-
1
-
-
85046994372
-
OptNet: Differentiable optimization as a layer in neural networks
-
Amos, Brandon and Kolter, J. Zico. OptNet: Differentiable Optimization as a Layer in Neural Networks. In Proceedings of ICML, 2017.
-
(2017)
Proceedings of ICML
-
-
Amos, B.1
Kolter, J.Z.2
-
2
-
-
85019172761
-
Learning to learn by gradient descent by gradient descent
-
Andrychowicz, Marcin, Denil, Misha, Gomez, Sergio, Hoffman, Matthew, Pfau, David, Schaul, Tom, and de Freitas, Nando. Learning to Learn by Gradient Descent by Gradient Descent. In Proceedings of NIPS, 2016.
-
(2016)
Proceedings of NIPS
-
-
Andrychowicz, M.1
Denil, M.2
Gomez, S.3
Hoffman, M.4
Pfau, D.5
Schaul, T.6
De Freitas, N.7
-
3
-
-
85048667360
-
End-toend learning for structured prediction energy networks
-
Belanger, David, Yang, Bishan, and McCallum, Andrew. End-toend Learning for Structured Prediction Energy Networks. In Proceedings of ICML, 2017.
-
(2017)
Proceedings of ICML
-
-
Belanger, D.1
Yang, B.2
McCallum, A.3
-
4
-
-
85023644081
-
Variational inference: A review for statisticians
-
Blei, David M., Kucukelbir, Alp, and McAuliffe, Jon D. Variational inference: A review for statisticians. Journal of the American Statistical Association, 112(518):859-877, 2017.
-
(2017)
Journal of the American Statistical Association
, vol.112
, Issue.518
, pp. 859-877
-
-
Blei, D.M.1
Kucukelbir, A.2
McAuliffe, J.D.3
-
5
-
-
85057274652
-
Categorical reparameterization with gumbel-softmax
-
Bowman, Samuel R., Vilnis, Luke, Vinyal, Oriol, Dai, Andrew M., Jozefowicz, Rafal, and Bengio, Samy. Categorical Reparameterization with Gumbel-Softmax. In Proceedings of CoNLL, 2016.
-
(2016)
Proceedings of CoNLL
-
-
Bowman, S.R.1
Vilnis, L.2
Vinyal, O.3
Dai, A.M.4
Jozefowicz, R.5
Bengio, S.6
-
6
-
-
84885591253
-
Training energy-based models for time-series imputation
-
Brakel, Philemon, Stroobandt, Dirk, and Schrauwen, Benjamin. Training Energy-Based Models for Time-Series Imputation. Journal of Machine Learning Research, 14:2771-2797, 2013.
-
(2013)
Journal of Machine Learning Research
, vol.14
, pp. 2771-2797
-
-
Brakel, P.1
Stroobandt, D.2
Schrauwen, B.3
-
8
-
-
84983198385
-
Accurate and conservative estimates of mrf log-likelihood using reverse annealing
-
Burda, Yuri, Grosse, Roger, and Salakhutdinov, Ruslan. Accurate and Conservative Estimates of MRF Log-likelihood using Reverse Annealing. In Proceedings of AISTATS, 2015b.
-
(2015)
Proceedings of AISTATS
-
-
Burda, Y.1
Grosse, R.2
Salakhutdinov, R.3
-
9
-
-
85088227408
-
Variational lossy autoencoder
-
Chen, Xi, Kingma, Diederik P., Salimans, Tim, Duan, Yan, Dhariwal, Prafulla, Schulman, John, Sutskever, Ilya, and Abbeel, Pieter. Variational Lossy Autoencoder. In Proceedings of ICLR, 2017.
-
(2017)
Proceedings of ICLR
-
-
Chen, X.1
Kingma, D.P.2
Salimans, T.3
Duan, Y.4
Dhariwal, P.5
Schulman, J.6
Sutskever, I.7
Abbeel, P.8
-
10
-
-
84893358740
-
A two-stage pretraining algorithm for deep boltzmann machines
-
Cho, Kyunghyun, Raiko, Tapani, Hin, Alexander, and Karhunen, Juha. A Two-Stage Pretraining Algorithm for Deep Boltzmann Machines. In Proceedings of ICANN, 2013.
