-
1
-
-
85019172761
-
Learning to learn by gradient descent by gradient descent
-
Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W., Pfau, D., Schaul, T., and de Freitas, N. Learning to learn by gradient descent by gradient descent. In Advances in Neural Information Processing Systems (NIPS), pp. 3981-3989, 2016.
-
(2016)
Advances in Neural Information Processing Systems (NIPS)
, pp. 3981-3989
-
-
Andrychowicz, M.1
Denil, M.2
Gomez, S.3
Hoffman, M.W.4
Pfau, D.5
Schaul, T.6
De Freitas, N.7
-
2
-
-
85039174342
-
Layer normalization
-
Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization. arXivpreprint arXiv:1607.06450, 2016.
-
(2016)
ArXivpreprint ArXiv
, vol.1607
, pp. 06450
-
-
Ba, J.L.1
Kiros, J.R.2
Hinton, G.E.3
-
4
-
-
0029372831
-
The helmholtz machine
-
Dayan, P., Hinton, G. E., Neal, R. M and Zemel, R. S. The helmholtz machine. Neural computation, 7(5):889-904, 1995.
-
(1995)
Neural Computation
, vol.7
, Issue.5
, pp. 889-904
-
-
Dayan, P.1
Hinton, G.E.2
Neal, R.M.3
Zemel, R.S.4
-
5
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
Dempster, A. P., Laird, N. M., and Rubin, D. B. Maximum likelihood from incomplete data via the em algorithm. Journal of the royal statistical society. Series B (methodological), pp. 1-38, 1977.
-
(1977)
Journal of the Royal Statistical Society. Series B (Methodological)
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
7
-
-
84919796355
-
Deep autoregressive networks
-
Gregor, K., Danihelka, I., Mnih, A., Blundell, C., and Wier- stra, D. Deep autoregressive networks. In Proceedings of the International Conference on Machine Learning (ICML), pp. 1242-1250, 2014.
-
(2014)
Proceedings of the International Conference on Machine Learning (ICML)
, pp. 1242-1250
-
-
Gregor, K.1
Danihelka, I.2
Mnih, A.3
Blundell, C.4
Wier-Stra, D.5
-
8
-
-
84983208884
-
Draw: A recurrent neural network for image generation
-
Gregor, K., Danihelka, I., Graves, A., Rezende, D. J., and Wierstra, D. Draw: A recurrent neural network for image generation. Proceedings of the International Conference on Machine Learning (ICML), pp. 1462-1471, 2015.
-
(2015)
Proceedings of the International Conference on Machine Learning (ICML)
, pp. 1462-1471
-
-
Gregor, K.1
Danihelka, I.2
Graves, A.3
Rezende, D.J.4
Wierstra, D.5
-
9
-
-
85019177115
-
Towards conceptual compression
-
Gregor, K., Besse, F., Rezende, D. J., Danihelka, I., and Wierstra, D. Towards conceptual compression. In Advances In Neural Information Processing Systems (NIPS), pp. 3549-3557, 2016.
-
(2016)
Advances in Neural Information Processing Systems (NIPS)
, pp. 3549-3557
-
-
Gregor, K.1
Besse, F.2
Rezende, D.J.3
Danihelka, I.4
Wierstra, D.5
-
10
-
-
85047021413
-
Beta-vae: Learning basic visual concepts with a constrained variational framework
-
Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., and Lerchner, A. beta-vae: Learning basic visual concepts with a constrained variational framework. In Proceedings of the International Conference on Learning Representations (ICLR), 2016.
-
(2016)
Proceedings of the International Conference on Learning Representations (ICLR)
-
-
Higgins, I.1
Matthey, L.2
Pal, A.3
Burgess, C.4
Glorot, X.5
Botvinick, M.6
Mohamed, S.7
Lerchner, A.8
-
11
-
-
85047005756
-
Iterative refinement of the approximate posterior for directed belief networks
-
Hjelm, D., Salakhutdinov, R. R., Cho, K., Jojic, N., Calhoun, V., and Chung, J. Iterative refinement of the approximate posterior for directed belief networks. In Advances in Neural Information Processing Systems (NIPS), pp. 4691- 4699, 2016.
-
(2016)
Advances in Neural Information Processing Systems (NIPS)
, pp. 4691-4699
-
-
Hjelm, D.1
Salakhutdinov, R.R.2
Cho, K.3
Jojic, N.4
Calhoun, V.5
Chung, J.6
-
12
-
-
84878919168
-
Stochastic variational inference
-
Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J. Stochastic variational inference. The Journal of Machine Learning Research, 14(1): 1303-1347, 2013.
-
(2013)
The Journal of Machine Learning Research
, vol.14
, Issue.1
, pp. 1303-1347
-
-
Hoffman, M.D.1
Blei, D.M.2
Wang, C.3
Paisley, J.4
-
13
-
-
0000935895
-
An introduction to variational methods for graphical models
-
Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. An introduction to variational methods for graphical models. NATO ASI SERIES D BEHAVIOURAL AND SOCIAL SCIENCES, 89:105-162, 1998.
-
(1998)
NATO ASI SERIES D BEHAVIOURAL and SOCIAL SCIENCES
, vol.89
, pp. 105-162
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
14
-
-
85088231999
-
Deep variational bayes filters: Unsupervised learning of state space models from raw data
-
Karl, M., Soelch, M., Bayer, J., and van der Smagt, P. Deep variational bayes filters: Unsupervised learning of state space models from raw data. In Proceedings of the International Conference on Learning Representations (ICLR), 2017.
