메뉴 건너뛰기




Volumn 5, Issue , 2017, Pages 3721-3731

Discovering discrete latent topics with neural variational inference

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE;

EID: 85048492740     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (96)

References (33)
  • 1
    • 84898964031 scopus 로고    scopus 로고
    • A variational Bayesian framework for graphical models
    • Attias, Hagai. A variational bayesian framework for graphical models. In Proceedings of NIPS, 2000.
    • (2000) Proceedings of NIPS
    • Attias, H.1
  • 7
    • 84988112810 scopus 로고
    • Inference for nonconjugate Bayesian models using the gibbs sampler
    • Carlin, Bradley P and Poison, Nicholas G. Inference for nonconjugate bayesian models using the gibbs sampler. Canadian Journal of statistics, 19(4):399-405, 1991.
    • (1991) Canadian Journal of Statistics , vol.19 , Issue.4 , pp. 399-405
    • Carlin, B.P.1    Poison, N.G.2
  • 10
    • 85162005069 scopus 로고    scopus 로고
    • Online learning for latent dirichlet allocation
    • Hoffman, Matthew, Bach, Francis R, and Blei, David M. Online learning for latent dirichlet allocation. In Proceedings of NIPS, pp. 856-864, 2010.
    • (2010) Proceedings of NIPS , pp. 856-864
    • Hoffman, M.1    Bach, F.R.2    Blei, D.M.3
  • 11
    • 85026972772 scopus 로고    scopus 로고
    • Probabilistic latent semantic indexing
    • Hofmann, Thomas. Probabilistic latent semantic indexing. In Proceedings ofSIGIR, 1999.
    • (1999) Proceedings of SIGIR
    • Hofmann, T.1
  • 12
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • Jordan, Michael I, Ghahramani, Zoubin, Jaakkola, Tommi S, and Saul, Lawrence K. An introduction to variational methods for graphical models. Machine learning, 37(2): 183-233, 1999.
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 13
    • 84959282009 scopus 로고    scopus 로고
    • A stick-breaking likelihood for categorical data analysis with latent gaus-sian models
    • Khan, Mohammad Emtiyaz, Mohamed, Shakir, Marlin, Benjamin M, and Murphy, Kevin P. A stick-breaking likelihood for categorical data analysis with latent gaus-sian models. In Proceedings ofAISTATS, 2012.
    • (2012) Proceedings of AISTATS
    • Khan, M.E.1    Mohamed, S.2    Marlin, B.M.3    Murphy, K.P.4
  • 14
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • Kingma, Diederik P. and Ba, Jimmy. Adam: A method for stochastic optimization. In Proceedings of lCLR, 2015.
    • (2015) Proceedings of LCLR
    • Kingma, D.P.1    Jimmy, B.2
  • 16
    • 80053431219 scopus 로고    scopus 로고
    • An introduction to latent semantic analysis
    • Landauer, Thomas K, Foltz, Peter W, and Laham, Darrell. An introduction to latent semantic analysis. Discourse processes, 25(2-3):259-284, 1998.
    • (1998) Discourse Processes , vol.25 , Issue.2-3 , pp. 259-284
    • Landauer, T.K.1    Foltz, P.W.2    Laham, D.3
  • 18
    • 84905694259 scopus 로고    scopus 로고
    • Machine reading tea leaves: Automatically evaluating topic coherence and topic model quality
    • Lau, Jey Han, Newman, David, and Baldwin, Timothy. Machine reading tea leaves: Automatically evaluating topic coherence and topic model quality. In Proceedings ofEACL, pp. 530-539, 2014.
    • (2014) Proceedings of EACL , pp. 530-539
    • Lau, J.H.1    Newman, D.2    Baldwin, T.3
  • 21
    • 84998953749 scopus 로고    scopus 로고
    • Neural variational inference for text processing
    • Miao, Yishu, Yu, Lei, and Blunsom, Phil. Neural variational inference for text processing. In Proceedings of ICML, 2016.
    • (2016) Proceedings of ICML
    • Miao, Y.1    Yu, L.2    Blunsom, P.3
  • 22
    • 84919786239 scopus 로고    scopus 로고
    • Neural variational inference and learning in belief networks
    • Mnih, Andriy and Gregor, Karol. Neural variational inference and learning in belief networks. In Proceedings of ICML, 2014.
    • (2014) Proceedings of ICML
    • Mnih, A.1    Gregor, K.2
  • 25
    • 84919796093 scopus 로고    scopus 로고
    • Stochastic backpropagation and approximate inference in deep generative models
    • Rezende, Danilo J, Mohamed, Shakir, and Wierstra, Daan. Stochastic backpropagation and approximate inference in deep generative models. In Proceedings of ICML, 2014.
    • (2014) Proceedings of ICML
    • Rezende, D.J.1    Mohamed, S.2    Wierstra, D.3
  • 27
    • 0000720609 scopus 로고
    • A constructive definition of dirichlet priors
    • Sethuraman, Jayaram. A constructive definition of dirichlet priors. Statistica sinica, pp. 639-650, 1994.
    • (1994) Statistica Sinica , pp. 639-650
    • Sethuraman, J.1
  • 30
    • 84877630966 scopus 로고    scopus 로고
    • Variational inference in nonconjugate models
    • Apr
    • Wang, Chong and Blei, David M. Variational inference in nonconjugate models. Journal of Machine Learning Research, 14(Apr):1005-1031, 2013.
    • (2013) Journal of Machine Learning Research , vol.14 , pp. 1005-1031
    • Wang, C.1    Blei, D.M.2
  • 31
    • 84872537516 scopus 로고    scopus 로고
    • Online variational inference for the hierarchical dirichlet process
    • Wang, Chong, Paisley, John William, and Blei, David M. Online variational inference for the hierarchical dirichlet process. In Proceedings ofAISTATS, 2011.
    • (2011) Proceedings of AISTATS
    • Wang, C.1    Paisley, J.W.2    Blei, D.M.3
  • 33
    • 84954146001 scopus 로고    scopus 로고
    • Diversifying restricted boltzmann machine for document modeling
    • ACM
    • Xie, Pengtao, Deng, Yuntian, and Xing, Eric. Diversifying restricted boltzmann machine for document modeling. In Proceedings ofKDD, pp. 1315-1324. ACM, 2015.
    • (2015) Proceedings of KDD , pp. 1315-1324
    • Xie, P.1    Deng, Y.2    Xing, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.