-
2
-
-
85047018513
-
Symmetric variational autoencoder and connections to adversarial learning
-
L. Chen, S. Dai, Y. Pu, C. Li, and Q. Su Lawrence Carin. Symmetric variational autoencoder and connections to adversarial learning. In arXiv, 2017.
-
(2017)
ArXiv
-
-
Chen, L.1
Dai, S.2
Pu, Y.3
Li, C.4
Su Lawrence Carin, Q.5
-
3
-
-
85031125843
-
Learning to draw samples with amortized Stein variational gradient descent
-
Y. Feng, D. Wang, and Q. Liu. Learning to draw samples with amortized stein variational gradient descent. In UAI, 2017.
-
(2017)
UAI
-
-
Feng, Y.1
Wang, D.2
Liu, Q.3
-
4
-
-
84970024465
-
Scalable deep poisson factor analysis for topic modeling
-
Z. Gan, C. Chen, R. Henao, D. Carlson, and L. Carin. Scalable deep poisson factor analysis for topic modeling. In ICML, 2015.
-
(2015)
ICML
-
-
Gan, Z.1
Chen, C.2
Henao, R.3
Carlson, D.4
Carin, L.5
-
6
-
-
85031097360
-
Stein variational adaptive importance sampling
-
J. Han and Q. Liu. Stein variational adaptive importance sampling. In UAI, 2017.
-
(2017)
UAI
-
-
Han, J.1
Liu, Q.2
-
8
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and Sun J. Deep residual learning for image recognition. In CVPR, 2016.
-
(2016)
CVPR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
9
-
-
85083951076
-
Adam: A method for stochastic optimization
-
D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
-
(2015)
ICLR
-
-
Kingma, D.1
Ba, J.2
-
10
-
-
85018920337
-
Improving variational inference with inverse autoregressive flow
-
D. P. Kingma, T. Salimans, R. Jozefowicz, X.i. Chen, I. Sutskever, and M. Welling. Improving variational inference with inverse autoregressive flow. In NIPS, 2016.
-
(2016)
NIPS
-
-
Kingma, D.P.1
Salimans, T.2
Jozefowicz, R.3
Chen, X.I.4
Sutskever, I.5
Welling, M.6
-
11
-
-
85083952489
-
Auto-encoding variational bayes
-
D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In ICLR, 2014.
-
(2014)
ICLR
-
-
Kingma, D.P.1
Welling, M.2
-
13
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
14
-
-
84877761544
-
A neural autoregressive topic model
-
H. Larochelle and S. Laulyi. A neural autoregressive topic model. In NIPS, 2012.
-
(2012)
NIPS
-
-
Larochelle, H.1
Laulyi, S.2
-
15
-
-
85018878907
-
Stein variational gradient descent: A general purpose Bayesian inference algorithm
-
Q. Liu and D. Wang. Stein variational gradient descent: A general purpose bayesian inference algorithm. In NIPS, 2016.
-
(2016)
NIPS
-
-
Liu, Q.1
Wang, D.2
-
16
-
-
84893676344
-
Rectifier nonlinearities improve neural network acoustic models
-
A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural network acoustic models. In ICML, 2013.
-
(2013)
ICML
-
-
Maas, A.L.1
Hannun, A.Y.2
Ng, A.Y.3
-
17
-
-
84998953749
-
Neural variational inference for text processing
-
Y. Miao, L. Yu, and Phil Blunsomi. Neural variational inference for text processing. In ICML, 2016.
-
(2016)
ICML
-
-
Miao, Y.1
Yu, L.2
Blunsomi, P.3
-
18
-
-
84919786239
-
Neural variational inference and learning in belief networks
-
A. Mnih and K. Gregor. Neural variational inference and learning in belief networks. In ICML, 2014.
-
(2014)
ICML
-
-
Mnih, A.1
Gregor, K.2
-
19
-
-
84998673781
-
Variational inference for Monte Carlo objectives
-
A. Mnih and D. J. Rezende. Variational inference for monte carlo objectives. In ICML, 2016.
-
(2016)
ICML
-
-
Mnih, A.1
Rezende, D.J.2
-
21
-
-
85018916536
-
Variational autoencoder for deep learning of images, labels and captions
-
Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin. Variational autoencoder for deep learning of images, labels and captions. In NIPS, 2016.
