-
1
-
-
84998888548
-
-
ArXiv e-prints, November
-
Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Jozefowicz, R., and Bengio, S. Generating Sentences from a Continuous Space. ArXiv e-prints, November 2015.
-
(2015)
Generating Sentences from a Continuous Space
-
-
Bowman, S.R.1
Vilnis, L.2
Vinyals, O.3
Dai, A.M.4
Jozefowicz, R.5
Bengio, S.6
-
5
-
-
0001667705
-
Bayesian inference in econometric models using monte carlo integration
-
Geweke, John. Bayesian inference in econometric models using monte carlo integration. Econometrica: Journal of the Econometric Society, pp. 1317-1339, 1989.
-
(1989)
Econometrica: Journal of the Econometric Society
, pp. 1317-1339
-
-
Geweke, J.1
-
7
-
-
85046996787
-
The reversible residual network: Backpropagation without storing activations
-
Gomez, Aidan N, Ren, Mengye, Urtasun, Raquel, and Grosse, Roger B. The reversible residual network: Backpropagation without storing activations. In Advances in Neural Information Processing Systems, pp. 2211-2221, 2017.
-
(2017)
Advances in Neural Information Processing Systems
, pp. 2211-2221
-
-
Gomez, A.N.1
Ren, M.2
Urtasun, R.3
Grosse, R.B.4
-
9
-
-
85018892483
-
Measuring the reliability of MCMC inference with bidirectional monte carlo
-
Grosse, Roger B, Ancha, Siddharth, and Roy, Daniel M. Measuring the reliability of mcmc inference with bidirectional monte carlo. In Advances in Neural Information Processing Systems, pp. 2451-2459, 2016.
-
(2016)
Advances in Neural Information Processing Systems
, pp. 2451-2459
-
-
Grosse, R.B.1
Ancha, S.2
Roy, D.M.3
-
10
-
-
85040700534
-
Learning deep latent Gaussian models with markov chain monte carlo
-
Hoffman, Matthew D. Learning deep latent gaussian models with markov chain monte carlo. In International Conference on Machine Learning, pp. 1510-1519, 2017.
-
(2017)
International Conference on Machine Learning
, pp. 1510-1519
-
-
Hoffman, M.D.1
-
11
-
-
84878919168
-
Stochastic variational inference
-
Hoffman, Matthew D, Blei, David M, Wang, Chong, and Paisley, John. Stochastic variational inference. The Journal of Machine Learning Research, 14(1):1303-1347, 2013.
-
(2013)
The Journal of Machine Learning Research
, vol.14
, Issue.1
, pp. 1303-1347
-
-
Hoffman, M.D.1
Blei, D.M.2
Wang, C.3
Paisley, J.4
-
12
-
-
4243754128
-
Nonequilibrium equality for free energy differences
-
Jarzynski, C. Nonequilibrium equality for free energy differences. Physical Review Letters, 78(14):2690, 1997.
-
(1997)
Physical Review Letters
, vol.78
, Issue.14
, pp. 2690
-
-
Jarzynski, C.1
-
14
-
-
85083952489
-
Auto-encoding variational bayes
-
Kingma, D.P. and Welling, M. Auto-Encoding Variational Bayes. In ICLR, 2014.
-
(2014)
ICLR
-
-
Kingma, D.P.1
Welling, M.2
-
15
-
-
85018920337
-
Improving variational inference with inverse autoregressive flow
-
Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., and Welling, M. Improving Variational Inference with Inverse Autoregressive Flow. NIPS, 2016.
-
(2016)
NIPS
-
-
Kingma, D.P.1
Salimans, T.2
Jozefowicz, R.3
Chen, X.4
Sutskever, I.5
Welling, M.6
-
16
-
-
85057266920
-
-
ArXiv e-prints, October
-
Krishnan, R. G., Liang, D., and Hoffman, M. On the challenges of learning with inference networks on sparse, high-dimensional data. ArXiv e-prints, October 2017.
-
(2017)
On the Challenges of Learning with Inference Networks on Sparse, High-dimensional Data
-
-
Krishnan, R.G.1
Liang, D.2
Hoffman, M.3
-
19
-
-
0032203257
-
Gradientbased learning applied to document recognition
-
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradientbased learning applied to document recognition. Proceedings of the IEEE, 1998.
-
(1998)
Proceedings of the IEEE
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
20
-
-
84997812859
-
Auxiliary Deep Generative Models
-
Maaløe, L., Sønderby, CK., Sønderby, SK., and Winther, O. Auxiliary Deep Generative Models. ICML, 2016.
-
(2016)
ICML
-
-
Maaløe, L.1
Sønderby, C.K.2
Sønderby, S.K.3
Winther, O.4
-
23
-
-
84969776493
-
Variational inference with normalizing flows
-
Rezende, D.J. and Mohamed, S. Variational Inference with Normalizing Flows. In ICML, 2015.
-
(2015)
ICML
-
-
Rezende, D.J.1
Mohamed, S.2
-
24
-
-
84919796093
-
Stochastic backpropagation and approximate inference in deep generative models
-
Rezende, D.J., Mohamed, S., and Wierstra, D. Stochastic Backpropagation and Approximate Inference in Deep Generative Models. ICML, 2014.
-
(2014)
ICML
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
26
-
-
84969835291
-
Markov chain monte carlo and variational inference: Bridging the gap
-
Salimans, T., Kingma, D.P., and Welling, M. Markov chain monte carlo and variational inference: Bridging the gap. In ICML, 2015.
-
(2015)
ICML
-
-
Salimans, T.1
Kingma, D.P.2
Welling, M.3
-
27
-
-
85019264158
-
Ladder variational autoencoders
-
Sønderby, Casper Kaae, Raiko, Tapani, Maaløe, Lars, Sønderby, Søren Kaae, and Winther, Ole. Ladder variational autoencoders. In Advances in Neural Information Processing Systems, pp. 3738-3746, 2016.
-
(2016)
Advances in Neural Information Processing Systems
, pp. 3738-3746
-
-
Sønderby, C.K.1
Raiko, T.2
Maaløe, L.3
Sønderby, S.K.4
Winther, O.5
-
31
-
-
85048580791
-
On the quantitative analysis of decoder-based generative models
-
Wu, Y., Burda, Y., Salakhutdinov, R., and Grosse, R. On the Quantitative Analysis of Decoder-Based Generative Models. ICLR, 2017.
-
(2017)
ICLR
-
-
Wu, Y.1
Burda, Y.2
Salakhutdinov, R.3
Grosse, R.4
|