메뉴 건너뛰기




Volumn 37, Issue 2, 1999, Pages 183-233

Introduction to variational methods for graphical models

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; DATABASE SYSTEMS; GRAPHIC METHODS; LEARNING SYSTEMS; MARKOV PROCESSES; MATHEMATICAL MODELS; MATHEMATICAL TRANSFORMATIONS; NEURAL NETWORKS; PROBABILITY;

EID: 0033225865     PISSN: 08856125     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1007665907178     Document Type: Article
Times cited : (3356)

References (61)
  • 2
    • 0000353178 scopus 로고
    • A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
    • Baum, L. E., Petrie, T., Soules, G., & Weiss, N. (1970). A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. The Annals of Mathematical Statistics, 41, 164-171.
    • (1970) The Annals of Mathematical Statistics , vol.41 , pp. 164-171
    • Baum, L.E.1    Petrie, T.2    Soules, G.3    Weiss, N.4
  • 3
    • 84898985963 scopus 로고    scopus 로고
    • Approximating posterior distributions in belief networks using mixtures
    • M. Jordan, M. Kearns, & S. Solla (Eds.), Cambridge MA: MIT Press
    • Bishop, C. M., Lawrence, N., Jaakkola, T. S., & Jordan, M. I. (1998). Approximating posterior distributions in belief networks using mixtures. In M. Jordan, M. Kearns, & S. Solla (Eds.), Advances in neural information processing systems 10, Cambridge MA: MIT Press.
    • (1998) Advances in Neural Information Processing Systems , vol.10
    • Bishop, C.M.1    Lawrence, N.2    Jaakkola, T.S.3    Jordan, M.I.4
  • 5
    • 0027560587 scopus 로고
    • Approximating probabilistic inference in Bayesian belief networks is NP-hard
    • Dagum, P., & Luby, M. (1993). Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artificial Intelligence, 60, 141-153.
    • (1993) Artificial Intelligence , vol.60 , pp. 141-153
    • Dagum, P.1    Luby, M.2
  • 7
    • 84990553353 scopus 로고
    • A model for reasoning about causality and persistence
    • Dean, T., & Kanazawa, K. (1989). A model for reasoning about causality and persistence. Computational Intelligence, 5, 142-150.
    • (1989) Computational Intelligence , vol.5 , pp. 142-150
    • Dean, T.1    Kanazawa, K.2
  • 8
    • 0003329841 scopus 로고    scopus 로고
    • Bucket elimination: A unifying framework for probabilistic inference
    • M. I. Jordan (Ed.), Cambridge, MA: MIT Press
    • Dechter, R. (1999). Bucket elimination: A unifying framework for probabilistic inference. In M. I. Jordan (Ed.), Learning in graphical models. Cambridge, MA: MIT Press.
    • (1999) Learning in Graphical Models
    • Dechter, R.1
  • 11
    • 0039830342 scopus 로고    scopus 로고
    • Does the wake-sleep algorithm learn good density estimators?
    • D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Cambridge, MA: MIT Press
    • Frey, B., Hinton, G. E., & Dayan, P. (1996). Does the wake-sleep algorithm learn good density estimators? In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems 8. Cambridge, MA: MIT Press.
    • (1996) Advances in Neural Information Processing Systems , vol.8
    • Frey, B.1    Hinton, G.E.2    Dayan, P.3
  • 13
    • 0041001763 scopus 로고
    • The limitations of deterministic Boltzmann machine learning
    • Galland, C. (1993). The limitations of deterministic Boltzmann machine learning. Network, 4, 355-379.
    • (1993) Network , vol.4 , pp. 355-379
    • Galland, C.1
  • 14
    • 0005552604 scopus 로고    scopus 로고
    • Switching state-space models
    • Toronto: Department of Computer Science, University of Toronto
    • Ghahramani, Z., & Hinton, G. E. (1996). Switching state-space models. (Technical Report CRG-TR-96-3). Toronto: Department of Computer Science, University of Toronto.
