-
7
-
-
84885591253
-
Training energy-based models for time-series imputation
-
Brakel, Philemon, Stroobandt, Dirk, and Schrauwen, Benjamin. Training energy-based models for time-series imputation. Journal of Machine Learning Research, 14(1):2771-2797, 2013.
-
(2013)
Journal of Machine Learning Research
, vol.14
, Issue.1
, pp. 2771-2797
-
-
Brakel, P.1
Stroobandt, D.2
Schrauwen, B.3
-
8
-
-
84969930631
-
Learning deep structured models
-
Chen, Liang-Chieh, Schwing, Alexander G, Yuille, Alan L, and Urtasun, Raquel. Learning deep structured models. In Proceedings of the International Conference on Machine learning, 2015.
-
(2015)
Proceedings of the International Conference on Machine Learning
-
-
Chen, L.-C.1
Schwing, A.G.2
Yuille, A.L.3
Urtasun, R.4
-
10
-
-
84869036002
-
Generic methods for optimization-based modeling
-
Domke, Justin. Generic methods for optimization-based modeling. In AISTATS, volume 22, pp. 318-326, 2012.
-
(2012)
AISTATS
, vol.22
, pp. 318-326
-
-
Domke, J.1
-
12
-
-
56449092085
-
Efficient projections onto the 1 1-ball for learning in high dimensions
-
Duchi, John, Shalev-Shwartz, Shai, Singer, Yoram, and Chandra, Tushar. Efficient projections onto the 1 1-ball for learning in high dimensions. In Proceedings of the 25th international conference on Machine learning, pp. 272-279, 2008.
-
(2008)
Proceedings of the 25th International Conference on Machine Learning
, pp. 272-279
-
-
Duchi, J.1
Shalev-Shwartz, S.2
Singer, Y.3
Chandra, T.4
-
13
-
-
0001680771
-
Sensitivity and stability analysis for nonlinear programming
-
Fiacco, Anthony V and Ishizuka, Yo. Sensitivity and stability analysis for nonlinear programming. Annals of Operations Research, 27(1):215-235, 1990.
-
(1990)
Annals of Operations Research
, vol.27
, Issue.1
, pp. 215-235
-
-
Fiacco, A.V.1
Ishizuka, Y.2
-
14
-
-
84898988737
-
Multi-prediction deep boltzmann machines
-
Goodfellow, Ian, Mirza, Mehdi, Courville, Aaron, and Bengio, Yoshua. Multi-prediction deep boltzmann machines. In Advances in Neural Information Processing Systems, pp. 548-556, 2013.
-
(2013)
Advances in Neural Information Processing Systems
, pp. 548-556
-
-
Goodfellow, I.1
Mirza, M.2
Courville, A.3
Bengio, Y.4
-
15
-
-
84937849144
-
Generative adversarial nets
-
Goodfellow, Ian, Pouget-Abadie, Jean, Mirza, Mehdi, Xu, Bing, Warde-Farley, David, Ozair, Sherjil, Courville, Aaron, and Bengio, Yoshua. Generative adversarial nets. In Advances in Neural Information Processing Systems, pp. 2672-2680, 2014.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
16
-
-
85044331771
-
-
Gould, Stephen, Fernando, Basura, Cherian, Anoop, Anderson, Peter, Santa Cruz, Rodrigo, and Guo, Edison. On differentiating parameterized argmin and argmax problems with application to bi-level optimization. arXiv preprint arXiv:1607.05447, 2016.
-
(2016)
On Differentiating Parameterized Argmin and Argmax Problems with Application to Bi-level Optimization
-
-
Gould, S.1
Fernando, B.2
Cherian, A.3
Anderson, P.4
Santa Cruz, R.5
Guo, E.6
-
18
-
-
85017433100
-
Composing graphical models with neural networks for structured representations and fast inference
-
Johnson, Matthew, Duvenaud, David K, Wiltschko, Alex, Adams, Ryan P, and Datta, Sandeep R. Composing graphical models with neural networks for structured representations and fast inference. In Advances in Neural Information Processing Systems, pp. 2946-2954, 2016.
-
(2016)
Advances in Neural Information Processing Systems
, pp. 2946-2954
-
-
Johnson, M.1
Duvenaud, D.K.2
Wiltschko, A.3
Adams, R.P.4
Datta, S.R.5
-
21
-
-
84879933290
-
A bilevel optimization approach for parameter learning in variational models
-
Kunisch, Karl and Pock, Thomas. A bilevel optimization approach for parameter learning in variational models. SIAM Journal on Imaging Sciences, 6(2):938-983, 2013.
-
(2013)
SIAM Journal on Imaging Sciences
, vol.6
, Issue.2
, pp. 938-983
-
-
Kunisch, K.1
Pock, T.2
-
22
-
-
35148893484
-
A tutorial on energy-based learning
-
LeCun, Yann, Chopra, Sumit, Hadsell, Raia, Ranzato, M, and Huang, F. A tutorial on energy-based learning. Predicting structured data, 1:0, 2006.
