-
1
-
-
85039174342
-
Layer normalization
-
abs/1607.06450
-
Lei Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer normalization. CoRR, abs/1607.06450.
-
(2016)
CoRR
-
-
Ba, L.J.1
Kiros, R.2
Hinton, G.E.3
-
2
-
-
85018886752
-
An architecture for deep, hierarchical generative models
-
D. D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Gar-nett, editors
-
Philip Bachman. 2016. An architecture for deep, hierarchical generative models. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Gar-nett, editors, NIPS, pages 4826–4834.
-
(2016)
NIPS
, pp. 4826-4834
-
-
Bachman, P.1
-
3
-
-
84959933549
-
Neural machine translation by jointly learning to align and translate
-
abs/1409.0473
-
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to align and translate. CoRR, abs/1409.0473.
-
(2014)
CoRR
-
-
Bahdanau, D.1
Cho, K.2
Bengio, Y.3
-
4
-
-
85115713499
-
From optimal transport to generative modeling: The vegan cookbook
-
abs/1705.07642
-
Olivier Bousquet, Sylvain Gelly, Ilya Tolstikhin, Carl-Johann Simon-Gabriel, and Bernhard Schoelkopf. 2017. From optimal transport to generative modeling: the vegan cookbook. CoRR, abs/1705.07642.
-
(2017)
CoRR
-
-
Bousquet, O.1
Gelly, S.2
Tolstikhin, I.3
Simon-Gabriel, C.-J.4
Schoelkopf, B.5
-
5
-
-
85072753030
-
Generating sentences from a continuous space
-
Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Józefowicz, and Samy Bengio. 2016. Generating sentences from a continuous space. In CONLL, pages 10–21.
-
(2016)
CONLL
, pp. 10-21
-
-
Bowman, S.R.1
Vilnis, L.2
Vinyals, O.3
Dai, A.M.4
Józefowicz, R.5
Bengio, S.6
-
6
-
-
85048380848
-
Variational lossy autoencoder
-
abs/1611.02731
-
Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman, Ilya Sutskever, and Pieter Abbeel. 2016. Variational lossy autoencoder. CoRR, abs/1611.02731.
-
(2016)
CoRR
-
-
Chen, X.1
Kingma, D.P.2
Salimans, T.3
Duan, Y.4
Dhariwal, P.5
Schulman, J.6
Sutskever, I.7
Abbeel, P.8
-
7
-
-
85039166439
-
Language modeling with gated convolutional networks
-
abs/1612.08083
-
Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. 2016. Language modeling with gated convolutional networks. CoRR, abs/1612.08083.
-
(2016)
CoRR
-
-
Dauphin, Y.N.1
Fan, A.2
Auli, M.3
Grangier, D.4
-
8
-
-
85019203505
-
Sequential neural models with stochastic layers
-
Marco Fraccaro, Søren Kaae Sø nderby, Ulrich Paquet, and Ole Winther. 2016. Sequential neural models with stochastic layers. In NIPS, pages 2199–2207.
-
(2016)
NIPS
, pp. 2199-2207
-
-
Fraccaro, M.1
Sø nderby, S.K.2
Paquet, U.3
Winther, O.4
-
9
-
-
85047013569
-
Pixelvae: A latent variable model for natural images
-
abs/1611.05013
-
Ishaan Gulrajani, Kundan Kumar, Faruk Ahmed, Adrien Ali Taiga, Francesco Visin, David Vázquez, and Aaron C. Courville. 2016. Pixelvae: A latent variable model for natural images. CoRR, abs/1611.05013.
-
(2016)
CoRR
-
-
Gulrajani, I.1
Kumar, K.2
Ahmed, F.3
Taiga, A.A.4
Visin, F.5
Vázquez, D.6
Courville, A.C.7
-
10
-
-
85048439580
-
Hypernetworks
-
abs/1609.09106
-
David Ha, Andrew M. Dai, and Quoc V. Le. 2016. Hypernetworks. CoRR, abs/1609.09106.
