-
2
-
-
0000353178
-
A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
-
Baum, L. E., Petrie, T., Soules, G., & Weiss, N. (1970). A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. The Annals of Mathematical Statistics, 41, 164-171.
-
(1970)
The Annals of Mathematical Statistics
, vol.41
, pp. 164-171
-
-
Baum, L.E.1
Petrie, T.2
Soules, G.3
Weiss, N.4
-
3
-
-
84898985963
-
Approximating posterior distributions in belief networks using mixtures
-
M. Jordan, M. Kearns, & S. Solla (Eds.), Cambridge MA: MIT Press
-
Bishop, C. M., Lawrence, N., Jaakkola, T. S., & Jordan, M. I. (1998). Approximating posterior distributions in belief networks using mixtures. In M. Jordan, M. Kearns, & S. Solla (Eds.), Advances in neural information processing systems 10, Cambridge MA: MIT Press.
-
(1998)
Advances in Neural Information Processing Systems
, vol.10
-
-
Bishop, C.M.1
Lawrence, N.2
Jaakkola, T.S.3
Jordan, M.I.4
-
5
-
-
0027560587
-
Approximating probabilistic inference in Bayesian belief networks is NP-hard
-
Dagum, P., & Luby, M. (1993). Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artificial Intelligence, 60, 141-153.
-
(1993)
Artificial Intelligence
, vol.60
, pp. 141-153
-
-
Dagum, P.1
Luby, M.2
-
6
-
-
0029372831
-
The Helmholtz Machine
-
Dayan, P., Hinton, G. E., Neal, R., & Zemel, R. S. (1995). The Helmholtz Machine. Neural Computation, 7, 889-904.
-
(1995)
Neural Computation
, vol.7
, pp. 889-904
-
-
Dayan, P.1
Hinton, G.E.2
Neal, R.3
Zemel, R.S.4
-
7
-
-
84990553353
-
A model for reasoning about causality and persistence
-
Dean, T., & Kanazawa, K. (1989). A model for reasoning about causality and persistence. Computational Intelligence, 5, 142-150.
-
(1989)
Computational Intelligence
, vol.5
, pp. 142-150
-
-
Dean, T.1
Kanazawa, K.2
-
8
-
-
0003329841
-
Bucket elimination: A unifying framework for probabilistic inference
-
M. I. Jordan (Ed.), Cambridge, MA: MIT Press
-
Dechter, R. (1999). Bucket elimination: A unifying framework for probabilistic inference. In M. I. Jordan (Ed.), Learning in graphical models. Cambridge, MA: MIT Press.
-
(1999)
Learning in Graphical Models
-
-
Dechter, R.1
-
9
-
-
0002629270
-
Maximum-likelihood from incomplete data via the EM algorithm
-
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum-likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, B39, 1-38.
-
(1977)
Journal of the Royal Statistical Society
, vol.B39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
11
-
-
0039830342
-
Does the wake-sleep algorithm learn good density estimators?
-
D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Cambridge, MA: MIT Press
-
Frey, B., Hinton, G. E., & Dayan, P. (1996). Does the wake-sleep algorithm learn good density estimators? In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems 8. Cambridge, MA: MIT Press.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
-
-
Frey, B.1
Hinton, G.E.2
Dayan, P.3
-
13
-
-
0041001763
-
The limitations of deterministic Boltzmann machine learning
-
Galland, C. (1993). The limitations of deterministic Boltzmann machine learning. Network, 4, 355-379.
-
(1993)
Network
, vol.4
, pp. 355-379
-
-
Galland, C.1
-
14
-
-
0005552604
-
Switching state-space models
-
Toronto: Department of Computer Science, University of Toronto
-
Ghahramani, Z., & Hinton, G. E. (1996). Switching state-space models. (Technical Report CRG-TR-96-3). Toronto: Department of Computer Science, University of Toronto.
-
(1996)
Technical Report CRG-TR-96-3
-
-
Ghahramani, Z.1
Hinton, G.E.2
-
15
-
-
0031268341
-
Factorial Hidden Markov models
-
Ghahramani, Z., & Jordan, M. I. (1997). Factorial Hidden Markov models. Machine Learning, 29, 245-273.
-
(1997)
Machine Learning
, vol.29
, pp. 245-273
-
-
Ghahramani, Z.1
Jordan, M.I.2
-
16
-
-
0001178202
-
A language and a program for complex Bayesian modelling
-
Gilks, W., Thomas, A., & Spiegelhalter, D. (1994). A language and a program for complex Bayesian modelling. The Statistician, 43, 169-178.