-
(2013)
Proceedings of ICANN
-
-
Cho, K.1
Raiko, T.2
Hin, A.3
Karhunen, J.4
-
11
-
-
84965158187
-
A recurrent latent variable model for sequential data
-
Chung, Junyoung, Kästner, Kyle, Dinh, Laurent, Goel, Kratarth, Courville, Aaron, and Bengio, Yoshua. A Recurrent Latent Variable Model for Sequential Data. In Proceedings of NIPS, 2015.
-
(2015)
Proceedings of NIPS
-
-
Chung, J.1
Kästner, K.2
Dinh, L.3
Goel, K.4
Courville, A.5
Bengio, Y.6
-
12
-
-
85057248218
-
Inference suboptimality in variational autoencoders
-
Cremer, Chris, Li, Xuechen, and Duvenaud, David. Inference Suboptimality in Variational Autoencoders. In Proceedings of ICML, 2018.
-
(2018)
Proceedings of ICML
-
-
Cremer, C.1
Li, X.2
Duvenaud, D.3
-
13
-
-
85088228479
-
TopicRNN: A recurrent neural network with long-range semantic dependency
-
Dieng, Adji B., Wang, Chong, Gao, Jianfeng,, and Paisley, John. TopicRNN: A Recurrent Neural Network With Long-Range Semantic Dependency. In Proceedings of ICLR, 2017.
-
(2017)
Proceedings of ICLR
-
-
Dieng, A.B.1
Wang, C.2
Gao, J.3
Paisley, J.4
-
14
-
-
84983107941
-
Generic methods for optimization-based modeling
-
Domke, Justin. Generic Methods for Optimization-based Modeling. In Proceedings of AISTATS, 2012.
-
(2012)
Proceedings of AISTATS
-
-
Domke, J.1
-
15
-
-
85019203505
-
Sequential neural models with stochastic layers
-
Fraccaro, Marco, Sonderby, Soren Kaae, Paquet, Ulrich, and Winther, Ole. Sequential Neural Models with Stochastic Layers. In Proceedings of NIPS, 2016.
-
(2016)
Proceedings of NIPS
-
-
Fraccaro, M.1
Sonderby, S.K.2
Paquet, U.3
Winther, O.4
-
16
-
-
84899003086
-
Propagation algorithms for variational Bayesian learning
-
Ghahramani, Zoubin and Beal, Matthew. Propagation algorithms for variational bayesian learning. In Proceedings of NIPS, 2001.
-
(2001)
Proceedings of NIPS
-
-
Ghahramani, Z.1
Beal, M.2
-
17
-
-
85046993773
-
Z-forcing: Training stochastic recurrent networks
-
Goyal, Anirudh, Sordoni, Alessandro, Cote, Marc-Alexandre, Ke, Nan Rosemary, and Bengio, Yoshua. Z-Forcing: Training Stochastic Recurrent Networks. In Proceedings of NIPS, 2017a.
-
(2017)
Proceedings of NIPS
-
-
Goyal, A.1
Sordoni, A.2
Cote, M.-A.3
Ke, N.R.4
Bengio, Y.5
-
18
-
-
85041927783
-
Nonparametric variational auto-encoders for hierarchical representation learning
-
Goyal, Prasoon, Hu, Zhiting, Liang, Xiaodan, Wang, Chenyu, and Xing, Eric. Nonparametric Variational Auto-encoders for Hierarchical Representation Learning. In Proceedings of ICCV, 2017b.
-
(2017)
Proceedings of ICCV
-
-
Goyal, P.1
Hu, Z.2
Liang, X.3
Wang, C.4
Xing, E.5
-
19
-
-
84983208884
-
DRAW: A recurrent neural network for image generation
-
Gregor, Karol, Danihelka, Ivo, Graves, Alex, Rezende, Danilo Jimenez, and Wierstra, Daan. DRAW: A Recurrent Neural Network for Image Generation. In Proceedings of ICML, 2015.