    • (1996) Technical Report CRG-TR-96-3
    • Ghahramani, Z.1    Hinton, G.E.2
  • 15
    • 0031268341 scopus 로고    scopus 로고
    • Factorial Hidden Markov models
    • Ghahramani, Z., & Jordan, M. I. (1997). Factorial Hidden Markov models. Machine Learning, 29, 245-273.
    • (1997) Machine Learning , vol.29 , pp. 245-273
    • Ghahramani, Z.1    Jordan, M.I.2
  • 16
    • 0001178202 scopus 로고
    • A language and a program for complex Bayesian modelling
    • Gilks, W., Thomas, A., & Spiegelhalter, D. (1994). A language and a program for complex Bayesian modelling. The Statistician, 43, 169-178.
    • (1994) The Statistician , vol.43 , pp. 169-178
    • Gilks, W.1    Thomas, A.2    Spiegelhalter, D.3
  • 17
    • 0002370418 scopus 로고    scopus 로고
    • A tutorial on learning with Bayesian networks
    • M. I. Jordan (Ed.), Cambridge, MA: MIT Press
    • Heckerman, D. (1999). A tutorial on learning with Bayesian networks. In M. I. Jordan (Ed.), Learning in graphical models. Cambridge, MA: MIT Press.
    • (1999) Learning in Graphical Models
    • Heckerman, D.1
  • 19
    • 0000999440 scopus 로고
    • Learning and relearning in Boltzmann machines
    • D. E. Rumelhart & J. L. McClelland (Eds.), Cambridge, MA: MIT Press
    • Hinton, G. E., & Sejnowski, T. (1986). Learning and relearning in Boltzmann machines. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing (Vol. 1). Cambridge, MA: MIT Press.
    • (1986) Parallel Distributed Processing , vol.1
    • Hinton, G.E.1    Sejnowski, T.2
  • 21
    • 0029652445 scopus 로고
    • The wake-sleep algorithm for unsupervised neural networks
    • Hinton, G. E., Dayan, P., Frey, B., & Neal, R. M. (1995). The wake-sleep algorithm for unsupervised neural networks. Science, 268, 1158-1161.
    • (1995) Science , vol.268 , pp. 1158-1161
    • Hinton, G.E.1    Dayan, P.2    Frey, B.3    Neal, R.M.4
  • 22
    • 0003786520 scopus 로고    scopus 로고
    • A hierarchical community of experts
    • M. I. Jordan (Ed.), Cambridge, MA: MIT Press
    • Hinton, G. E., Sallans, B., & Ghahramani, Z. (1999). A hierarchical community of experts. In M. I. Jordan (Ed.), Learning in graphical models. Cambridge, MA: MIT Press.
    • (1999) Learning in Graphical Models
    • Hinton, G.E.1    Sallans, B.2    Ghahramani, Z.3
  • 26
    • 0342525688 scopus 로고    scopus 로고
    • Recursive algorithms for approximating probabilities in graphical models
    • M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), Cambridge, MA: MIT Press
    • Jaakkola, T. S., & Jordan, M. I. (1997a). Recursive algorithms for approximating probabilities in graphical models. In M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), Advances in neural information processing systems 9. Cambridge, MA: MIT Press.
    • (1997) Advances in Neural Information Processing Systems , vol.9
    • Jaakkola, T.S.1    Jordan, M.I.2
  • 28
    • 0001837853 scopus 로고    scopus 로고
    • Improving the mean field approximation via the use of mixture distributions
    • M. I. Jordan (Ed.), Cambridge, MA: MIT Press
    • Jaakkola, T. S., & Jordan, M. I. (1999a). Improving the mean field approximation via the use of mixture distributions. In M. I. Jordan (Ed.), Learning in graphical models. Cambridge, MA: MIT Press.
    • (1999) Learning in Graphical Models
    • Jaakkola, T.S.1    Jordan, M.I.2
  • 34
    • 84899026353 scopus 로고    scopus 로고
    • Hidden Markov decision trees
    • M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), Cambridge, MA: MIT Press
    • Jordan, M. I., Ghahramani, Z., & Saul, L. K. (1997). Hidden Markov decision trees. In M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), Advances in neural information processing systems 9. Cambridge, MA: MIT Press.
