-
1
-
-
84861170800
-
Probabilistic topic models
-
D. M. Blei. Probabilistic topic models. Communications of the ACM, 55(4):77-84, 2012.
-
(2012)
Communications of the ACM
, vol.55
, Issue.4
, pp. 77-84
-
-
Blei, D.M.1
-
2
-
-
76849117578
-
The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies
-
D. M. Blei, T. L. Griffiths, and M. I. Jordan. The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies. Journal of the ACM (JACM), 57(2):7, 2010.
-
(2010)
Journal of the ACM (JACM)
, vol.57
, Issue.2
, pp. 7
-
-
Blei, D.M.1
Griffiths, T.L.2
Jordan, M.I.3
-
3
-
-
84998888548
-
-
arXiv preprint arXiv:1511.06349
-
S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and S. Bengio. Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349, 2015.
-
(2015)
Generating Sentences from A Continuous Space
-
-
Bowman, S.R.1
Vilnis, L.2
Vinyals, O.3
Dai, A.M.4
Jozefowicz, R.5
Bengio, S.6
-
5
-
-
84965100881
-
-
arXiv preprint arXiv:1502.04623
-
K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra. Draw: A recurrent neural network for image generation. arXiv preprint arXiv:1502.04623, 2015.
-
(2015)
Draw: A Recurrent Neural Network for Image Generation
-
-
Gregor, K.1
Danihelka, I.2
Graves, A.3
Rezende, D.J.4
Wierstra, D.5
-
7
-
-
84969764636
-
Large-scale distributed dependent nonparametric trees
-
Z. Hu, Q. Ho, A. Dubey, and E. P. Xing. Large-scale distributed dependent nonparametric trees. In ICML, pages 1651-1659, 2015.
-
(2015)
ICML
, pp. 1651-1659
-
-
Hu, Z.1
Ho, Q.2
Dubey, A.3
Xing, E.P.4
-
8
-
-
85041109778
-
Controlled generation of text
-
Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov, and E. P. Xing. Controlled generation of text. In ICML, 2017.
-
(2017)
ICML
-
-
Hu, Z.1
Yang, Z.2
Liang, X.3
Salakhutdinov, R.4
Xing, E.P.5
-
10
-
-
85017433100
-
Composing graphical models with neural networks for structured representations and fast inference
-
M. Johnson, D. K. Duvenaud, A. Wiltschko, R. P. Adams, and S. R. Datta. Composing graphical models with neural networks for structured representations and fast inference. In Advances in Neural Information Processing Systems, pages 2946-2954, 2016.
-
(2016)
Advances in Neural Information Processing Systems
, pp. 2946-2954
-
-
Johnson, M.1
Duvenaud, D.K.2
Wiltschko, A.3
Adams, R.P.4
Datta, S.R.5
-
13
-
-
84987948522
-
-
arXiv preprint arXiv:1511.05644
-
A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey. Adversarial autoencoders. arXiv preprint arXiv:1511.05644, 2015.
-
(2015)
Adversarial Autoencoders
-
-
Makhzani, A.1
Shlens, J.2
Jaitly, N.3
Goodfellow, I.4
Frey, B.5
-
14
-
-
85077311325
-
Trecvid 2014-an overview of the goals, tasks, data, evaluation mechanisms and metrics
-
P. Over, J. Fiscus, G. Sanders, D. Joy, M. Michel, G. Awad, A. Smeaton, W. Kraaij, and G. Quenot. Trecvid 2014-an overview of the goals, tasks, data, evaluation mechanisms and metrics. In Proceedings of TRECVID, page 52, 2014.
-
(2014)
Proceedings of TRECVID
, pp. 52
-
-
Over, P.1
Fiscus, J.2
Sanders, G.3
Joy, D.4
Michel, M.5
Awad, G.6
Smeaton, A.7
Kraaij, W.8
Quenot, G.9
-
16
-
-
85040244353
-
-
N. Siddharth, B. Paige, A. Desmaison, J.-W. v. d. Meent, F. Wood, N. D. Goodman, P. Kohli, and P. H. Torr. Learning disentangled representations in deep generative models. 2017.
-
(2017)
Learning Disentangled Representations in Deep Generative Models
-
-
Siddharth, N.1
Paige, B.2
Desmaison, A.3
Meent, J.-W.V.D.4
Wood, F.5
Goodman, N.D.6
Kohli, P.7
Torr, P.H.8
-
18
-
-
84893343292
-
Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude
-
T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2), 2012.
-
(2012)
COURSERA: Neural Networks for Machine Learning
, vol.4
, Issue.2
-
-
Tieleman, T.1
Hinton, G.2
-
19
-
-
84990029950
-
An uncertain future: Forecasting from static images using variational autoencoders
-
Springer
-
J. Walker, C. Doersch, A. Gupta, and M. Hebert. An uncertain future: Forecasting from static images using variational autoencoders. In European Conference on Computer Vision, pages 835-851. Springer, 2016.
-
(2016)
European Conference on Computer Vision
, pp. 835-851
-
-
Walker, J.1
Doersch, C.2
Gupta, A.3
Hebert, M.4
-
21
-
-
85067571627
-
Deep kernel learning
-
A. G.Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing. Deep kernel learning. In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, pages 370-378, 2016.
-
(2016)
Proceedings of the 19th International Conference on Artificial Intelligence and Statistics
, pp. 370-378
-
-
Wilson, A.G.1
Hu, Z.2
Salakhutdinov, R.3
Xing, E.P.4
|