메뉴 건너뛰기




Volumn , Issue , 2017, Pages 627-637

A hybrid convolutional variational autoencoder for text generation

Author keywords

[No Author keywords available]

Indexed keywords

CONVOLUTION; LEARNING SYSTEMS;

EID: 85073165882     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.18653/v1/d17-1066     Document Type: Conference Paper
Times cited : (156)

References (43)
  • 1
    • 85039174342 scopus 로고    scopus 로고
    • Layer normalization
    • abs/1607.06450
    • Lei Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer normalization. CoRR, abs/1607.06450.
    • (2016) CoRR
    • Ba, L.J.1    Kiros, R.2    Hinton, G.E.3
  • 2
    • 85018886752 scopus 로고    scopus 로고
    • An architecture for deep, hierarchical generative models
    • D. D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Gar-nett, editors
    • Philip Bachman. 2016. An architecture for deep, hierarchical generative models. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Gar-nett, editors, NIPS, pages 4826–4834.
    • (2016) NIPS , pp. 4826-4834
    • Bachman, P.1
  • 3
    • 84959933549 scopus 로고    scopus 로고
    • Neural machine translation by jointly learning to align and translate
    • abs/1409.0473
    • Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to align and translate. CoRR, abs/1409.0473.
    • (2014) CoRR
    • Bahdanau, D.1    Cho, K.2    Bengio, Y.3
  • 4
    • 85115713499 scopus 로고    scopus 로고
    • From optimal transport to generative modeling: The vegan cookbook
    • abs/1705.07642
    • Olivier Bousquet, Sylvain Gelly, Ilya Tolstikhin, Carl-Johann Simon-Gabriel, and Bernhard Schoelkopf. 2017. From optimal transport to generative modeling: the vegan cookbook. CoRR, abs/1705.07642.
    • (2017) CoRR
    • Bousquet, O.1    Gelly, S.2    Tolstikhin, I.3    Simon-Gabriel, C.-J.4    Schoelkopf, B.5
  • 7
    • 85039166439 scopus 로고    scopus 로고
    • Language modeling with gated convolutional networks
    • abs/1612.08083
    • Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. 2016. Language modeling with gated convolutional networks. CoRR, abs/1612.08083.
    • (2016) CoRR
    • Dauphin, Y.N.1    Fan, A.2    Auli, M.3    Grangier, D.4
  • 8
    • 85019203505 scopus 로고    scopus 로고
    • Sequential neural models with stochastic layers
    • Marco Fraccaro, Søren Kaae Sø nderby, Ulrich Paquet, and Ole Winther. 2016. Sequential neural models with stochastic layers. In NIPS, pages 2199–2207.
    • (2016) NIPS , pp. 2199-2207
    • Fraccaro, M.1    Sø nderby, S.K.2    Paquet, U.3    Winther, O.4
  • 10
    • 85048439580 scopus 로고    scopus 로고
    • Hypernetworks
    • abs/1609.09106
    • David Ha, Andrew M. Dai, and Quoc V. Le. 2016. Hypernetworks. CoRR, abs/1609.09106.
    • (2016) CoRR
    • Ha, D.1    Dai, A.M.2    Le, Q.V.3
  • 14
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, pages 448–456.
    • (2015) ICML , pp. 448-456
    • Ioffe, S.1    Szegedy, C.2
  • 17
    • 85083951076 scopus 로고    scopus 로고
    • ADaM: A method for stochastic optimization
    • abs/1412.6980
    • Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. CoRR, abs/1412.6980.
    • (2014) CoRR
    • Kingma, D.P.1    Ba, J.2
  • 18
    • 85018866833 scopus 로고    scopus 로고
    • Improving variational inference with inverse autoregressive flow
    • abs/1606.04934
    • Diederik P. Kingma, Tim Salimans, and Max Welling. 2016. Improving variational inference with inverse autoregressive flow. CoRR, abs/1606.04934.
    • (2016) CoRR