-
(2016)
NIPS
-
-
Pu, Y.1
Gan, Z.2
Henao, R.3
Yuan, X.4
Li, C.5
Stevens, A.6
Carin, L.7
-
22
-
-
85083953057
-
Generative deep deconvolutional learning
-
Y. Pu, X. Yuan, and L. Carin. Generative deep deconvolutional learning. In ICLR workshop, 2015.
-
(2015)
ICLR Workshop
-
-
Pu, Y.1
Yuan, X.2
Carin, L.3
-
23
-
-
85014542702
-
A deep generative deconvolutional image model
-
Y. Pu, X. Yuan, A. Stevens, C. Li, and L. Carin. A deep generative deconvolutional image model. Artificial Intelligence and Statistics (AISTATS), 2016.
-
(2016)
Artificial Intelligence and Statistics (AISTATS)
-
-
Pu, Y.1
Yuan, X.2
Stevens, A.3
Li, C.4
Carin, L.5
-
26
-
-
84965136229
-
Semi-supervised learning with ladder networks
-
A. Rasmus, M. Berglund, M. Honkala, H. Valpola, and T. Raiko. Semi-supervised learning with ladder networks. In NIPS, 2015.
-
(2015)
NIPS
-
-
Rasmus, A.1
Berglund, M.2
Honkala, M.3
Valpola, H.4
Raiko, T.5
-
27
-
-
84919796093
-
Stochastic backpropagation and approximate inference in deep generative models
-
D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In ICML, 2014.
-
(2014)
ICML
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
28
-
-
84969776493
-
Variational inference with Normalizing flows
-
D.J. Rezende and S. Mohamed. Variational inference with normalizing flows. In ICML, 2015.
-
(2015)
ICML
-
-
Rezende, D.J.1
Mohamed, S.2
-
29
-
-
84945944033
-
Imagenet large scale visual recognition challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-fei. Imagenet large scale visual recognition challenge. IJCV, 2014.
-
(2014)
IJCV
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
30
-
-
85047018593
-
Deconvolutional latent-variable model for text sequence matching
-
D. Shen, Y. Zhang, R. Henao, Q. Su, and L. Carin. Deconvolutional latent-variable model for text sequence matching. In arXiv, 2017.
-
(2017)
ArXiv
-
-
Shen, D.1
Zhang, Y.2
Henao, R.3
Su, Q.4
Carin, L.5
-
32
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. JMLR, 2014.
-
(2014)
JMLR
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
33
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. JMLR, 2010.
-
(2010)
JMLR
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
-
34
-
-
85039759075
-
Adversarial symmetric variational autoencoder
-
Y. Pu W. Wang, R. Henao, L. Chen, Z. Gan, C. Li, and Lawrence Carin. Adversarial symmetric variational autoencoder. In NIPS, 2017.
-
(2017)
NIPS
-
-
Pu, Y.1
Wang, W.2
Henao, R.3
Chen, L.4
Gan, Z.5
Li, C.6
Carin, L.7
-
35
-
-
85047004247
-
Deconvolutional paragraph representation learning
-
Y. Zhang, D. Shen, G. Wang, Z. Gan, R. Henao, and L. Carin. Deconvolutional paragraph representation learning. In NIPS, 2017.
-
(2017)
NIPS
-
-
Zhang, Y.1
Shen, D.2
Wang, G.3
Gan, Z.4
Henao, R.5
Carin, L.6
-
36
-
-
84866013303
-
Beta-negative binomial process and poisson factor analysis
-
M. Zhou, L. Hannah, D. Dunson, and L. Carin. Beta-negative binomial process and Poisson factor analysis. In AISTATS, 2012.
-
(2012)
AISTATS
-
-
Zhou, M.1
Hannah, L.2
Dunson, D.3
Carin, L.4
|