-
(2015)
Proceedings of ICML
-
-
Gregor, K.1
Danihelka, I.2
Graves, A.3
Rezende, D.J.4
Wierstra, D.5
-
20
-
-
85019177115
-
Towards conceptual compression
-
Gregor, Karol, Besse, Frederic, Rezende, Danilo Jimenez, Danihelka, Ivo, and Wierstra, Daan. Towards Conceptual Compression. In Proceedings of NIPS, 2016.
-
(2016)
Proceedings of NIPS
-
-
Gregor, K.1
Besse, F.2
Rezende, D.J.3
Danihelka, I.4
Wierstra, D.5
-
21
-
-
85071180107
-
PixelVAE: A latent variable model for natural images
-
Gulrajani, Ishaan, Kumar, Kundan, Ahmed, Faruk, Taiga, Adrien Ali, Visin, Francesco, Vazquez, David, and Courville, Aaron. PixelVAE: A Latent Variable Model for Natural Images. In Proceedings of ICLR, 2017.
-
(2017)
Proceedings of ICLR
-
-
Gulrajani, I.1
Kumar, K.2
Ahmed, F.3
Taiga, A.A.4
Visin, F.5
Vazquez, D.6
Courville, A.7
-
22
-
-
85052928206
-
-
Guu, Kelvin, Hashimoto, Tatsunori B., Oren, Yonatan, and Liang, Percy. Generating Sentences by Editing Prototypes. arXiv:1709.08878, 2017.
-
(2017)
Generating Sentences by Editing Prototypes
-
-
Guu, K.1
Hashimoto, T.B.2
Oren, Y.3
Liang, P.4
-
23
-
-
84986274465
-
Deep residual learning for image recognition
-
He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Deep residual learning for image recognition. In Proceedings of CVPR, 2016.
-
(2016)
Proceedings of CVPR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
24
-
-
85018918401
-
Iterative refinement of the approximate posterior for directed belief networks
-
Hjelm, R Devon, Cho, Kyunghyun, Chung, Junyoung, Salakhutdinov, Russ, Calhoun, Vince, and Jojic, Nebojsa. Iterative Refinement of the Approximate Posterior for Directed Belief Networks. In Proceedings of NIPS, 2016.
-
(2016)
Proceedings of NIPS
-
-
Hjelm, R.D.1
Cho, K.2
Chung, J.3
Salakhutdinov, R.4
Calhoun, V.5
Jojic, N.6
-
25
-
-
84878919168
-
Stochastic variational inference
-
Hoffman, Matthew D., Blei, David M., Wang, Chong, and Paisley, John. Stochastic Variational Inference. Journal of Machine Learning Research, 13:1303-1347, 2013.
-
(2013)
Journal of Machine Learning Research
, vol.13
, pp. 1303-1347
-
-
Hoffman, M.D.1
Blei, D.M.2
Wang, C.3
Paisley, J.4
-
26
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik, Kur, Stinchcombe, Maxwell, and White, Halber. Multilayer Feedforward Networks are Universal Approximators. Neural Networks, 2:359-366, 1989.
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
27
-
-
85041928822
-
Toward controlled generation of text
-
Hu, Zhiting, Yang, Zichao, Liang, Xiaodan, Salakhutdinov, Ruslan, and Xing, Eric P. Toward Controlled Generation of Text. In Proceedings of ICML, 2017.
-
(2017)
Proceedings of ICML
-
-
Hu, Z.1
Yang, Z.2
Liang, X.3
Salakhutdinov, R.4
Xing, E.P.5
-
28
-
-
85048381780
-
Decoupled neural interfaces using synthetic gradients
-
Jaderberg, Max, Czarnecki, Wojciech Marian, Osindero, Simon, Vinyals, Oriol, Graves, Alex, Silver, David, and Kavukcuoglu, Koray. Decoupled Neural Interfaces using Synthetic Gradients. In Proceedings of ICML, 2017.
