-
1
-
-
85047002128
-
Input-convex deep networks
-
Amos, Brandon, Xu, Lei, and Kolter, J Zico. Input-convex deep networks. ICML, 2017.
-
(2017)
ICML
-
-
Amos, B.1
Xu, L.2
Kolter, J.Z.3
-
2
-
-
85019172761
-
Learning to learn by gradient descent by gradient descent
-
Andrychowicz, Marcin, Denil, Misha, Gomez, Sergio, Hoffman, Matthew W, Pfau, David, Schaul, Tom, and de Freitas, Nando. Learning to learn by gradient descent by gradient descent. NIPS, 2016.
-
(2016)
NIPS
-
-
Andrychowicz, M.1
Denil, M.2
Gomez, S.3
Hoffman, M.W.4
Pfau, D.5
Schaul, T.6
De Freitas, N.7
-
3
-
-
70350599323
-
Training an active random field for realtime image denoising
-
Barbu, Adrian. Training an active random field for realtime image denoising. IEEE Transactions on Image Processing, 18(11):2451-2462, 2009.
-
(2009)
IEEE Transactions on Image Processing
, vol.18
, Issue.11
, pp. 2451-2462
-
-
Barbu, A.1
-
4
-
-
0037403111
-
Mirror descent and nonlinear projected subgradient methods for convex optimization
-
Beck, Amir and Teboulle, Marc. Mirror descent and nonlinear projected subgradient methods for convex optimization. Operations Research Letters, 31(3), 2003.
-
(2003)
Operations Research Letters
, vol.31
, Issue.3
-
-
Beck, A.1
Teboulle, M.2
-
5
-
-
84998953764
-
Structured prediction energy networks
-
Bélanger, David and McCallum, Andrew. Structured prediction energy networks. In ICML, 2016.
-
(2016)
ICML
-
-
Bélanger, D.1
McCallum, A.2
-
6
-
-
0028392483
-
Learning long-term dependencies with gradient descent is difficult
-
Bengio, Yoshua, Simard, Patrice, and Frasconi, Paolo. Learning long-term dependencies with gradient descent is difficult. IEEE transactions on neural networks, 5(2):157-166, 1994.
-
(1994)
IEEE Transactions on Neural Networks
, vol.5
, Issue.2
, pp. 157-166
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
-
7
-
-
84885591253
-
Training energy-based models for time-series imputation
-
Brakel, Philemon, Stroobandt, Dirk, and Schrauwen, Benjamin. Training energy-based models for time-series imputation. JMLR, 14, 2013.
-
(2013)
JMLR
, pp. 14
-
-
Brakel, P.1
Stroobandt, D.2
Schrauwen, B.3
-
8
-
-
84862288194
-
Introduction to the conll-2005 shared task: Semantic role labeling
-
Carreras, Xavier and Márquez, Lluís. Introduction to the conll-2005 shared task: Semantic role labeling. In CoNLL, 2005.
-
(2005)
CoNLL
-
-
Carreras, X.1
Márquez, L.2
-
9
-
-
85083954148
-
Semantic image segmentation with deep convolutional nets and fully connected crfs
-
Chen, Liang-Chieh, Papandreou, George, Kokkinos, Iasonas, Murphy, Kevin, and Yuille, Alan L. Semantic image segmentation with deep convolutional nets and fully connected crfs. ICLR, 2015.
-
(2015)
ICLR
-
-
Chen, L.-C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
10
-
-
34547760736
-
Image denoising by sparse 3-d transform-domain collaborative filtering
-
Dabov, Kostadin, Foi, Alcssandro, Katkovnik, Vladimir, and Egiazarian, Karen. Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Transactions on image processing, 16(8):2080-2095, 2007.
-
(2007)
IEEE Transactions on Image Processing
, vol.16
, Issue.8
, pp. 2080-2095
-
-
Dabov, K.1
Foi, A.2
Katkovnik, V.3
Egiazarian, K.4
-
12
-
-
84983107941
-
Generic methods for optimization-based modeling
-
Domke, Justin. Generic methods for optimization-based modeling. In AISTATS, 2012.
-
(2012)
AISTATS
-
-
Domke, J.1
-
13
-
-
84883162364
-
Learning graphical model parameters with approximate marginal inference
-
Domke, Justin. Learning graphical model parameters with approximate marginal inference. Pattern Analysis and Machine Intelligence, 2013.
-
(2013)
Pattern Analysis and Machine Intelligence
-
-
Domke, J.1
-
14
-
-
56449092085
-
Efficient projections onto the 1 1-ball for learning in high dimensions
-
Duchi, John, Shalev-Shwartz, Shai, Singer, Yoram, and Chandra, Tushar. Efficient projections onto the 1 1-ball for learning in high dimensions. In ICML, 2008.
