메뉴 건너뛰기




Volumn , Issue , 2018, Pages 143-151

On the challenges of learning with inference networks on sparse, high-dimensional data

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; DEEP NEURAL NETWORKS; ITERATIVE METHODS; LARGE DATASET; STOCHASTIC SYSTEMS;

EID: 85057273468     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (74)

References (38)
  • 6
    • 0042420026 scopus 로고    scopus 로고
    • A generalization of principal component analysis to the exponential family
    • M. Collins, S. Dasgupta, and R. E. Schapire. A generalization of principal component analysis to the exponential family. In NIPS, 2001.
    • (2001) NIPS
    • Collins, M.1    Dasgupta, S.2    Schapire, R.E.3
  • 7
    • 0007792228 scopus 로고
    • Nonlinear factors in two dimensions
    • W. Gibson. Nonlinear factors in two dimensions. Psychometrika, 1960.
    • (1960) Psychometrika
    • Gibson, W.1
  • 8
    • 79951563340 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In AISTATS, 2010.
    • (2010) AISTATS
    • Glorot, X.1    Bengio, Y.2
  • 10
    • 77956556686 scopus 로고    scopus 로고
    • Replicated softmax: An undirected topic model
    • G. E. Hinton and R. R. Salakhutdinov. Replicated softmax: an undirected topic model. In NIPS, 2009.
    • (2009) NIPS
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 11
    • 0029652445 scopus 로고
    • The” wake-sleep” algorithm for unsupervised neural networks
    • G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The” wake-sleep” algorithm for unsupervised neural networks. Science, 1995.
    • (1995) Science
    • Hinton, G.E.1    Dayan, P.2    Frey, B.J.3    Neal, R.M.4
  • 12
    • 85018918401 scopus 로고    scopus 로고
    • Iterative refinement of approximate posterior for training directed belief networks
    • R. D. Hjelm, K. Cho, J. Chung, R. Salakhutdinov, V. Calhoun, and N. Jojic. Iterative refinement of approximate posterior for training directed belief networks. In NIPS, 2016.
    • (2016) NIPS
    • Hjelm, R.D.1    Cho, K.2    Chung, J.3    Salakhutdinov, R.4    Calhoun, V.5    Jojic, N.6
  • 14
    • 67049164166 scopus 로고    scopus 로고
    • Collaborative filtering for implicit feedback datasets
    • Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In ICDM, 2008.
    • (2008) ICDM
    • Hu, Y.1    Koren, Y.2    Volinsky, C.3
  • 15
    • 84878180089 scopus 로고    scopus 로고
    • Improving word representations via global context and multiple word prototypes
    • E. H. Huang, R. Socher, C. D. Manning, and A. Y. Ng. Improving Word Representations via Global Context and Multiple Word Prototypes. In ACL, 2012.
    • (2012) ACL
    • Huang, E.H.1    Socher, R.2    Manning, C.D.3    Ng, A.Y.4
  • 17
    • 33748804177 scopus 로고    scopus 로고
    • A nonlinear factor analysis of s&p 500 index option returns
    • C. S. Jones. A nonlinear factor analysis of s&p 500 index option returns. The Journal of Finance, 2006.
    • (2006) The Journal of Finance
    • Jones, C.S.1
  • 18
    • 4344702399 scopus 로고    scopus 로고
    • Advances in nonlinear blind source separation
    • C. Jutten and J. Karhunen. Advances in nonlinear blind source separation. In ICA, 2003.
    • (2003) ICA
    • Jutten, C.1    Karhunen, J.2
  • 19
    • 85083951076 scopus 로고    scopus 로고
    • A method for stochastic optimization
    • D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
    • (2015) ICLR
    • Kingma, D.1    Adam, J.Ba.2
  • 20
    • 85083952489 scopus 로고    scopus 로고
    • Auto-encoding variational bayes
    • D. P. Kingma and M. Welling. Auto-encoding variational bayes. In ICLR, 2014.
    • (2014) ICLR
    • Kingma, D.P.1    Welling, M.2
  • 23
    • 27844549624 scopus 로고    scopus 로고
    • Gaussian process latent variable models for visualisation of high dimensional data
    • N. D. Lawrence. Gaussian process latent variable models for visualisation of high dimensional data. In NIPS, 2003.
    • (2003) NIPS
    • Lawrence, N.D.1
  • 24
    • 84876811202 scopus 로고    scopus 로고
    • RCV1: A new benchmark collection for text categorization research
