    Li, C.2    Rabinovic, A.3
  • 35
    • 85046289733 scopus 로고    scopus 로고
    • Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors
    • COI: 1:CAS:528:DC%2BC1cXmslKrtLo%3D
    • Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 (2018)
    • (2018) Nat. Biotechnol. , vol.36 , pp. 421-427
    • Haghverdi, L.1    Lun, A.T.L.2    Morgan, M.D.3    Marioni, J.C.4
  • 37
    • 85040814901 scopus 로고    scopus 로고
    • On p-values and Bayes factors
    • Held, L. & Ott, M. On p-values and Bayes factors. Annu. Rev. Stat. Appl. 5, 393–419 (2018)
    • (2018) Annu. Rev. Stat. Appl. , vol.5 , pp. 393-419
    • Held, L.1    Ott, M.2
  • 38
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    • COI: 1:CAS:528:DC%2BD1MXhs1WlurvO
    • Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010)
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 39
    • 80051989398 scopus 로고    scopus 로고
    • Systems biology of vaccination for seasonal influenza in humans
    • COI: 1:CAS:528:DC%2BC3MXos1Oms7o%3D
    • Nakaya, H. I. et al. Systems biology of vaccination for seasonal influenza in humans. Nat. Immunol. 12, 786–795 (2011)
    • (2011) Nat. Immunol. , vol.12 , pp. 786-795
    • Nakaya, H.I.1
  • 40
    • 22144489127 scopus 로고    scopus 로고
    • Chronic lymphocytic leukemia cells induce changes in gene expression of CD4 and CD8 T cells
    • Görgün, G., Holderried, T. A. W., Zahrieh, D., Neuberg, D. & Gribben, J. G. Chronic lymphocytic leukemia cells induce changes in gene expression of CD4 and CD8 T cells. J. Clin. Invest. 115, 1797–1805 (2005)
    • (2005) J. Clin. Invest. , vol.115 , pp. 1797-1805
    • Görgün, G.1    Holderried, T.A.W.2    Zahrieh, D.3    Neuberg, D.4    Gribben, J.G.5
  • 41
    • 79955564639 scopus 로고    scopus 로고
    • Measuring reproducibility of high-throughput experiments
    • Li, Q., Brown, J. B., Huang, H. & Bickel, P. J. Measuring reproducibility of high-throughput experiments. Ann. Appl. Stat. 5, 1752–1779 (2011)
    • (2011) Ann. Appl. Stat. , vol.5 , pp. 1752-1779
    • Li, Q.1    Brown, J.B.2    Huang, H.3    Bickel, P.J.4
  • 43
    • 85162384813 scopus 로고    scopus 로고
    • Algorithms for hyper-parameter optimization
    • eds Shawe-Taylor, J. et al, NIPS Foundation, La Jolla, CA
    • Bergstra, J. S., Bardenet, R., Bengio, Y. & Kégl, B. Algorithms for hyper-parameter optimization. In Advances in Neural Information Processing Systems 24 (eds Shawe-Taylor, J. et al.) 2546–2554 (NIPS Foundation, La Jolla, CA, 2011)
    • (2011) Advances in Neural Information Processing Systems , vol.24 , pp. 2546-2554
    • Bergstra, J.S.1    Bardenet, R.2    Bengio, Y.3    Kégl, B.4
  • 44
    • 85017360311 scopus 로고    scopus 로고
    • Scaling single-cell genomics from phenomenology to mechanism
    • COI: 1:CAS:528:DC%2BC2sXht1Olu7k%3D
    • Tanay, A. & Regev, A. Scaling single-cell genomics from phenomenology to mechanism. Nature 541, 331–338 (2017)
    • (2017) Nature , vol.541 , pp. 331-338
    • Tanay, A.1    Regev, A.2
  • 45
    • 84983250200 scopus 로고    scopus 로고
    • FastProject: a tool for low-dimensional analysis of single-cell RNA-Seq data
    • DeTomaso, D. & Yosef, N. FastProject: a tool for low-dimensional analysis of single-cell RNA-Seq data. BMC Bioinformatics 17, 315 (2016)
    • (2016) BMC Bioinformatics , vol.17
    • DeTomaso, D.1    Yosef, N.2
  • 46
    • 84959189722 scopus 로고    scopus 로고
    • Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis
    • COI: 1:CAS:528:DC%2BC28Xps1Gjtw%3D%3D
    • Fan, J. et al. Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat. Methods 13, 241–244 (2016)
    • (2016) Nat. Methods , vol.13 , pp. 241-244
    • Fan, J.1
  • 47
    • 85041394976 scopus 로고    scopus 로고
    • SCANPY: large-scale single-cell gene expression data analysis
    • Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome. Biol. 19, 15 (2018)
    • (2018) Genome. Biol. , vol.19
    • Wolf, F.A.1    Angerer, P.2    Theis, F.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.