-
(2016)
CoRR
-
-
Ha, D.1
Dai, A.M.2
Le, Q.V.3
-
11
-
-
0027803368
-
Keeping the neural networks simple by minimizing the description length of the weights
-
Santa Cruz, CA, USA, July 26-28, 1993.
-
Geoffrey E. Hinton and Drew van Camp. 1993. Keeping the neural networks simple by minimizing the description length of the weights. In Proceedings of the Sixth Annual ACM Conference on Computational Learning Theory, COLT 1993, Santa Cruz, CA, USA, July 26-28, 1993., pages 5–13.
-
(1993)
Proceedings of the Sixth Annual ACM Conference on Computational Learning Theory, COLT 1993
, pp. 5-13
-
-
Hinton, G.E.1
van Camp, D.2
-
13
-
-
85055702773
-
Controllable text generation
-
abs/1703.00955
-
Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P. Xing. 2017. Controllable text generation. CoRR, abs/1703.00955.
-
(2017)
CoRR
-
-
Hu, Z.1
Yang, Z.2
Liang, X.3
Salakhutdinov, R.4
Xing, E.P.5
-
14
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, pages 448–456.
-
(2015)
ICML
, pp. 448-456
-
-
Ioffe, S.1
Szegedy, C.2
-
15
-
-
84994193137
-
Exploring the limits of language modeling
-
abs/1602.02410
-
Rafal Józefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. 2016. Exploring the limits of language modeling. CoRR, abs/1602.02410.
-
(2016)
CoRR
-
-
Józefowicz, R.1
Vinyals, O.2
Schuster, M.3
Shazeer, N.4
Wu, Y.5
-
16
-
-
85021685073
-
Neural machine translation in linear time
-
abs/1610.10099
-
Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aäron van den Oord, Alex Graves, and Koray Kavukcuoglu. 2016. Neural machine translation in linear time. CoRR, abs/1610.10099.
-
(2016)
CoRR
-
-
Kalchbrenner, N.1
Espeholt, L.2
Simonyan, K.3
van den Oord, A.4
Graves, A.5
Kavukcuoglu, K.6
-
17
-
-
85083951076
-
ADaM: A method for stochastic optimization
-
abs/1412.6980
-
Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. CoRR, abs/1412.6980.
-
(2014)
CoRR
-
-
Kingma, D.P.1
Ba, J.2
-
18
-
-
85018866833
-
Improving variational inference with inverse autoregressive flow
-
abs/1606.04934
-
Diederik P. Kingma, Tim Salimans, and Max Welling. 2016. Improving variational inference with inverse autoregressive flow. CoRR, abs/1606.04934.
-
(2016)
CoRR
-
-
Kingma, D.P.1
Salimans, T.2
Welling, M.3
-
19
-
-
84959248509
-
Autoencoding variational bayes
-
abs/1312.6114
-
Diederik P. Kingma and Max Welling. 2013. Autoencoding variational bayes. CoRR, abs/1312.6114.
-
(2013)
CoRR
-
-
Kingma, D.P.1
Welling, M.2
-
20
-
-
84861999538
-
The neural autoregressive distribution estimator
-
Hugo Larochelle and Iain Murray. 2011. The neural autoregressive distribution estimator. In AISTATS, pages 29–37.
-
(2011)
AISTATS
, pp. 29-37
-
-
Larochelle, H.1
Murray, I.2
-
21
-
-
85073150115
-
Autoencoding beyond pixels using a learned similarity metric
-
abs/1512.09300
-
Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, and Ole Winther. 2015. Autoencoding beyond pixels using a learned similarity metric. CoRR, abs/1512.09300.
-
(2015)
CoRR
-
-
Lindbo Larsen, A.B.1
Sønderby, S.K.2
Winther, O.3
-
22
-
-
34249852033
-
Building a large annotated corpus of english: The penn treebank
-
Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Building a large annotated corpus of english: The penn treebank. Computational Linguistics, 19(2):313–330.
