메뉴 건너뛰기




Volumn , Issue , 2016, Pages 2207-2215

Sequential neural models with stochastic layers

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER MUSIC; RECURRENT NEURAL NETWORKS; STATE SPACE METHODS; STOCHASTIC SYSTEMS; STORMS; UNCERTAINTY ANALYSIS;

EID: 85019203505     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (418)

References (24)
  • 5
  • 12
    • 84965123118 scopus 로고    scopus 로고
    • Deep temporal sigmoid belief networks for sequence modeling
    • Z. Gan, C. Li, R. Henao, D. E. Carlson, and L. Carin. Deep temporal sigmoid belief networks for sequence modeling. In NIPS, pages 2458-2466, 2015.
    • (2015) NIPS , pp. 2458-2466
    • Gan, Z.1    Li, C.2    Henao, R.3    Carlson, D.E.4    Carin, L.5
  • 13
    • 84986959240 scopus 로고
    • Identifying independence in Bayesian networks
    • D. Geiger, T. Verma, and J. Pearl. Identifying independence in Bayesian networks. Networks, 20:507-534, 1990.
    • (1990) Networks , vol.20 , pp. 507-534
    • Geiger, D.1    Verma, T.2    Pearl, J.3
  • 14
    • 84983208884 scopus 로고    scopus 로고
    • DRAW: A recurrent neural network for image generation
    • K. Gregor, I. Danihelka, A. Graves, and D. Wierstra. DRAW: A recurrent neural network for image generation. In ICML, 2015.
    • (2015) ICML
    • Gregor, K.1    Danihelka, I.2    Graves, A.3    Wierstra, D.4
  • 15
    • 84965167029 scopus 로고    scopus 로고
    • Neural adaptive sequential Monte Carlo
    • S. Gu, Z. Ghahramani, and R. E. Turner. Neural adaptive sequential Monte Carlo. In NIPS, pages 2611-2619, 2015.
    • (2015) NIPS , pp. 2611-2619
    • Gu, S.1    Ghahramani, Z.2    Turner, R.E.3
  • 17
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational methods for graphical models. Machine Learning, 37(2):183-233, 1999.
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 19
    • 85083952489 scopus 로고    scopus 로고
    • Auto-encoding variational bayes
    • D. Kingma and M. Welling. Auto-encoding variational Bayes. In ICLR, 2014.
    • (2014) ICLR
    • Kingma, D.1    Welling, M.2
  • 22
    • 84867133463 scopus 로고    scopus 로고
    • Variational Bayesian inference with stochastic search
    • J. W. Paisley, D. M. Blei, and M. I. Jordan. Variational Bayesian inference with stochastic search. In ICML, 2012.
    • (2012) ICML
    • Paisley, J.W.1    Blei, D.M.2    Jordan, M.I.3
  • 23
    • 84919796093 scopus 로고    scopus 로고
    • Stochastic backpropagation and approximate inference in deep generative models
    • D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In ICML, pages 1278-1286, 2014.
    • (2014) ICML , pp. 1278-1286
    • Rezende, D.J.1    Mohamed, S.2    Wierstra, D.3
  • 24
    • 0033556862 scopus 로고    scopus 로고
    • A unifying review of linear Gaussian models
    • S. Roweis and Z. Ghahramani. A unifying review of linear Gaussian models. Neural Computation, 11(2):305-45, 1999.
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 305-345
    • Roweis, S.1    Ghahramani, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.