    • Kingma, D.P.1    Salimans, T.2    Welling, M.3
  • 19
    • 84959248509 scopus 로고    scopus 로고
    • Autoencoding variational bayes
    • abs/1312.6114
    • Diederik P. Kingma and Max Welling. 2013. Autoencoding variational bayes. CoRR, abs/1312.6114.
    • (2013) CoRR
    • Kingma, D.P.1    Welling, M.2
  • 20
    • 84861999538 scopus 로고    scopus 로고
    • The neural autoregressive distribution estimator
    • Hugo Larochelle and Iain Murray. 2011. The neural autoregressive distribution estimator. In AISTATS, pages 29–37.
    • (2011) AISTATS , pp. 29-37
    • Larochelle, H.1    Murray, I.2
  • 21
    • 85073150115 scopus 로고    scopus 로고
    • Autoencoding beyond pixels using a learned similarity metric
    • abs/1512.09300
    • Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, and Ole Winther. 2015. Autoencoding beyond pixels using a learned similarity metric. CoRR, abs/1512.09300.
    • (2015) CoRR
    • Lindbo Larsen, A.B.1    Sønderby, S.K.2    Winther, O.3
  • 22
    • 34249852033 scopus 로고
    • Building a large annotated corpus of english: The penn treebank
    • Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Building a large annotated corpus of english: The penn treebank. Computational Linguistics, 19(2):313–330.
    • (1993) Computational Linguistics , vol.19 , Issue.2 , pp. 313-330
    • Marcus, M.P.1    Marcinkiewicz, M.A.2    Santorini, B.3
  • 23
    • 85031128630 scopus 로고    scopus 로고
    • Adversarial variational bayes: Unifying variational autoencoders and generative adversarial networks
    • abs/1701.04722
    • Lars M. Mescheder, Sebastian Nowozin, and Andreas Geiger. 2017. Adversarial variational bayes: Unifying variational autoencoders and generative adversarial networks. CoRR, abs/1701.04722.
    • (2017) CoRR
    • Mescheder, L.M.1    Nowozin, S.2    Geiger, A.3
  • 24
    • 84996589345 scopus 로고    scopus 로고
    • Neural variational inference for text processing
    • abs/1511.06038
    • Yishu Miao, Lei Yu, and Phil Blunsom. 2015. Neural variational inference for text processing. CoRR, abs/1511.06038.
    • (2015) CoRR
    • Miao, Y.1    Yu, L.2    Blunsom, P.3
  • 25
    • 85014956813 scopus 로고    scopus 로고
    • Learning deconvolution network for semantic segmentation
    • abs/1505.04366
    • Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. 2015. Learning deconvolution network for semantic segmentation. CoRR, abs/1505.04366.
    • (2015) CoRR
    • Noh, H.1    Hong, S.2    Han, B.3
  • 27
    • 84892982833 scopus 로고    scopus 로고
    • On the difficulty of training recurrent neural networks
    • Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty of training recurrent neural networks. In ICML, pages 1310–1318.
    • (2013) ICML , pp. 1310-1318
    • Pascanu, R.1    Mikolov, T.2    Bengio, Y.3
  • 28
    • 84978298377 scopus 로고    scopus 로고
    • Unsupervised representation learning with deep convolutional generative adversarial networks
    • abs/1511.06434
    • Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. CoRR, abs/1511.06434.
    • (2015) CoRR
    • Radford, A.1    Metz, L.2    Chintala, S.3
  • 29
    • 85073150202 scopus 로고    scopus 로고
    • Techniques for learning binary stochastic feedforward neural networks
    • abs/1406.2989
    • Tapani Raiko, Mathias Berglund, Guillaume Alain, and Laurent Dinh. 2014. Techniques for learning binary stochastic feedforward neural networks. CoRR, abs/1406.2989.
    • (2014) CoRR
    • Raiko, T.1    Berglund, M.2    Alain, G.3    Dinh, L.4