-
(1994)
The Statistician
, vol.43
, pp. 169-178
-
-
Gilks, W.1
Thomas, A.2
Spiegelhalter, D.3
-
17
-
-
0002370418
-
A tutorial on learning with Bayesian networks
-
M. I. Jordan (Ed.), Cambridge, MA: MIT Press
-
Heckerman, D. (1999). A tutorial on learning with Bayesian networks. In M. I. Jordan (Ed.), Learning in graphical models. Cambridge, MA: MIT Press.
-
(1999)
Learning in Graphical Models
-
-
Heckerman, D.1
-
19
-
-
0000999440
-
Learning and relearning in Boltzmann machines
-
D. E. Rumelhart & J. L. McClelland (Eds.), Cambridge, MA: MIT Press
-
Hinton, G. E., & Sejnowski, T. (1986). Learning and relearning in Boltzmann machines. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing (Vol. 1). Cambridge, MA: MIT Press.
-
(1986)
Parallel Distributed Processing
, vol.1
-
-
Hinton, G.E.1
Sejnowski, T.2
-
21
-
-
0029652445
-
The wake-sleep algorithm for unsupervised neural networks
-
Hinton, G. E., Dayan, P., Frey, B., & Neal, R. M. (1995). The wake-sleep algorithm for unsupervised neural networks. Science, 268, 1158-1161.
-
(1995)
Science
, vol.268
, pp. 1158-1161
-
-
Hinton, G.E.1
Dayan, P.2
Frey, B.3
Neal, R.M.4
-
22
-
-
0003786520
-
A hierarchical community of experts
-
M. I. Jordan (Ed.), Cambridge, MA: MIT Press
-
Hinton, G. E., Sallans, B., & Ghahramani, Z. (1999). A hierarchical community of experts. In M. I. Jordan (Ed.), Learning in graphical models. Cambridge, MA: MIT Press.
-
(1999)
Learning in Graphical Models
-
-
Hinton, G.E.1
Sallans, B.2
Ghahramani, Z.3
-
23
-
-
0006448878
-
Bounded conditioning: Flexible inference for decisions under scarce resources
-
Mountain View, CA: Association for UAI
-
Horvitz, E. J., Suermondt, H. J., & Cooper, G. F. (1989). Bounded conditioning: Flexible inference for decisions under scarce resources. Conference on Uncertainty in Artificial Intelligence: Proceedings of the Fifth Conference. Mountain View, CA: Association for UAI.
-
(1989)
Conference on Uncertainty in Artificial Intelligence: Proceedings of the Fifth Conference
-
-
Horvitz, E.J.1
Suermondt, H.J.2
Cooper, G.F.3
-
26
-
-
0342525688
-
Recursive algorithms for approximating probabilities in graphical models
-
M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), Cambridge, MA: MIT Press
-
Jaakkola, T. S., & Jordan, M. I. (1997a). Recursive algorithms for approximating probabilities in graphical models. In M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), Advances in neural information processing systems 9. Cambridge, MA: MIT Press.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
-
-
Jaakkola, T.S.1
Jordan, M.I.2
-
28
-
-
0001837853
-
Improving the mean field approximation via the use of mixture distributions
-
M. I. Jordan (Ed.), Cambridge, MA: MIT Press
-
Jaakkola, T. S., & Jordan, M. I. (1999a). Improving the mean field approximation via the use of mixture distributions. In M. I. Jordan (Ed.), Learning in graphical models. Cambridge, MA: MIT Press.
-
(1999)
Learning in Graphical Models
-
-
Jaakkola, T.S.1
Jordan, M.I.2
-
30
-
-
0001022491
-
Blocking-Gibbs sampling in very large probabilistic expert systems
-
Jensen, C. S., Kong, A., & Kjærulff, U. (1995). Blocking-Gibbs sampling in very large probabilistic expert systems. International Journal of Human-Computer Studies, 42, 647-666.
-
(1995)
International Journal of Human-Computer Studies
, vol.42
, pp. 647-666
-
-
Jensen, C.S.1
Kong, A.2
Kjærulff, U.3
-
34
-
-
84899026353
-
Hidden Markov decision trees
-
M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), Cambridge, MA: MIT Press
-
Jordan, M. I., Ghahramani, Z., & Saul, L. K. (1997). Hidden Markov decision trees. In M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), Advances in neural information processing systems 9. Cambridge, MA: MIT Press.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
-
-
Jordan, M.I.1
Ghahramani, Z.2
Saul, L.K.3
-
35
-
-
0003072903
-
Stochastic simulation algorithms for dynamic probabilistic networks
-
San Mateo, CA: Morgan Kaufmann
-
Kanazawa, K., Koller, D., & Russell, S. (1995). Stochastic simulation algorithms for dynamic probabilistic networks. Uncertainty and Artificial Intelligence: Proceedings of the Eleventh Conference. San Mateo, CA: Morgan Kaufmann.
