-
3
-
-
85072753030
-
Generating sentences from a continuous space
-
S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and S. Bengio. Generating sentences from a continuous space. In CoNLL, 2016.
-
(2016)
CoNLL
-
-
Bowman, S.R.1
Vilnis, L.2
Vinyals, O.3
Dai, A.M.4
Jozefowicz, R.5
Bengio, S.6
-
5
-
-
85088227408
-
Variational lossy autoencoder
-
X. Chen, D. P. Kingma, T. Salimans, Y. Duan, P. Dhariwal, J. Schulman, I. Sutskever, and P. Abbeel. Variational lossy autoencoder. ICLR, 2017.
-
(2017)
ICLR
-
-
Chen, X.1
Kingma, D.P.2
Salimans, T.3
Duan, Y.4
Dhariwal, P.5
Schulman, J.6
Sutskever, I.7
Abbeel, P.8
-
6
-
-
0042420026
-
A generalization of principal component analysis to the exponential family
-
M. Collins, S. Dasgupta, and R. E. Schapire. A generalization of principal component analysis to the exponential family. In NIPS, 2001.
-
(2001)
NIPS
-
-
Collins, M.1
Dasgupta, S.2
Schapire, R.E.3
-
7
-
-
0007792228
-
Nonlinear factors in two dimensions
-
W. Gibson. Nonlinear factors in two dimensions. Psychometrika, 1960.
-
(1960)
Psychometrika
-
-
Gibson, W.1
-
8
-
-
79951563340
-
Understanding the difficulty of training deep feedforward neural networks
-
X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In AISTATS, 2010.
-
(2010)
AISTATS
-
-
Glorot, X.1
Bengio, Y.2
-
10
-
-
77956556686
-
Replicated softmax: An undirected topic model
-
G. E. Hinton and R. R. Salakhutdinov. Replicated softmax: an undirected topic model. In NIPS, 2009.
-
(2009)
NIPS
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
11
-
-
0029652445
-
The” wake-sleep” algorithm for unsupervised neural networks
-
G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The” wake-sleep” algorithm for unsupervised neural networks. Science, 1995.
-
(1995)
Science
-
-
Hinton, G.E.1
Dayan, P.2
Frey, B.J.3
Neal, R.M.4
-
12
-
-
85018918401
-
Iterative refinement of approximate posterior for training directed belief networks
-
R. D. Hjelm, K. Cho, J. Chung, R. Salakhutdinov, V. Calhoun, and N. Jojic. Iterative refinement of approximate posterior for training directed belief networks. In NIPS, 2016.
-
(2016)
NIPS
-
-
Hjelm, R.D.1
Cho, K.2
Chung, J.3
Salakhutdinov, R.4
Calhoun, V.5
Jojic, N.6
-
14
-
-
67049164166
-
Collaborative filtering for implicit feedback datasets
-
Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In ICDM, 2008.
-
(2008)
ICDM
-
-
Hu, Y.1
Koren, Y.2
Volinsky, C.3
-
15
-
-
84878180089
-
Improving word representations via global context and multiple word prototypes
-
E. H. Huang, R. Socher, C. D. Manning, and A. Y. Ng. Improving Word Representations via Global Context and Multiple Word Prototypes. In ACL, 2012.
-
(2012)
ACL
-
-
Huang, E.H.1
Socher, R.2
Manning, C.D.3
Ng, A.Y.4
-
17
-
-
33748804177
-
A nonlinear factor analysis of s&p 500 index option returns
-
C. S. Jones. A nonlinear factor analysis of s&p 500 index option returns. The Journal of Finance, 2006.
-
(2006)
The Journal of Finance
-
-
Jones, C.S.1
-
18
-
-
4344702399
-
Advances in nonlinear blind source separation
-
C. Jutten and J. Karhunen. Advances in nonlinear blind source separation. In ICA, 2003.
-
(2003)
ICA
-
-
Jutten, C.1
Karhunen, J.2
-
19
-
-
85083951076
-
A method for stochastic optimization
-
D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
-
(2015)
ICLR
-
-
Kingma, D.1
Adam, J.Ba.2
-
20
-
-
85083952489
-
Auto-encoding variational bayes
-
D. P. Kingma and M. Welling. Auto-encoding variational bayes. In ICLR, 2014.
-
(2014)
ICLR
-
-
Kingma, D.P.1
Welling, M.2
-
23
-
-
27844549624
-
Gaussian process latent variable models for visualisation of high dimensional data
-
N. D. Lawrence. Gaussian process latent variable models for visualisation of high dimensional data. In NIPS, 2003.
-
(2003)
NIPS
-
-
Lawrence, N.D.1
-
24
-
-
84876811202
-
RCV1: A new benchmark collection for text categorization research
-
D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1: A new benchmark collection for text categorization research. JMLR, 2004.