-
(1993)
Computational Linguistics
, vol.19
, Issue.2
, pp. 313-330
-
-
Marcus, M.P.1
Marcinkiewicz, M.A.2
Santorini, B.3
-
23
-
-
85031128630
-
Adversarial variational bayes: Unifying variational autoencoders and generative adversarial networks
-
abs/1701.04722
-
Lars M. Mescheder, Sebastian Nowozin, and Andreas Geiger. 2017. Adversarial variational bayes: Unifying variational autoencoders and generative adversarial networks. CoRR, abs/1701.04722.
-
(2017)
CoRR
-
-
Mescheder, L.M.1
Nowozin, S.2
Geiger, A.3
-
24
-
-
84996589345
-
Neural variational inference for text processing
-
abs/1511.06038
-
Yishu Miao, Lei Yu, and Phil Blunsom. 2015. Neural variational inference for text processing. CoRR, abs/1511.06038.
-
(2015)
CoRR
-
-
Miao, Y.1
Yu, L.2
Blunsom, P.3
-
25
-
-
85014956813
-
Learning deconvolution network for semantic segmentation
-
abs/1505.04366
-
Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. 2015. Learning deconvolution network for semantic segmentation. CoRR, abs/1505.04366.
-
(2015)
CoRR
-
-
Noh, H.1
Hong, S.2
Han, B.3
-
27
-
-
84892982833
-
On the difficulty of training recurrent neural networks
-
Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty of training recurrent neural networks. In ICML, pages 1310–1318.
-
(2013)
ICML
, pp. 1310-1318
-
-
Pascanu, R.1
Mikolov, T.2
Bengio, Y.3
-
28
-
-
84978298377
-
Unsupervised representation learning with deep convolutional generative adversarial networks
-
abs/1511.06434
-
Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. CoRR, abs/1511.06434.
-
(2015)
CoRR
-
-
Radford, A.1
Metz, L.2
Chintala, S.3
-
29
-
-
85073150202
-
Techniques for learning binary stochastic feedforward neural networks
-
abs/1406.2989
-
Tapani Raiko, Mathias Berglund, Guillaume Alain, and Laurent Dinh. 2014. Techniques for learning binary stochastic feedforward neural networks. CoRR, abs/1406.2989.
-
(2014)
CoRR
-
-
Raiko, T.1
Berglund, M.2
Alain, G.3
Dinh, L.4
-
30
-
-
84969776493
-
Variational inference with normalizing flows
-
Lille, France, 6-11 July 2015
-
Danilo Jimenez Rezende and Shakir Mohamed. 2015. Variational inference with normalizing flows. In Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, pages 1530–1538.
-
(2015)
Proceedings of the 32nd International Conference on Machine Learning, ICML 2015
, pp. 1530-1538
-
-
Rezende, D.J.1
Mohamed, S.2
-
31
-
-
84919908080
-
Stochastic backpropagation and approximate inference in deep generative models
-
Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. 2014. Stochastic backpropagation and approximate inference in deep generative models. In ICML, pages 1278–1286.
-
(2014)
ICML
, pp. 1278-1286
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
32
-
-
85031430062
-
A neural attention model for abstractive sentence summarization
-
abs/1509.00685
-
Alexander M. Rush, Sumit Chopra, and Jason Weston. 2015. A neural attention model for abstractive sentence summarization. CoRR, abs/1509.00685.
-
(2015)
CoRR
-
-
Rush, A.M.1
Chopra, S.2
Weston, J.3
-
33
-
-
85057312927
-
A hierarchical latent variable encoder-decoder model for generating dialogues
-
abs/1605.06069
-
Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe, Laurent Charlin, Joelle Pineau, Aaron C. Courville, and Yoshua Bengio. 2016. A hierarchical latent variable encoder-decoder model for generating dialogues. CoRR, abs/1605.06069.