-
(1995)
Uncertainty and Artificial Intelligence: Proceedings of the Eleventh Conference
-
-
Kanazawa, K.1
Koller, D.2
Russell, S.3
-
36
-
-
0008091392
-
Triangulation of graphs - Algorithms giving small total state space.
-
Department of Mathematics and Computer Science, Aalborg University, Denmark
-
Kjærulff, U. (1990). Triangulation of graphs - Algorithms giving small total state space. (Research Report R-90-09). Department of Mathematics and Computer Science, Aalborg University, Denmark.
-
(1990)
Research Report R-90-09
-
-
Kjærulff, U.1
-
37
-
-
0038902662
-
Reduction of computational complexity in Bayesian networks through removal of weak dependences
-
San Mateo, CA: Morgan Kaufmann
-
Kjærulff, U. (1994). Reduction of computational complexity in Bayesian networks through removal of weak dependences. Uncertainty and Artificial Intelligence: Proceedings of the Tenth Conference. San Mateo, CA: Morgan Kaufmann.
-
(1994)
Uncertainty and Artificial Intelligence: Proceedings of the Tenth Conference
-
-
Kjærulff, U.1
-
38
-
-
0003598536
-
-
Unpublished manuscript. Cambridge: Department of Physics, University of Cambridge
-
MacKay, D. J. C. (1997). Ensemble learning for hidden Markov models. Unpublished manuscript. Cambridge: Department of Physics, University of Cambridge.
-
(1997)
Ensemble Learning for Hidden Markov Models
-
-
MacKay, D.J.C.1
-
39
-
-
0032001728
-
Turbo decoding as an instance of Pearl's "belief propagation algorithm."
-
McEliece, R. J., MacKay, D. J. C., & Cheng, J.-F. (1998). Turbo decoding as an instance of Pearl's "belief propagation algorithm." IEEE Journal on Selected Areas in Communication, 16, 140-152.
-
(1998)
IEEE Journal on Selected Areas in Communication
, vol.16
, pp. 140-152
-
-
McEliece, R.J.1
MacKay, D.J.C.2
Cheng, J.-F.3
-
40
-
-
0003408496
-
-
Irvine, CA: Department of Information and Computer Science, University of California
-
Merz, C. J., & Murphy, P. M. (1996). UCI repository of machine learning databases. Irvine, CA: Department of Information and Computer Science, University of California.
-
(1996)
UCI Repository of Machine Learning Databases
-
-
Merz, C.J.1
Murphy, P.M.2
-
41
-
-
44049116681
-
Connectionist learning of belief networks
-
Neal, R. (1992). Connectionist learning of belief networks. Artificial Intelligence, 56, 71-113.
-
(1992)
Artificial Intelligence
, vol.56
, pp. 71-113
-
-
Neal, R.1
-
42
-
-
0004087397
-
Probabilistic inference using Markov chain Monte Carlo methods.
-
Toronto: Department of Computer Science, University of Toronto
-
Neal, R. (1993). Probabilistic inference using Markov chain Monte Carlo methods. (Technical Report CRG-TR-93-1). Toronto: Department of Computer Science, University of Toronto.
-
(1993)
Technical Report CRG-TR-93-1
-
-
Neal, R.1
-
43
-
-
0002788893
-
A view of the EM algorithm that justifies incremental, sparse, and other variants
-
M. I. Jordan (Ed.), Cambridge, MA: MIT Press
-
Neal, R., & Hinton, G. E. (1999). A view of the EM algorithm that justifies incremental, sparse, and other variants. In M. I. Jordan (Ed.), Learning in graphical models. Cambridge, MA: MIT Press.
-
(1999)
Learning in Graphical Models
-
-
Neal, R.1
Hinton, G.E.2
-
46
-
-
0001406440
-
A mean field theory learning algorithm for neural networks
-
Peterson, C., & Anderson, J. R. (1987). A mean field theory learning algorithm for neural networks. Complex Systems, 1, 995-1019.
-
(1987)
Complex Systems
, vol.1
, pp. 995-1019
-
-
Peterson, C.1
Anderson, J.R.2
-
50
-
-
0008474526
-
Learning in Boltzmann trees
-
Saul, L. K., & Jordan, M. I. (1994). Learning in Boltzmann trees. Neural Computation, 6, 1173-1183.
-
(1994)
Neural Computation
, vol.6
, pp. 1173-1183
-
-
Saul, L.K.1
Jordan, M.I.2
-
51
-
-
0029679189
-
Mean field theory for sigmoid belief networks
-
Saul, L. K., Jaakkola, T. S., & Jordan, M. I. (1996). Mean field theory for sigmoid belief networks. Journal of Artificial Intelligence Research, 4, 61-76.