  • 31
    • 84919908080 scopus 로고    scopus 로고
    • Stochastic backpropagation and approximate inference in deep generative models
    • Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. 2014. Stochastic backpropagation and approximate inference in deep generative models. In ICML, pages 1278–1286.
    • (2014) ICML , pp. 1278-1286
    • Rezende, D.J.1    Mohamed, S.2    Wierstra, D.3
  • 32
    • 85031430062 scopus 로고    scopus 로고
    • A neural attention model for abstractive sentence summarization
    • abs/1509.00685
    • Alexander M. Rush, Sumit Chopra, and Jason Weston. 2015. A neural attention model for abstractive sentence summarization. CoRR, abs/1509.00685.
    • (2015) CoRR
    • Rush, A.M.1    Chopra, S.2    Weston, J.3
  • 33
    • 85057312927 scopus 로고    scopus 로고
    • A hierarchical latent variable encoder-decoder model for generating dialogues
    • abs/1605.06069
    • Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe, Laurent Charlin, Joelle Pineau, Aaron C. Courville, and Yoshua Bengio. 2016. A hierarchical latent variable encoder-decoder model for generating dialogues. CoRR, abs/1605.06069.
    • (2016) CoRR
    • Serban, I.V.1    Sordoni, A.2    Lowe, R.3    Charlin, L.4    Pineau, J.5    Courville, A.C.6    Bengio, Y.7
  • 35
    • 84951910303 scopus 로고    scopus 로고
    • Show and tell: A neural image caption generator
    • abs/1411.4555
    • Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2014. Show and tell: A neural image caption generator. CoRR, abs/1411.4555.
    • (2014) CoRR
    • Vinyals, O.1    Toshev, A.2    Bengio, S.3    Erhan, D.4
  • 37
    • 85041896289 scopus 로고    scopus 로고
    • Attribute2Image: Conditional image generation from visual attributes
    • abs/1512.00570
    • Xinchen Yan, Jimei Yang, Kihyuk Sohn, and Honglak Lee. 2015. Attribute2image: Conditional image generation from visual attributes. CoRR, abs/1512.00570.
    • (2015) CoRR
    • Yan, X.1    Yang, J.2    Sohn, K.3    Lee, H.4
  • 38
    • 85047005364 scopus 로고    scopus 로고
    • Improved variational autoencoders for text modeling using dilated convolutions
    • abs/1702.08139
    • Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and Taylor Berg-Kirkpatrick. 2017. Improved variational autoencoders for text modeling using dilated convolutions. CoRR, abs/1702.08139.
    • (2017) CoRR
    • Yang, Z.1    Hu, Z.2    Salakhutdinov, R.3    Berg-Kirkpatrick, T.4
  • 41
    • 85031919618 scopus 로고    scopus 로고
    • Variational neural machine translation
    • abs/1605.07869
    • Biao Zhang, Deyi Xiong, and Jinsong Su. 2016. Variational neural machine translation. CoRR, abs/1605.07869.
    • (2016) CoRR
    • Zhang, B.1    Xiong, D.2    Su, J.3
  • 42
    • 85035088553 scopus 로고    scopus 로고
    • Learning discourse-level diversity for neural dialog models using conditional variational autoencoders
    • abs/1703.10960
    • Tiancheng Zhao, Ran Zhao, and Maxine Eskenazi. 2017. Learning discourse-level diversity for neural dialog models using conditional variational autoencoders. CoRR, abs/1703.10960.
    • (2017) CoRR
    • Zhao, T.1    Zhao, R.2    Eskenazi, M.3
  • 43
    • 85066436418 scopus 로고    scopus 로고
    • Neural architecture search with reinforcement learning
    • abs/1611.01578
    • Barret Zoph and Quoc V. Le. 2016. Neural architecture search with reinforcement learning. CoRR, abs/1611.01578.
    • (2016) CoRR
    • Zoph, B.1    Le, Q.V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.