-
(2004)
JMLR
-
-
Lewis, D.D.1
Yang, Y.2
Rose, T.G.3
Li, F.4
-
25
-
-
72249101936
-
Collaborative prediction and ranking with non-random missing data
-
B. M. Marlin and R. S. Zemel. Collaborative prediction and ranking with non-random missing data. In RecSys, 2009.
-
(2009)
RecSys
-
-
Marlin, B.M.1
Zemel, R.S.2
-
26
-
-
84998953749
-
Neural variational inference for text processing
-
Y. Miao, L. Yu, and P. Blunsom. Neural variational inference for text processing. In ICML, 2016.
-
(2016)
ICML
-
-
Miao, Y.1
Yu, L.2
Blunsom, P.3
-
27
-
-
84919786239
-
Neural variational inference and learning in belief networks
-
A. Mnih and K. Gregor. Neural variational inference and learning in belief networks. In ICML, 2014.
-
(2014)
ICML
-
-
Mnih, A.1
Gregor, K.2
-
28
-
-
84857186449
-
SlIM: Sparse linear methods for top-n recommender systems
-
X. Ning and G. Karypis. Slim: Sparse linear methods for top-n recommender systems. In ICDM, 2011.
-
(2011)
ICDM
-
-
Ning, X.1
Karypis, G.2
-
29
-
-
84969776493
-
Variational inference with normalizing flows
-
D. J. Rezende and S. Mohamed. Variational inference with normalizing flows. In ICML, 2015.
-
(2015)
ICML
-
-
Rezende, D.J.1
Mohamed, S.2
-
30
-
-
84919796093
-
Stochastic backpropagation and approximate inference in deep generative models
-
D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In ICML, 2014.
-
(2014)
ICML
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
31
-
-
84862293074
-
Efficient learning of deep boltzmann machines
-
R. Salakhutdinov and H. Larochelle. Efficient learning of deep boltzmann machines. In AISTATS, 2010.
-
(2010)
AISTATS
-
-
Salakhutdinov, R.1
Larochelle, H.2
-
32
-
-
84969835291
-
Markov chain monte carlo and variational inference: Bridging the gap
-
T. Salimans, D. Kingma, and M. Welling. Markov chain monte carlo and variational inference: Bridging the gap. In ICML, 2015.
-
(2015)
ICML
-
-
Salimans, T.1
Kingma, D.2
Welling, M.3
-
33
-
-
85007247142
-
On the effectiveness of linear models for one-class collaborative filtering
-
S. Sedhain, A. K. Menon, S. Sanner, and D. Braziunas. On the effectiveness of linear models for one-class collaborative filtering. In AAAI, 2016.
-
(2016)
AAAI
-
-
Sedhain, S.1
Menon, A.K.2
Sanner, S.3
Braziunas, D.4
-
34
-
-
0002965815
-
"General intelligence," objectively determined and measured
-
C. Spearman.”general intelligence,” objectively determined and measured. The American Journal of Psychology, 1904.
-
(1904)
The American Journal of Psychology
-
-
Spearman, C.1
-
35
-
-
0038132747
-
An unsupervised ensemble learning method for nonlinear dynamic state-space models
-
H. Valpola and J. Karhunen. An unsupervised ensemble learning method for nonlinear dynamic state-space models. Neural Computation, 2002.
-
(2002)
Neural Computation
-
-
Valpola, H.1
Karhunen, J.2
-
36
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with denoising autoencoders. In ICML, 2008.
-
(2008)
ICML
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
37
-
-
85048857679
-
Analysis of deep neural networks with the extended data jacobian matrix
-
S. Wang, M. Plilipose, M. Richardson, K. Geras, G. Urban, and O. Aslan. Analysis of deep neural networks with the extended data jacobian matrix. In ICML, 2016.
-
(2016)
ICML
-
-
Wang, S.1
Plilipose, M.2
Richardson, M.3
Geras, K.4
Urban, G.5
Aslan, O.6
-
38
-
-
84964403193
-
Collaborative denoising auto-encoders for top-n recommender systems
-
Y. Wu, C. DuBois, A. X. Zheng, and M. Ester. Collaborative denoising auto-encoders for top-n recommender systems. In WSDM, 2016.
-
(2016)
WSDM
-
-
Wu, Y.1
DuBois, C.2
Zheng, A.X.3
Ester, M.4
|