-
(1996)
Journal of Artificial Intelligence Research
, vol.4
, pp. 61-76
-
-
Saul, L.K.1
Jaakkola, T.S.2
Jordan, M.I.3
-
52
-
-
0003214942
-
Exploiting tractable substructures in intractable networks
-
D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Cambridge, MA: MIT Press
-
Saul, L. K., & Jordan, M. I. (1996). Exploiting tractable substructures in intractable networks. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems 8. Cambridge, MA: MIT Press.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
-
-
Saul, L.K.1
Jordan, M.I.2
-
53
-
-
0003383444
-
A mean field learning algorithm for unsupervised neural networks
-
M. I. Jordan (Ed.), Cambridge, MA: MIT Press
-
Saul, L. K., & Jordan, M. I. (1999). A mean field learning algorithm for unsupervised neural networks. In M. I. Jordan (Ed.), Learning in graphical models. Cambridge, MA: MIT Press.
-
(1999)
Learning in Graphical Models
-
-
Saul, L.K.1
Jordan, M.I.2
-
54
-
-
0039086690
-
Annealed theories of learning
-
J.-H. Oh, C. Kwon, S. Cho (Eds.), Singapore: World Scientific
-
Seung, S. (1995). Annealed theories of learning. In J.-H. Oh, C. Kwon, S. Cho (Eds.), Neural networks: The statistical mechanics perspectives. Singapore: World Scientific.
-
(1995)
Neural Networks: The Statistical Mechanics Perspectives
-
-
Seung, S.1
-
55
-
-
0008533155
-
Global conditioning for probabilistic inference in belief networks
-
San Mateo, CA: Morgan Kaufmann
-
Shachter, R. D., Andersen, S. K., & Szolovits, P. (1994). Global conditioning for probabilistic inference in belief networks. Uncertainty and Artificial Intelligence: Proceedings of the Tenth Conference. San Mateo, CA: Morgan Kaufmann.
-
(1994)
Uncertainty and Artificial Intelligence: Proceedings of the Tenth Conference
-
-
Shachter, R.D.1
Andersen, S.K.2
Szolovits, P.3
-
56
-
-
0000251407
-
Valuation-based systems for Bayesian decision analysis
-
Shenoy, P. P. (1992). Valuation-based systems for Bayesian decision analysis. Operations Research, 40, 463-484.
-
(1992)
Operations Research
, vol.40
, pp. 463-484
-
-
Shenoy, P.P.1
-
57
-
-
0026010360
-
An empirical analysis of likelihood - Weighting simulation on a large, multiply connected medical belief network
-
Shwe, M. A., & Cooper, G. F. (1991). An empirical analysis of likelihood - Weighting simulation on a large, multiply connected medical belief network. Computers and Biomedical Research, 24, 453-475.
-
(1991)
Computers and Biomedical Research
, vol.24
, pp. 453-475
-
-
Shwe, M.A.1
Cooper, G.F.2
-
58
-
-
0026056182
-
Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base
-
Shwe, M. A., Middleton, B., Heckerman, D. E., Henrion, M., Horvitz, E. J., Lehmann, H. P., & Cooper, G. F. (1991). Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base. Meth. Inform. Med., 30, 241-255.
-
(1991)
Meth. Inform. Med.
, vol.30
, pp. 241-255
-
-
Shwe, M.A.1
Middleton, B.2
Heckerman, D.E.3
Henrion, M.4
Horvitz, E.J.5
Lehmann, H.P.6
Cooper, G.F.7
-
59
-
-
0031568356
-
Probabilistic independence networks for hidden Markov probability models
-
Smyth, P., Heckerman, D., & Jordan, M. I. (1997). Probabilistic independence networks for hidden Markov probability models. Neural Computation, 9, 227-270.
-
(1997)
Neural Computation
, vol.9
, pp. 227-270
-
-
Smyth, P.1
Heckerman, D.2
Jordan, M.I.3
-
60
-
-
0001878447
-
Bayesian methods for mixtures of experts
-
D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Cambridge, MA: MIT Press
-
Waterhouse, S., MacKay, D. J. C., & Robinson, T. (1996). Bayesian methods for mixtures of experts. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems 8. Cambridge, MA: MIT Press.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
-
-
Waterhouse, S.1
MacKay, D.J.C.2
Robinson, T.3
-
61
-
-
0009413082
-
Mean field networks that learn to discriminate temporally distorted strings
-
D. S. Touretzky, J. Elman, T. Sejnowski, & G. E. Hinton (Eds.), San Mateo, CA: Morgan Kaufmann
-
Williams, C. K. I., & Hinton, G. E. (1991). Mean field networks that learn to discriminate temporally distorted strings. In D. S. Touretzky, J. Elman, T. Sejnowski, & G. E. Hinton (Eds.), Proceedings of the 1990 Connectionist Models Summer School. San Mateo, CA: Morgan Kaufmann.
-
(1991)
Proceedings of the 1990 Connectionist Models Summer School
-
-
Williams, C.K.I.1
Hinton, G.E.2
|