    • D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1: A new benchmark collection for text categorization research. JMLR, 2004.
    • (2004) JMLR
    • Lewis, D.D.1    Yang, Y.2    Rose, T.G.3    Li, F.4
  • 25
    • 72249101936 scopus 로고    scopus 로고
    • Collaborative prediction and ranking with non-random missing data
    • B. M. Marlin and R. S. Zemel. Collaborative prediction and ranking with non-random missing data. In RecSys, 2009.
    • (2009) RecSys
    • Marlin, B.M.1    Zemel, R.S.2
  • 26
    • 84998953749 scopus 로고    scopus 로고
    • Neural variational inference for text processing
    • Y. Miao, L. Yu, and P. Blunsom. Neural variational inference for text processing. In ICML, 2016.
    • (2016) ICML
    • Miao, Y.1    Yu, L.2    Blunsom, P.3
  • 27
    • 84919786239 scopus 로고    scopus 로고
    • Neural variational inference and learning in belief networks
    • A. Mnih and K. Gregor. Neural variational inference and learning in belief networks. In ICML, 2014.
    • (2014) ICML
    • Mnih, A.1    Gregor, K.2
  • 28
    • 84857186449 scopus 로고    scopus 로고
    • SlIM: Sparse linear methods for top-n recommender systems
    • X. Ning and G. Karypis. Slim: Sparse linear methods for top-n recommender systems. In ICDM, 2011.
    • (2011) ICDM
    • Ning, X.1    Karypis, G.2
  • 29
    • 84969776493 scopus 로고    scopus 로고
    • Variational inference with normalizing flows
    • D. J. Rezende and S. Mohamed. Variational inference with normalizing flows. In ICML, 2015.
    • (2015) ICML
    • Rezende, D.J.1    Mohamed, S.2
  • 30
    • 84919796093 scopus 로고    scopus 로고
    • Stochastic backpropagation and approximate inference in deep generative models
    • D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In ICML, 2014.
    • (2014) ICML
    • Rezende, D.J.1    Mohamed, S.2    Wierstra, D.3
  • 31
    • 84862293074 scopus 로고    scopus 로고
    • Efficient learning of deep boltzmann machines
    • R. Salakhutdinov and H. Larochelle. Efficient learning of deep boltzmann machines. In AISTATS, 2010.
    • (2010) AISTATS
    • Salakhutdinov, R.1    Larochelle, H.2
  • 32
    • 84969835291 scopus 로고    scopus 로고
    • Markov chain monte carlo and variational inference: Bridging the gap
    • T. Salimans, D. Kingma, and M. Welling. Markov chain monte carlo and variational inference: Bridging the gap. In ICML, 2015.
    • (2015) ICML
    • Salimans, T.1    Kingma, D.2    Welling, M.3
  • 33
    • 85007247142 scopus 로고    scopus 로고
    • On the effectiveness of linear models for one-class collaborative filtering
    • S. Sedhain, A. K. Menon, S. Sanner, and D. Braziunas. On the effectiveness of linear models for one-class collaborative filtering. In AAAI, 2016.
    • (2016) AAAI
    • Sedhain, S.1    Menon, A.K.2    Sanner, S.3    Braziunas, D.4
  • 34
    • 0002965815 scopus 로고
    • "General intelligence," objectively determined and measured
    • C. Spearman.”general intelligence,” objectively determined and measured. The American Journal of Psychology, 1904.
    • (1904) The American Journal of Psychology
    • Spearman, C.1
  • 35
    • 0038132747 scopus 로고    scopus 로고
    • An unsupervised ensemble learning method for nonlinear dynamic state-space models
    • H. Valpola and J. Karhunen. An unsupervised ensemble learning method for nonlinear dynamic state-space models. Neural Computation, 2002.
    • (2002) Neural Computation
    • Valpola, H.1    Karhunen, J.2
  • 36
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with denoising autoencoders. In ICML, 2008.
    • (2008) ICML
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.-A.4
  • 38
    • 84964403193 scopus 로고    scopus 로고
    • Collaborative denoising auto-encoders for top-n recommender systems
    • Y. Wu, C. DuBois, A. X. Zheng, and M. Ester. Collaborative denoising auto-encoders for top-n recommender systems. In WSDM, 2016.
    • (2016) WSDM
    • Wu, Y.1    DuBois, C.2    Zheng, A.X.3    Ester, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.