-
(2006)
Predicting Structured Data
, vol.1
, pp. 0
-
-
LeCun, Y.1
Chopra, S.2
Hadsell, R.3
Ranzato, M.4
Huang, F.5
-
23
-
-
0027696448
-
On solving constrained optimization problems with neural networks: A penalty method approach
-
Lillo, Walter E, Loh, Mei Heng, Hui, Stefen, and Zak, Stanislaw H. On solving constrained optimization problems with neural networks: A penalty method approach. IEEE Transactions on neural networks, 4(6):931-940, 1993.
-
(1993)
IEEE Transactions on Neural Networks
, vol.4
, Issue.6
, pp. 931-940
-
-
Lillo, W.E.1
Loh, M.H.2
Hui, S.3
Zak, S.H.4
-
24
-
-
0000526220
-
Numerical simulation of time-dependent contact and friction problems in rigid body mechanics
-
Lötstedt, Per. Numerical simulation of time-dependent contact and friction problems in rigid body mechanics. SIAM journal on scientific and statistical computing, 5(2):370-393, 1984.
-
(1984)
SIAM Journal on Scientific and Statistical Computing
, vol.5
, Issue.2
, pp. 370-393
-
-
Lötstedt, P.1
-
26
-
-
84857419890
-
Task-driven dictionary learning
-
Mairai, Julien, Bach, Francis, and Ponce, Jean. Task-driven dictionary learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(4):791-804, 2012.
-
(2012)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.34
, Issue.4
, pp. 791-804
-
-
Mairai, J.1
Bach, F.2
Ponce, J.3
-
27
-
-
84855997019
-
Cvxgen: A code generator for embedded convex optimization
-
Mattingley, Jacob and Boyd, Stephen. Cvxgen: A code generator for embedded convex optimization. Optimization and Engineering, 13(1):1-27, 2012.
-
(2012)
Optimization and Engineering
, vol.13
, Issue.1
, pp. 1-27
-
-
Mattingley, J.1
Boyd, S.2
-
28
-
-
85032877289
-
-
Metz, Luke, Poole, Ben, Pfau, David, and Sohl-Dickstein, Jascha. Unrolled generative adversarial networks. arXiv preprint arXiv:1611.02163, 2016.
-
(2016)
Unrolled Generative Adversarial Networks
-
-
Metz, L.1
Poole, B.2
Pfau, D.3
Sohl-Dickstein, J.4
-
29
-
-
0033135677
-
Model predictive control: Past, present and future
-
Morari, Manfred and Lee, Jay H. Model predictive control: past, present and future. Computers & Chemical Engineering, 23(4):667-682, 1999.
-
(1999)
Computers & Chemical Engineering
, vol.23
, Issue.4
, pp. 667-682
-
-
Morari, M.1
Lee, J.H.2
-
30
-
-
84863373241
-
Conditional neural fields
-
Peng, Jian, Bo, Liefeng, and Xu, Jinbo. Conditional neural fields. In Advances in neural information processing systems, pp. 1419-1427, 2009.
-
(2009)
Advances in Neural Information Processing Systems
, pp. 1419-1427
-
-
Peng, J.1
Bo, L.2
Xu, J.3
-
34
-
-
84862282438
-
Empirical risk minimization of graphical model parameters given approximate inference, decoding, and model structure
-
Stoyanov, Veselin, Ropson, Alexander, and Eisner, Jason. Empirical risk minimization of graphical model parameters given approximate inference, decoding, and model structure. In AlSTATS, pp. 725-733, 2011.
-
(2011)
AlSTATS
, pp. 725-733
-
-
Stoyanov, V.1
Ropson, A.2
Eisner, J.3
-
35
-
-
34948821220
-
Learning Gaussian conditional random fields for low-level vision
-
IEEE
-
Tappen, Marshall F, Liu, Ce, Adelson, Edward H, and Freeman, William T. Learning gaussian conditional random fields for low-level vision. In Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on, pp. 1-8. IEEE, 2007.
-
(2007)
Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on
, pp. 1-8
-
-
Tappen, M.F.1
Liu, C.2
Adelson, E.H.3
Freeman, W.T.4
-
36
-
-
84973861983
-
Conditional random fields as recurrent neural networks
-
Zheng, Shuai, Jayasumana, Sadeep, Romera-Paredes, Bernardino, Vineet, Vibhav, Su, Zhizhong, Du, Dalong, Huang, Chang, and Torr, Philip HS. Conditional random fields as recurrent neural networks. In Proceedings of the IEEE International Conference on Computer Vision, pp. 1529-1537, 2015.
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 1529-1537
-
-
Zheng, S.1
Jayasumana, S.2
Romera-Paredes, B.3
Vineet, V.4
Su, Z.5
Du, D.6
Huang, C.7
Torr, P.H.S.8
|