-
(2017)
Proceedings of ICML
-
-
Jaderberg, M.1
Czarnecki, W.M.2
Osindero, S.3
Vinyals, O.4
Graves, A.5
Silver, D.6
Kavukcuoglu, K.7
-
29
-
-
85017433100
-
Composing graphical models with neural networks for structured representations and fast inference
-
Johnson, Matthew, Duvenaud, David K., Wiltschko, Alex, Adams, Ryan P., and Datta, Sandeep R. Composing Graphical Models with Neural Networks for Structured Representations and Fast Inference. In Proceedings of NIPS, 2016.
-
(2016)
Proceedings of NIPS
-
-
Johnson, M.1
Duvenaud, D.K.2
Wiltschko, A.3
Adams, R.P.4
Datta, S.R.5
-
30
-
-
0033225865
-
Introduction to variational methods for graphical models
-
Jordan, Michael, Ghahramani, Zoubin, Jaakkola, Tommi, and Saul, Lawrence. Introduction to Variational Methods for Graphical Models. Machine Learning, 37:183-233, 1999.
-
(1999)
Machine Learning
, vol.37
, pp. 183-233
-
-
Jordan, M.1
Ghahramani, Z.2
Jaakkola, T.3
Saul, L.4
-
31
-
-
85088226886
-
Structured attention networks
-
Kim, Yoon, Denton, Carl, Hoang, Luong, and Rush, Alexander M. Structured Attention Networks. In Proceedings of ICLR, 2017.
-
(2017)
Proceedings of ICLR
-
-
Kim, Y.1
Denton, C.2
Hoang, L.3
Rush, A.M.4
-
34
-
-
85030484471
-
Structured inference networks for nonlinear state space models
-
Krishnan, Rahul G., Shalit, Uri, and Sontag, David. Structured Inference Networks for Nonlinear State Space Models. In Proceedings of AAAI, 2017.
-
(2017)
Proceedings of AAAI
-
-
Krishnan, R.G.1
Shalit, U.2
Sontag, D.3
-
35
-
-
85057273468
-
On the challenges of learning with inference networks on sparse, high-dimensional data
-
Krishnan, Rahul G., Liang, Dawen, and Hoffman, Matthew. On the Challenges of Learning with Inference Networks on Sparse, High-dimensional Data. In Proceedings of AISTATS, 2018.
-
(2018)
Proceedings of AISTATS
-
-
Krishnan, R.G.1
Liang, D.2
Hoffman, M.3
-
36
-
-
84949683101
-
Human-level concept learning through probabilistic program induction
-
Lake, Brendan M., Salakhutdinov, Ruslan, and Tenenbaum, Joshua B. Human-level Concept Learning through Probabilistic Program Induction. Science, 350:1332-1338, 2015.
-
(2015)
Science
, vol.350
, pp. 1332-1338
-
-
Lake, B.M.1
Salakhutdinov, R.2
Tenenbaum, J.B.3
-
37
-
-
0001298583
-
Automatic learning rate maximization by on-line estimation of the hessians eigenvectors
-
LeCun, Yann, Simard, Patrice, and Pearlmutter, Barak. Automatic Learning Rate Maximization by On-line Estimation of the Hessians Eigenvectors. In Proceedings of NIPS, 1993.
-
(1993)
Proceedings of NIPS
-
-
LeCun, Y.1
Simard, P.2
Pearlmutter, B.3
-
38
-
-
84989338543
-
Gradient-based hyperparameter optimization through reversible learning
-
Maclaurin, Dougal, Duvenaud, David, and Adams, Ryan P. Gradient-based Hyperparameter Optimization through Reversible Learning. In Proceedings of ICML, 2015.
-
(2015)
Proceedings of ICML
-
-
Maclaurin, D.1
Duvenaud, D.2
Adams, R.P.3
-
40
-
-
85032877289
-
Unrolled generative adversarial networks
-
Metz, Luke, Poole, Ben, Pfau, David, and Sohl-Dickstein, Jascha. Unrolled Generative Adversarial Networks. In Proceedings of ICLR, 2017.
-
(2017)
Proceedings of ICLR
-
-
Metz, L.1
Poole, B.2
Pfau, D.3
Sohl-Dickstein, J.4
-
41
-
-
84998953749
-
Neural variational inference for text processing
-
Miao, Yishu, Yu, Lei, and Blunsom, Phil. Neural Variational Inference for Text Processing. In Proceedings of ICML, 2016.
