메뉴 건너뛰기




Volumn , Issue , 2018, Pages 1214-1223

VAE with a vampprior

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; HIERARCHICAL SYSTEMS;

EID: 85059403423     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (564)

References (43)
  • 11
    • 84983185824 scopus 로고    scopus 로고
    • Training generative neural networks via maximum mean discrepancy optimization
    • G. Dziugaite, D. Roy, and Z. Ghahramani. Training generative neural networks via maximum mean discrepancy optimization. UAI, pages 258–267, 2015.
    • (2015) UAI , pp. 258-267
    • Dziugaite, G.1    Roy, D.2    Ghahramani, Z.3
  • 12
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. AISTATS, 9:249–256, 2010.
    • (2010) AISTATS , vol.9 , pp. 249-256
    • Glorot, X.1    Bengio, Y.2
  • 20
    • 84949683101 scopus 로고    scopus 로고
    • Human-level concept learning through probabilistic program induction
    • B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through probabilistic program induction. Science, 350(6266):1332–1338, 2015.
    • (2015) Science , vol.350 , Issue.6266 , pp. 1332-1338
    • Lake, B.M.1    Salakhutdinov, R.2    Tenenbaum, J.B.3
  • 21
    • 84862524901 scopus 로고    scopus 로고
    • The neural autoregressive distribution estimator
    • H. Larochelle and I. Murray. The Neural Autoregressive Distribution Estimator. AISTATS, 2011.
    • (2011) AISTATS
    • Larochelle, H.1    Murray, I.2
  • 23
    • 84970016114 scopus 로고    scopus 로고
    • Generative moment matching networks
    • Y. Li, K. Swersky, and R. S. Zemel. Generative moment matching networks. ICML, pages 1718–1727, 2015.
    • (2015) ICML , pp. 1718-1727
    • Li, Y.1    Swersky, K.2    Zemel, R.S.3
  • 24
    • 85019242057 scopus 로고    scopus 로고
    • Rényi Divergence Variational Inference
    • Y. Li and R. E. Turner. Rényi Divergence Variational Inference. NIPS, pages 1073–1081, 2016.
    • (2016) NIPS , pp. 1073-1081
    • Li, Y.1    Turner, R.E.2
  • 27
    • 80053455323 scopus 로고    scopus 로고
    • Inductive principles for restricted boltzmann machine learning
    • B. Marlin, K. Swersky, B. Chen, and N. Freitas. Inductive principles for Restricted Boltzmann Machine learning. AISTATS, pages 509–516, 2010.
    • (2010) AISTATS , pp. 509-516
    • Marlin, B.1    Swersky, K.2    Chen, B.3    Freitas, N.4
  • 28
    • 85031128630 scopus 로고    scopus 로고
    • Adversarial variational bayes: Unifying variational autoencoders and generative adversarial networks
    • L. Mescheder, S. Nowozin, and A. Geiger. Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks. In ICML, pages 2391–2400, 2017.
    • (2017) ICML , pp. 2391-2400
    • Mescheder, L.1    Nowozin, S.2    Geiger, A.3
  • 31
    • 85040760064 scopus 로고    scopus 로고
    • Hierarchical variational models
    • R. Ranganath, D. Tran, and D. Blei. Hierarchical variational models. In ICML, pages 324–333, 2016.
    • (2016) ICML , pp. 324-333
    • Ranganath, R.1    Tran, D.2    Blei, D.3
  • 33
    • 84919908080 scopus 로고    scopus 로고
    • Stochastic backpropagation and approximate inference in deep generative models
    • D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic Backpropagation and Approximate Inference in Deep Generative Models. ICML, pages 1278–1286, 2014.
    • (2014) ICML , pp. 1278-1286
    • Rezende, D.J.1    Mohamed, S.2    Wierstra, D.3
  • 34
    • 56449102578 scopus 로고    scopus 로고
    • On the quantitative analysis of deep belief networks
    • R. Salakhutdinov and I. Murray. On the quantitative analysis of deep belief networks. ICML, pages 872–879, 2008.
    • (2008) ICML , pp. 872-879
    • Salakhutdinov, R.1    Murray, I.2
  • 35
    • 84969835291 scopus 로고    scopus 로고
    • Markov chain monte carlo and variational inference: Bridging the gap
    • T. Salimans, D. Kingma, and M. Welling. Markov chain monte carlo and variational inference: Bridging the gap. ICML, pages 1218–1226, 2015.
    • (2015) ICML , pp. 1218-1226
    • Salimans, T.1    Kingma, D.2    Welling, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.