    • (1997) Advances in Neural Information Processing Systems , vol.9
    • Jordan, M.I.1    Ghahramani, Z.2    Saul, L.K.3
  • 36
    • 0008091392 scopus 로고
    • Triangulation of graphs - Algorithms giving small total state space.
    • Department of Mathematics and Computer Science, Aalborg University, Denmark
    • Kjærulff, U. (1990). Triangulation of graphs - Algorithms giving small total state space. (Research Report R-90-09). Department of Mathematics and Computer Science, Aalborg University, Denmark.
    • (1990) Research Report R-90-09
    • Kjærulff, U.1
  • 37
    • 0038902662 scopus 로고
    • Reduction of computational complexity in Bayesian networks through removal of weak dependences
    • San Mateo, CA: Morgan Kaufmann
    • Kjærulff, U. (1994). Reduction of computational complexity in Bayesian networks through removal of weak dependences. Uncertainty and Artificial Intelligence: Proceedings of the Tenth Conference. San Mateo, CA: Morgan Kaufmann.
    • (1994) Uncertainty and Artificial Intelligence: Proceedings of the Tenth Conference
    • Kjærulff, U.1
  • 38
    • 0003598536 scopus 로고    scopus 로고
    • Unpublished manuscript. Cambridge: Department of Physics, University of Cambridge
    • MacKay, D. J. C. (1997). Ensemble learning for hidden Markov models. Unpublished manuscript. Cambridge: Department of Physics, University of Cambridge.
    • (1997) Ensemble Learning for Hidden Markov Models
    • MacKay, D.J.C.1
  • 40
    • 0003408496 scopus 로고    scopus 로고
    • Irvine, CA: Department of Information and Computer Science, University of California
    • Merz, C. J., & Murphy, P. M. (1996). UCI repository of machine learning databases. Irvine, CA: Department of Information and Computer Science, University of California.
    • (1996) UCI Repository of Machine Learning Databases
    • Merz, C.J.1    Murphy, P.M.2
  • 41
    • 44049116681 scopus 로고
    • Connectionist learning of belief networks
    • Neal, R. (1992). Connectionist learning of belief networks. Artificial Intelligence, 56, 71-113.
    • (1992) Artificial Intelligence , vol.56 , pp. 71-113
    • Neal, R.1
  • 42
    • 0004087397 scopus 로고
    • Probabilistic inference using Markov chain Monte Carlo methods.
    • Toronto: Department of Computer Science, University of Toronto
    • Neal, R. (1993). Probabilistic inference using Markov chain Monte Carlo methods. (Technical Report CRG-TR-93-1). Toronto: Department of Computer Science, University of Toronto.
    • (1993) Technical Report CRG-TR-93-1
    • Neal, R.1
  • 43
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • M. I. Jordan (Ed.), Cambridge, MA: MIT Press
    • Neal, R., & Hinton, G. E. (1999). A view of the EM algorithm that justifies incremental, sparse, and other variants. In M. I. Jordan (Ed.), Learning in graphical models. Cambridge, MA: MIT Press.
    • (1999) Learning in Graphical Models
    • Neal, R.1    Hinton, G.E.2
  • 46
    • 0001406440 scopus 로고
    • A mean field theory learning algorithm for neural networks
    • Peterson, C., & Anderson, J. R. (1987). A mean field theory learning algorithm for neural networks. Complex Systems, 1, 995-1019.
    • (1987) Complex Systems , vol.1 , pp. 995-1019
    • Peterson, C.1    Anderson, J.R.2
  • 50
    • 0008474526 scopus 로고
    • Learning in Boltzmann trees
    • Saul, L. K., & Jordan, M. I. (1994). Learning in Boltzmann trees. Neural Computation, 6, 1173-1183.