-
(2016)
CoRR
-
-
Serban, I.V.1
Sordoni, A.2
Lowe, R.3
Charlin, L.4
Pineau, J.5
Courville, A.C.6
Bengio, Y.7
-
34
-
-
85057279890
-
Ladder variational autoencoders
-
abs/1602.02282
-
Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. 2016. Ladder variational autoencoders. CoRR, abs/1602.02282.
-
(2016)
CoRR
-
-
Sønderby, C.K.1
Raiko, T.2
Maaløe, L.3
Sønderby, S.K.4
Winther, O.5
-
35
-
-
84951910303
-
Show and tell: A neural image caption generator
-
abs/1411.4555
-
Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2014. Show and tell: A neural image caption generator. CoRR, abs/1411.4555.
-
(2014)
CoRR
-
-
Vinyals, O.1
Toshev, A.2
Bengio, S.3
Erhan, D.4
-
36
-
-
85013200323
-
Google’s neural machine translation system: Bridging the gap between human and machine translation
-
abs/1609.08144
-
Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. 2016. Google’s neural machine translation system: Bridging the gap between human and machine translation. CoRR, abs/1609.08144.
-
(2016)
CoRR
-
-
Wu, Y.1
Schuster, M.2
Chen, Z.3
Le, Q.V.4
Norouzi, M.5
Macherey, W.6
Krikun, M.7
Cao, Y.8
Gao, Q.9
Macherey, K.10
Klingner, J.11
Shah, A.12
Johnson, M.13
Liu, X.14
Kaiser, L.15
Gouws, S.16
Kato, Y.17
Kudo, T.18
Kazawa, H.19
Stevens, K.20
Kurian, G.21
Patil, N.22
Wang, W.23
Young, C.24
Smith, J.25
Riesa, J.26
Rudnick, A.27
Vinyals, O.28
Corrado, G.29
Hughes, M.30
Dean, J.31
more..
-
37
-
-
85041896289
-
Attribute2Image: Conditional image generation from visual attributes
-
abs/1512.00570
-
Xinchen Yan, Jimei Yang, Kihyuk Sohn, and Honglak Lee. 2015. Attribute2image: Conditional image generation from visual attributes. CoRR, abs/1512.00570.
-
(2015)
CoRR
-
-
Yan, X.1
Yang, J.2
Sohn, K.3
Lee, H.4
-
38
-
-
85047005364
-
Improved variational autoencoders for text modeling using dilated convolutions
-
abs/1702.08139
-
Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and Taylor Berg-Kirkpatrick. 2017. Improved variational autoencoders for text modeling using dilated convolutions. CoRR, abs/1702.08139.
-
(2017)
CoRR
-
-
Yang, Z.1
Hu, Z.2
Salakhutdinov, R.3
Berg-Kirkpatrick, T.4
-
41
-
-
85031919618
-
Variational neural machine translation
-
abs/1605.07869
-
Biao Zhang, Deyi Xiong, and Jinsong Su. 2016. Variational neural machine translation. CoRR, abs/1605.07869.
-
(2016)
CoRR
-
-
Zhang, B.1
Xiong, D.2
Su, J.3
-
42
-
-
85035088553
-
Learning discourse-level diversity for neural dialog models using conditional variational autoencoders
-
abs/1703.10960
-
Tiancheng Zhao, Ran Zhao, and Maxine Eskenazi. 2017. Learning discourse-level diversity for neural dialog models using conditional variational autoencoders. CoRR, abs/1703.10960.
-
(2017)
CoRR
-
-
Zhao, T.1
Zhao, R.2
Eskenazi, M.3
-
43
-
-
85066436418
-
Neural architecture search with reinforcement learning
-
abs/1611.01578
-
Barret Zoph and Quoc V. Le. 2016. Neural architecture search with reinforcement learning. CoRR, abs/1611.01578.
-
(2016)
CoRR
-
-
Zoph, B.1
Le, Q.V.2
|