-
(2016)
Proceedings of ICML
-
-
Miao, Y.1
Yu, L.2
Blunsom, P.3
-
42
-
-
85048492740
-
Discovering discrete latent topics with neural variational inference
-
Miao, Yishu, Grefenstette, Edward, and Blunsom, Phil. Discovering Discrete Latent Topics with Neural Variational Inference. In Proceedings of ICML, 2017.
-
(2017)
Proceedings of ICML
-
-
Miao, Y.1
Grefenstette, E.2
Blunsom, P.3
-
43
-
-
84919786239
-
Neural variational inference and learning in belief networks
-
Mnih, Andryi and Gregor, Karol. Neural Variational Inference and Learning in Belief Networks. In Proceedings of ICML, 2014.
-
(2014)
Proceedings of ICML
-
-
Mnih, A.1
Gregor, K.2
-
44
-
-
85047006547
-
Sequence to better sequence: Continuous revision of combinatorial structures
-
Mueller, Jonas, Gifford, David, and Jaakkola, Tommi. Sequence to Better Sequence: Continuous Revision of Combinatorial Structures. In Proceedings of ICML, 2017.
-
(2017)
Proceedings of ICML
-
-
Mueller, J.1
Gifford, D.2
Jaakkola, T.3
-
45
-
-
0000255539
-
Fast exact multiplication by the hessian
-
Pearlmutter, Barak A. Fast exact multiplication by the hessian. Neural Computation, 6(1):147-160, 1994.
-
(1994)
Neural Computation
, vol.6
, Issue.1
, pp. 147-160
-
-
Pearlmutter, B.A.1
-
46
-
-
85046994842
-
VAE learning via Stein variational gradient descent
-
Pu, Yunchen, Gan, Zhe, Henao, Ricardo, Li, Chunyuan, Han, Shaobo, and Carin, Lawrence. VAE Learning via Stein Variational Gradient Descent. In Proceedings of NIPS, 2017.
-
(2017)
Proceedings of NIPS
-
-
Pu, Y.1
Gan, Z.2
Henao, R.3
Li, C.4
Han, S.5
Carin, L.6
-
49
-
-
84969776493
-
Variational inference with normalizing flows
-
Rezende, Danilo J. and Mohamed, Shakir. Variational Inference with Normalizing Flows. In Proceedings of ICML, 2015.
-
(2015)
Proceedings of ICML
-
-
Rezende, D.J.1
Mohamed, S.2
-
50
-
-
84919796093
-
Stochastic backpropagation and approximate inference in deep generative models
-
Rezende, Danilo Jimenez, Mohamed, Shakir, and Wierstra, Daan. Stochastic Backpropagation and Approximate Inference in Deep Generative Models. In Proceedings of ICML, 2014.
-
(2014)
Proceedings of ICML
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
51
-
-
85064803481
-
Discrete variational autoencoders
-
Rolfe, Jason Tyler. Discrete Variational Autoencoders. In Proceedings of ICLR, 2017.
-
(2017)
Proceedings of ICLR
-
-
Rolfe, J.T.1
-
52
-
-
85031097119
-
Importance sampled stochastic optimization for variational inference
-
Sakaya, Joseph and Klami, Arto. Importance Sampled Stochastic Optimization for Variational Inference. In Proceedings of UAI, 2017.
-
(2017)
Proceedings of UAI
-
-
Sakaya, J.1
Klami, A.2
-
54
-
-
84969835291
-
Markov chain monte carlo and variational inference: Bridging the gap
-
Salimans, Tim, Kingma, Diederik, and Welling, Max. Markov Chain Monte Carlo and Variational Inference: Bridging the Gap. In Proceedings of ICML, 2015.
-
(2015)
Proceedings of ICML
-
-
Salimans, T.1
Kingma, D.2
Welling, M.3
-
56
-
-
85073165882
-
A hybrid convolutional variational autoencoder for text generation
-
Semeniuta, Stanislau, Severyn, Aliaksei, and Barth, Erhardt. A Hybrid Convolutional Variational Autoencoder for Text Generation. In Proceedings of EMNLP, 2017.
