-
1
-
-
85018893666
-
-
arXiv:1511.07367
-
E. Archer, I. M. Park, L. Buesing, J. Cunningham, and L. Paninski. Black box variational inference for state space models. arXiv:1511.07367, 2015.
-
(2015)
Black Box Variational Inference for State Space Models
-
-
Archer, E.1
Park, I.M.2
Buesing, L.3
Cunningham, J.4
Paninski, L.5
-
2
-
-
84937942087
-
-
arXiv:1211.5590
-
F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard, D. Warde-Farley, and Y. Bengio. Theano: new features and speed improvements. arXiv:1211.5590, 2012.
-
(2012)
Theano: New Features and Speed Improvements
-
-
Bastien, F.1
Lamblin, P.2
Pascanu, R.3
Bergstra, J.4
Goodfellow, I.5
Bergeron, A.6
Bouchard, N.7
Warde-Farley, D.8
Bengio, Y.9
-
5
-
-
84961291190
-
Learning phrase representations using RNN encoder-decoder for statistical machine translation
-
K. Cho, B. Van Merriënboer, Ç. Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In EMNLP, pages 1724-1734, 2014.
-
(2014)
EMNLP
, pp. 1724-1734
-
-
Cho, K.1
Van Merriënboer, B.2
Gülçehre, C.3
Bahdanau, D.4
Bougares, F.5
Schwenk, H.6
Bengio, Y.7
-
7
-
-
84965158187
-
A recurrent latent variable model for sequential data
-
J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio. A recurrent latent variable model for sequential data. In NIPS, pages 2962-2970, 2015.
-
(2015)
NIPS
, pp. 2962-2970
-
-
Chung, J.1
Kastner, K.2
Dinh, L.3
Goel, K.4
Courville, A.C.5
Bengio, Y.6
-
8
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1), 1977.
-
(1977)
Journal of the Royal Statistical Society, Series B
, vol.39
, Issue.1
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
9
-
-
84973384984
-
-
S. Dieleman, J. Schlüter, C. Raffel, E. Olson, S. K. Sønderby, D. Nouri, E. Battenberg, and A. van den Oord. Lasagne: First release, 2015.
-
(2015)
Lasagne: First Release
-
-
Dieleman, S.1
Schlüter, J.2
Raffel, C.3
Olson, E.4
Sønderby, S.K.5
Nouri, D.6
Battenberg, E.7
Van Den Oord, A.8
-
12
-
-
84965123118
-
Deep temporal sigmoid belief networks for sequence modeling
-
Z. Gan, C. Li, R. Henao, D. E. Carlson, and L. Carin. Deep temporal sigmoid belief networks for sequence modeling. In NIPS, pages 2458-2466, 2015.
-
(2015)
NIPS
, pp. 2458-2466
-
-
Gan, Z.1
Li, C.2
Henao, R.3
Carlson, D.E.4
Carin, L.5
-
13
-
-
84986959240
-
Identifying independence in Bayesian networks
-
D. Geiger, T. Verma, and J. Pearl. Identifying independence in Bayesian networks. Networks, 20:507-534, 1990.
-
(1990)
Networks
, vol.20
, pp. 507-534
-
-
Geiger, D.1
Verma, T.2
Pearl, J.3
-
15
-
-
84965167029
-
Neural adaptive sequential Monte Carlo
-
S. Gu, Z. Ghahramani, and R. E. Turner. Neural adaptive sequential Monte Carlo. In NIPS, pages 2611-2619, 2015.
-
(2015)
NIPS
, pp. 2611-2619
-
-
Gu, S.1
Ghahramani, Z.2
Turner, R.E.3
-
17
-
-
0033225865
-
An introduction to variational methods for graphical models
-
M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational methods for graphical models. Machine Learning, 37(2):183-233, 1999.
-
(1999)
Machine Learning
, vol.37
, Issue.2
, pp. 183-233
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
19
-
-
85083952489
-
Auto-encoding variational bayes
-
D. Kingma and M. Welling. Auto-encoding variational Bayes. In ICLR, 2014.
-
(2014)
ICLR
-
-
Kingma, D.1
Welling, M.2
-
22
-
-
84867133463
-
Variational Bayesian inference with stochastic search
-
J. W. Paisley, D. M. Blei, and M. I. Jordan. Variational Bayesian inference with stochastic search. In ICML, 2012.
-
(2012)
ICML
-
-
Paisley, J.W.1
Blei, D.M.2
Jordan, M.I.3
-
23
-
-
84919796093
-
Stochastic backpropagation and approximate inference in deep generative models
-
D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In ICML, pages 1278-1286, 2014.
-
(2014)
ICML
, pp. 1278-1286
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
24
-
-
0033556862
-
A unifying review of linear Gaussian models
-
S. Roweis and Z. Ghahramani. A unifying review of linear Gaussian models. Neural Computation, 11(2):305-45, 1999.
-
(1999)
Neural Computation
, vol.11
, Issue.2
, pp. 305-345
-
-
Roweis, S.1
Ghahramani, Z.2
|