-
(2017)
Proceedings of the International Conference on Learning Representations (ICLR)
-
-
Karl, M.1
Soelch, M.2
Bayer, J.3
Van Der Smagt, P.4
-
15
-
-
85057251532
-
Semi-amortized variational autoencoders
-
Kim, Y., Wiseman, S., Miller, A. C., Sontag, D., and Rush, A. M. Semi-amortized variational autoencoders. In Proceedings of the International Conference on Machine Learning (ICML), 2018.
-
(2018)
Proceedings of the International Conference on Machine Learning (ICML)
-
-
Kim, Y.1
Wiseman, S.2
Miller, A.C.3
Sontag, D.4
Rush, A.M.5
-
17
-
-
85057273468
-
On the challenges of learning with inference networks on sparse, high-dimensional data
-
Krishnan, R. G., Liang, D., and Hoffman, M. On the challenges of learning with inference networks on sparse, high-dimensional data. In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 143-151, 2018.
-
(2018)
Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS
, pp. 143-151
-
-
Krishnan, R.G.1
Liang, D.2
Hoffman, M.3
-
19
-
-
84898998554
-
One- shot learning by inverting a compositional causal process
-
Lake, B. M., Salakhutdinov, R. R., and Tenenbaum, J. One- shot learning by inverting a compositional causal process. In Advances in Neural Information Processing Systems (NIPS), pp. 2526-2534, 2013.
-
(2013)
Advances in Neural Information Processing Systems (NIPS)
, pp. 2526-2534
-
-
Ake, B.M.1
Salakhutdinov, R.R.2
Tenenbaum, J.3
-
20
-
-
0032203257
-
Gradient- based learning applied to document recognition
-
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient- based learning applied to document recognition. Proceedings of the IEEE, 86(ll):2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
21
-
-
84876811202
-
Rcvl: A new benchmark collection for text categorization research
-
Apr
-
Lewis, D. D Yang, Y Rose, T. G., and Li, F. Rcvl: A new benchmark collection for text categorization research. The Journal of Machine Learning Research, 5(Apr):361- 397, 2004.
-
(2004)
The Journal of Machine Learning Research
, vol.5
, pp. 361-397
-
-
Lewis, D.D.Y.1
Rose, T.G.2
Li, F.3
-
22
-
-
0002788893
-
A view of the em algorithm that justifies incremental, sparse, and other variants
-
Springer
-
Neal, R. M. and Hinton, G. E. A view of the em algorithm that justifies incremental, sparse, and other variants. In Learning in graphical models, pp. 355-368. Springer, 1998.
-
(1998)
Learning in Graphical Models
, pp. 355-368
-
-
Neal, R.M.1
Hinton, G.E.2
-
23
-
-
84865114495
-
Reading digits in natural images with unsupervised feature learning
-
Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep learning and unsupervised feature learning, 2011.
-
(2011)
NIPS Workshop on Deep Learning and Unsupervised Feature Learning
-
-
Netzer, Y.1
Wang, T.2
Coates, A.3
Bissacco, A.4
Wu, B.5
Ng, A.Y.6
-
24
-
-
85057282268
-
Recurrent inference machines for solving inverse problems
-
Putzky, P. and Welling, M. Recurrent inference machines for solving inverse problems. arXiv preprint arXiv:1706.04008, 2017.
-
(2017)
ArXiv Preprint ArXiv
, vol.1706
, pp. 04008
-
-
Putzky, P.1
Welling, M.2
-
25
-
-
84955506831
-
Black box variational inference
-
Ranganath, R., Gerrish, S., and Blei, D. Black box variational inference. In Proceedings of the International Conference on Artificial Intelligence and Statistics (AIS- TATS), pp. 814-822, 2014.
-
(2014)
Proceedings of the International Conference on Artificial Intelligence and Statistics (AIS- TATS)
, pp. 814-822
-
-
Ranganath, R.1
Gerrish, S.2
Blei, D.3
-
26
-
-
84919796093
-
Stochastic backpropagation and approximate inference in deep generative models
-
Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic backpropagation and approximate inference in deep generative models. In Proceedings of the International Conference on Machine Learning (ICML), pp. 1278-1286, 2014.
-
(2014)
Proceedings of the International Conference on Machine Learning (ICML)
, pp. 1278-1286
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
27
-
-
85019264158
-
Ladder variational autoencoders
-
Sonderby, C. K., Raiko, T., Maal0e, L., Sonderby, S. K., and Winther, 0. Ladder variational autoencoders. In Advances in Neural Information Processing Systems (NIPS), pp. 3738-3746, 2016.
-
(2016)
Advances in Neural Information Processing Systems (NIPS)
, pp. 3738-3746
-
-
Sonderby, C.K.1
Raiko, T.2
Maaloe, L.3
Sonderby, S.K.4
Winther, O.5
-
28
-
-
85018923844
-
Visual dynamics: Probabilistic future frame synthesis via cross convolutional networks
-
Xue, T., Wu, J., Bouman, K., and Freeman, B. Visual dynamics: Probabilistic future frame synthesis via cross convolutional networks. In Advances in Neural Information Processing Systems (NIPS), pp. 91-99, 2016.
-
(2016)
Advances in Neural Information Processing Systems (NIPS)
, pp. 91-99
-
-
Xue, T.1
Wu, J.2
Bouman, K.3
Freeman, B.4
|