-
(2017)
Proceedings of EMNLP
-
-
Semeniuta, S.1
Severyn, A.2
Barth, E.3
-
57
-
-
85021671951
-
A hierarchical latent variable encoder-decoder model for generating dialogues
-
Serban, Julian Vlad, Sordoni, Alessandro, Ryan Lowe, Laurent Charlin, Pineau, Joëlle, Courville, Aaron, and Bengio, Yoshua. A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues. In Proceedings of AAAI, 2017.
-
(2017)
Proceedings of AAAI
-
-
Serban, J.V.1
Sordoni, A.2
Lowe, R.3
Charlin, L.4
Pineau, J.5
Courville, A.6
Bengio, Y.7
-
58
-
-
85019264158
-
Ladder variational autoencoders
-
Sønderby, Casper Kaae, Raiko, Tapani, Maaløe, Lars, Sønderby, Søren Kaae, and Winther, Ole. Ladder Variational Autoencoders. In Proceedings of NIPS, 2016.
-
(2016)
Proceedings of NIPS
-
-
Sønderby, C.K.1
Raiko, T.2
Maaløe, L.3
Sønderby, S.K.4
Winther, O.5
-
59
-
-
84883148756
-
Empirical risk minimization of graphical model parameters given approximate inference, decoding, and model structure
-
Stoyanov, Veselin, Ropson, Alexander, and Eisner, Jason. Empirical Risk Minimization of Graphical Model Parameters Given Approximate Inference, Decoding, and Model Structure. In Proceedings of AISTATS, 2011.
-
(2011)
Proceedings of AISTATS
-
-
Stoyanov, V.1
Ropson, A.2
Eisner, J.3
-
62
-
-
85018873682
-
Conditional image generation with pixelcnn decoders
-
van den Oord, Aaron, Kalchbrenner, Nal, Vinyals, Oriol, Espeholt, Lasse, Graves, Alex, and Kavukcuoglu, Koray. Conditional Image Generation with PixelCNN Decoders. In Proceedings of NIPS, 2016.
-
(2016)
Proceedings of NIPS
-
-
Van Den Oord, A.1
Kalchbrenner, N.2
Vinyals, O.3
Espeholt, L.4
Graves, A.5
Kavukcuoglu, K.6
-
64
-
-
85057231668
-
Topic compositional neural language model
-
Wang, Wenlin, Gan, Zhe, Wang, Wenqi, Shen, Dinghan, Huang, Jiaji, Ping, Wei, Satheesh, Sanjeev, and Carin, Lawrence. Topic Compositional Neural Language Model. In Proceedings of AISTATS, 2018.
-
(2018)
Proceedings of AISTATS
-
-
Wang, W.1
Gan, Z.2
Wang, W.3
Shen, D.4
Huang, J.5
Ping, W.6
Satheesh, S.7
Carin, L.8
-
65
-
-
85048398320
-
Improved variational autoencoders for text modeling using dilated convolutions
-
Yang, Zichao, Hu, Zhiting, Salakhutdinov, Ruslan, and Berg-Kirkpatrick, Taylor. Improved Variational Autoencoders for Text Modeling using Dilated Convolutions. In Proceedings of ICML, 2017.
-
(2017)
Proceedings of ICML
-
-
Yang, Z.1
Hu, Z.2
Salakhutdinov, R.3
Berg-Kirkpatrick, T.4
-
66
-
-
85050939711
-
-
Zhang, Cheng, Butepage, Judith, Kjellstrom, Hedvig, and Mandt, Stephan. Advances in Variational Inference. arXiv:1711.05597, 2017.
-
(2017)
Advances in Variational Inference
-
-
Zhang, C.1
Butepage, J.2
Kjellstrom, H.3
Mandt, S.4
-
67
-
-
85044572828
-
Towards deeper understanding of variational autoencoding models
-
Zhao, Shengjia, Song, Jiaming, and Ermon, Stefano. Towards Deeper Understanding of Variational Autoencoding Models. In Proceedings of ICML, 2017.
-
(2017)
Proceedings of ICML
-
-
Zhao, S.1
Song, J.2
Ermon, S.3
|