메뉴 건너뛰기




Volumn 2017-December, Issue , 2017, Pages 6714-6724

Z-forcing: Training stochastic recurrent networks

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; EQUIVALENCE CLASSES; MODELING LANGUAGES; RECURRENT NEURAL NETWORKS; STOCHASTIC SYSTEMS; STORMS;

EID: 85046993773     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (195)

References (37)
  • 11
    • 84969749373 scopus 로고    scopus 로고
    • Made: Masked autoencoder for distribution estimation
    • Germain, M., Gregor, K., Murray, I., and Larochelle, H. (2015). Made: Masked autoencoder for distribution estimation. In ICML, pages 881-889.
    • (2015) ICML , pp. 881-889
    • Germain, M.1    Gregor, K.2    Murray, I.3    Larochelle, H.4
  • 17
    • 3843073152 scopus 로고    scopus 로고
    • Variational learning and bits-back coding: An information-theoretic view to Bayesian learning
    • Honkela, A. and Valpola, H. (2004). Variational learning and bits-back coding: an information-theoretic view to bayesian learning. IEEE Transactions on Neural Networks, 15(4): 800-810.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , Issue.4 , pp. 800-810
    • Honkela, A.1    Valpola, H.2
  • 30
    • 84921817164 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D. E., and Hinton, G. E., and Williams, R. J. (1988). Learning representations by back-propagating errors. Cognitive modeling, 5(3): 1.
    • (1988) Cognitive Modeling , vol.5 , Issue.3 , pp. 1
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.