    • (1994) Neural Computation , vol.6 , pp. 1173-1183
    • Saul, L.K.1    Jordan, M.I.2
  • 52
    • 0003214942 scopus 로고    scopus 로고
    • Exploiting tractable substructures in intractable networks
    • D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Cambridge, MA: MIT Press
    • Saul, L. K., & Jordan, M. I. (1996). Exploiting tractable substructures in intractable networks. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems 8. Cambridge, MA: MIT Press.
    • (1996) Advances in Neural Information Processing Systems , vol.8
    • Saul, L.K.1    Jordan, M.I.2
  • 53
    • 0003383444 scopus 로고    scopus 로고
    • A mean field learning algorithm for unsupervised neural networks
    • M. I. Jordan (Ed.), Cambridge, MA: MIT Press
    • Saul, L. K., & Jordan, M. I. (1999). A mean field learning algorithm for unsupervised neural networks. In M. I. Jordan (Ed.), Learning in graphical models. Cambridge, MA: MIT Press.
    • (1999) Learning in Graphical Models
    • Saul, L.K.1    Jordan, M.I.2
  • 54
    • 0039086690 scopus 로고
    • Annealed theories of learning
    • J.-H. Oh, C. Kwon, S. Cho (Eds.), Singapore: World Scientific
    • Seung, S. (1995). Annealed theories of learning. In J.-H. Oh, C. Kwon, S. Cho (Eds.), Neural networks: The statistical mechanics perspectives. Singapore: World Scientific.
    • (1995) Neural Networks: The Statistical Mechanics Perspectives
    • Seung, S.1
  • 56
    • 0000251407 scopus 로고
    • Valuation-based systems for Bayesian decision analysis
    • Shenoy, P. P. (1992). Valuation-based systems for Bayesian decision analysis. Operations Research, 40, 463-484.
    • (1992) Operations Research , vol.40 , pp. 463-484
    • Shenoy, P.P.1
  • 57
    • 0026010360 scopus 로고
    • An empirical analysis of likelihood - Weighting simulation on a large, multiply connected medical belief network
    • Shwe, M. A., & Cooper, G. F. (1991). An empirical analysis of likelihood - Weighting simulation on a large, multiply connected medical belief network. Computers and Biomedical Research, 24, 453-475.
    • (1991) Computers and Biomedical Research , vol.24 , pp. 453-475
    • Shwe, M.A.1    Cooper, G.F.2
  • 59
    • 0031568356 scopus 로고    scopus 로고
    • Probabilistic independence networks for hidden Markov probability models
    • Smyth, P., Heckerman, D., & Jordan, M. I. (1997). Probabilistic independence networks for hidden Markov probability models. Neural Computation, 9, 227-270.
    • (1997) Neural Computation , vol.9 , pp. 227-270
    • Smyth, P.1    Heckerman, D.2    Jordan, M.I.3
  • 60
    • 0001878447 scopus 로고    scopus 로고
    • Bayesian methods for mixtures of experts
    • D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Cambridge, MA: MIT Press
    • Waterhouse, S., MacKay, D. J. C., & Robinson, T. (1996). Bayesian methods for mixtures of experts. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems 8. Cambridge, MA: MIT Press.
    • (1996) Advances in Neural Information Processing Systems , vol.8
    • Waterhouse, S.1    MacKay, D.J.C.2    Robinson, T.3
  • 61
    • 0009413082 scopus 로고
    • Mean field networks that learn to discriminate temporally distorted strings
    • D. S. Touretzky, J. Elman, T. Sejnowski, & G. E. Hinton (Eds.), San Mateo, CA: Morgan Kaufmann
    • Williams, C. K. I., & Hinton, G. E. (1991). Mean field networks that learn to discriminate temporally distorted strings. In D. S. Touretzky, J. Elman, T. Sejnowski, & G. E. Hinton (Eds.), Proceedings of the 1990 Connectionist Models Summer School. San Mateo, CA: Morgan Kaufmann.
    • (1991) Proceedings of the 1990 Connectionist Models Summer School
    • Williams, C.K.I.1    Hinton, G.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.