메뉴 건너뛰기




Volumn , Issue , 2017, Pages

Discrete variational autoencoders

Author keywords

[No Author keywords available]

Indexed keywords

AUTO ENCODERS; DISCRETE COMPONENTS; DISCRETE VARIABLES; LATENT VARIABLE; PROBABILISTIC MODELS; SMOOTH MANIFOLDS; STATE-OF-THE-ART METHODS; UNSUPERVISED DATA;

EID: 85064803481     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (126)

References (58)
  • 3
    • 5244304444 scopus 로고
    • Efficient estimation of free energy differences from Monte Carlo data
    • Charles H. Bennett. Efficient estimation of free energy differences from Monte Carlo data. Journal of Computational Physics, 22(2):245-268, 1976.
    • (1976) Journal of Computational Physics , vol.22 , Issue.2 , pp. 245-268
    • Bennett, C.H.1
  • 10
    • 84877799221 scopus 로고    scopus 로고
    • Enhanced gradient for training restricted Boltzmann machines
    • KyungHyun Cho, Tapani Raiko, and Alexander Ilin. Enhanced gradient for training restricted Boltzmann machines. Neural Computation, 25(3):805-831, 2013.
    • (2013) Neural Computation , vol.25 , Issue.3 , pp. 805-831
    • Cho, K.1    Raiko, T.2    Ilin, A.3
  • 13
    • 0027560587 scopus 로고
    • Approximating probabilistic inference in Bayesian belief networks is NP-hard
    • Paul Dagum and Michael Luby. Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artificial Intelligence, 60(1):141-153, 1993.
    • (1993) Artificial Intelligence , vol.60 , Issue.1 , pp. 141-153
    • Dagum, P.1    Luby, M.2
  • 19
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Geoffrey Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18(7):1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.-W.3
  • 20
    • 0002834189 scopus 로고
    • Autoencoders, minimum description length, and Helmholtz free energy
    • J. D. Cowan, G. Tesauro, and J. Alspector eds, Morgan Kaufmann Publishers, Inc
    • Geoffrey E. Hinton and R. S. Zemel. Autoencoders, minimum description length, and Helmholtz free energy. In J. D. Cowan, G. Tesauro, and J. Alspector (eds.), Advances in Neural Information Processing Systems 6, pp. 3-10. Morgan Kaufmann Publishers, Inc., 1994.
    • (1994) Advances in Neural Information Processing Systems , vol.6 , pp. 3-10
    • Hinton, G.E.1    Zemel, R.S.2
  • 23
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul. An introduction to variational methods for graphical models. Machine learning, 37(2):183-233, 1999.
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 29
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 37
    • 44049116681 scopus 로고
    • Connectionist learning of belief networks
    • Radford M. Neal. Connectionist learning of belief networks. Artificial Intelligence, 56(1):71-113, 1992.
    • (1992) Artificial Intelligence , vol.56 , Issue.1 , pp. 71-113
    • Neal, R.M.1
  • 38
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Bruno A. Olshausen and David J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583):607-609, 1996.
    • (1996) Nature , vol.381 , Issue.6583 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 41
    • 33846519849 scopus 로고    scopus 로고
    • Building blocks for variational Bayesian learning of latent variable models
    • Tapani Raiko, Harri Valpola, Markus Harva, and Juha Karhunen. Building blocks for variational Bayesian learning of latent variable models. Journal of Machine Learning Research, 8:155-201, 2007.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 155-201
    • Raiko, T.1    Valpola, H.2    Harva, M.3    Karhunen, J.4
  • 50
    • 52949088587 scopus 로고    scopus 로고
    • Statistically optimal analysis of samples from multiple equilibrium states
    • Michael R. Shirts and John D. Chodera. Statistically optimal analysis of samples from multiple equilibrium states. The Journal of Chemical Physics, 129(12), 2008.
    • (2008) The Journal of Chemical Physics , vol.129 , Issue.12
    • Shirts, M.R.1    Chodera, J.D.2
  • 51
    • 0000329993 scopus 로고
    • Information processing in dynamical systems: Foundations of harmony theory
    • D. E. Rumelhart and J. L. McClelland eds, chapter 6,. MIT Press, Cambridge
    • Paul Smolensky. Information processing in dynamical systems: Foundations of harmony theory. In D. E. Rumelhart and J. L. McClelland (eds.), Parallel Distributed Processing, volume 1, chapter 6, pp. 194-281. MIT Press, Cambridge, 1986.
    • (1986) Parallel Distributed Processing , vol.1 , pp. 194-281
    • Smolensky, P.1
  • 53
    • 84986980101 scopus 로고
    • Sequential updating of conditional probabilities on directed graphical structures
    • David J. Spiegelhalter and Steffen L. Lauritzen. Sequential updating of conditional probabilities on directed graphical structures. Networks, 20(5):579-605, 1990.
    • (1990) Networks , vol.20 , Issue.5 , pp. 579-605
    • Spiegelhalter, D.J.1    Lauritzen, S.L.2
  • 55
    • 35949020425 scopus 로고
    • Replica Monte Carlo simulation of spin-glasses
    • Robert H. Swendsen and Jian-Sheng Wang. Replica Monte Carlo simulation of spin-glasses. Physical Review Letters, 57(21):2607, 1986.
    • (1986) Physical Review Letters , vol.57 , Issue.21 , pp. 2607
    • Swendsen, R.H.1    Wang, J.-S.2
  • 56
    • 56449086223 scopus 로고    scopus 로고
    • Training restricted Boltzmann machines using approximations to the likelihood gradient
    • Tijmen Tieleman. Training restricted Boltzmann machines using approximations to the likelihood gradient. In Proceedings of the 25th International Conference on Machine Learning, pp. 1064-1071. ACM, 2008.
    • (2008) Proceedings of the 25th International Conference on Machine Learning , pp. 1064-1071
    • Tieleman, T.1
  • 58
    • 0000337576 scopus 로고
    • Simple statistical gradient-following algorithms for connectionist reinforcement learning
    • Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning, 8(3-4):229-256, 1992.
    • (1992) Machine Learning , vol.8 , Issue.3-4 , pp. 229-256
    • Williams, R.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.