메뉴 건너뛰기




Volumn 2017-October, Issue , 2017, Pages 5104-5112

Nonparametric Variational Auto-Encoders for Hierarchical Representation Learning

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; LEARNING SYSTEMS; NORMAL DISTRIBUTION; SEMANTICS; SIGNAL ENCODING;

EID: 85041927783     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2017.545     Document Type: Conference Paper
Times cited : (111)

References (21)
  • 1
    • 84861170800 scopus 로고    scopus 로고
    • Probabilistic topic models
    • D. M. Blei. Probabilistic topic models. Communications of the ACM, 55(4):77-84, 2012.
    • (2012) Communications of the ACM , vol.55 , Issue.4 , pp. 77-84
    • Blei, D.M.1
  • 2
    • 76849117578 scopus 로고    scopus 로고
    • The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies
    • D. M. Blei, T. L. Griffiths, and M. I. Jordan. The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies. Journal of the ACM (JACM), 57(2):7, 2010.
    • (2010) Journal of the ACM (JACM) , vol.57 , Issue.2 , pp. 7
    • Blei, D.M.1    Griffiths, T.L.2    Jordan, M.I.3
  • 4
  • 7
    • 84969764636 scopus 로고    scopus 로고
    • Large-scale distributed dependent nonparametric trees
    • Z. Hu, Q. Ho, A. Dubey, and E. P. Xing. Large-scale distributed dependent nonparametric trees. In ICML, pages 1651-1659, 2015.
    • (2015) ICML , pp. 1651-1659
    • Hu, Z.1    Ho, Q.2    Dubey, A.3    Xing, E.P.4
  • 18
    • 84893343292 scopus 로고    scopus 로고
    • Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude
    • T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2), 2012.
    • (2012) COURSERA: Neural Networks for Machine Learning , vol.4 , Issue.2
    • Tieleman, T.1    Hinton, G.2
  • 19
    • 84990029950 scopus 로고    scopus 로고
    • An uncertain future: Forecasting from static images using variational autoencoders
    • Springer
    • J. Walker, C. Doersch, A. Gupta, and M. Hebert. An uncertain future: Forecasting from static images using variational autoencoders. In European Conference on Computer Vision, pages 835-851. Springer, 2016.
    • (2016) European Conference on Computer Vision , pp. 835-851
    • Walker, J.1    Doersch, C.2    Gupta, A.3    Hebert, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.