-
(2008)
ICML
-
-
Duchi, J.1
Shalev-Shwartz, S.2
Singer, Y.3
Chandra, T.4
-
15
-
-
84997600358
-
Early stopping as nonparametric variational inference
-
Duvenaud, David, Maclaurin, Dougal, and Adams, Ryan P. Early stopping as nonparametric variational inference. In AISTATS, 2016.
-
(2016)
AISTATS
-
-
Duvenaud, D.1
Maclaurin, D.2
Adams, R.P.3
-
16
-
-
84911445494
-
Filter forests for learning datadependent convolutional kernels
-
Fanello, Sean Ryan, Keskin, Cem, Kohli, Pushmeet, Izadi, Shahram, Shotton, Jamie, Criminisi, Antonio, Pattacini, Ugo, and Paek, Tim. Filter forests for learning datadependent convolutional kernels. In CVPR, 2014.
-
(2014)
CVPR
-
-
Fanello, S.R.1
Keskin, C.2
Kohli, P.3
Izadi, S.4
Shotton, J.5
Criminisi, A.6
Pattacini, U.7
Paek, T.8
-
17
-
-
56449113929
-
Training structural svms when exact inference is intractable
-
Finley, Thomas and Joachims, Thorsten. Training structural svms when exact inference is intractable. In ICML, 2008.
-
(2008)
ICML
-
-
Finley, T.1
Joachims, T.2
-
18
-
-
84959925712
-
Semantic role labeling with neural network factors
-
FitzGerald, Nicholas, Täckström, Oscar, Ganchev, Kuzman, and Das, Dipanjan. Semantic role labeling with neural network factors. In EMNLP, pp. 960-970, 2015.
-
(2015)
EMNLP
, pp. 960-970
-
-
FitzGerald, N.1
Täckström, O.2
Ganchev, K.3
Das, D.4
-
19
-
-
85161996864
-
Efficient multiple hyperparameter learning for log-linear models
-
Foo, Chuan-sheng, Do, Chuong B, and Ng, Andrew Y. Efficient multiple hyperparameter learning for log-linear models. In NIPS, 2008.
-
(2008)
NIPS
-
-
Foo, C.-S.1
Do, C.B.2
Ng, A.Y.3
-
21
-
-
0040076126
-
Automatic labeling of semantic roles
-
Gildea, Daniel and Jurafsky, Daniel. Automatic labeling of semantic roles. Computational linguistics, 28(3):245-288, 2002.
-
(2002)
Computational Linguistics
, vol.28
, Issue.3
, pp. 245-288
-
-
Gildea, D.1
Jurafsky, D.2
-
22
-
-
85088229867
-
Highway and residual networks learn unrolled iterative estimation
-
Greff, Klaus, Srivastava, Rupesh K, and Schmidhuber, Jürgen. Highway and residual networks learn unrolled iterative estimation. ICLR, 2017.
-
(2017)
ICLR
-
-
Greff, K.1
Srivastava, R.K.2
Schmidhuber, J.3
-
23
-
-
77956515664
-
Learning fast approximations of sparse coding
-
Gregor, Karol and LeCun, Yann. Learning fast approximations of sparse coding. In ICML, 2010.
-
(2010)
ICML
-
-
Gregor, K.1
LeCun, Y.2
-
24
-
-
85048413750
-
Deep value networks learn to evaluate and iterativcly refine structured outputs
-
Gygli, M., Norouzi, M., and Angelova, A. Deep Value Networks Learn to Evaluate and Iterativcly Refine Structured Outputs. In ICML, 2017.
-
(2017)
ICML
-
-
Gygli, M.1
Norouzi, M.2
Angelova, A.3
-
25
-
-
84986274465
-
Deep residual learning for image recognition
-
He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Deep residual learning for image recognition. In CVPR, 2016.
-
(2016)
CVPR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
27
-
-
33748852900
-
Unsupervised discovery of nonlinear structure using contrastive backpropagation
-
Hinton, Geoffrey, Osindero, Simon, Welling, Max, and Teh, Yee-Whye. Unsupervised discovery of nonlinear structure using contrastive backpropagation. Cognitive science, 30(4):725-731, 2006.
-
(2006)
Cognitive Science
, vol.30
, Issue.4
, pp. 725-731
-
-
Hinton, G.1
Osindero, S.2
Welling, M.3
Teh, Y.-W.4
-
30
-
-
85083951076
-
Adam: A method for stochastic optimization
-
Kingma, Diederik and Ba, Jimmy. Adam: A method for stochastic optimization. ICLR, 2015.
-
(2015)
ICLR
-
-
Kingma, D.1
Ba, J.2
-
32
-
-
0035246564
-
Factor graphs and the sum-product algorithm
-
Kschischang, Frank R, Frey, Brendan J, and Loeliger, H-A. Factor graphs and the sum-product algorithm. IEEE Transactions on information theory, 47(2):498-519, 2001.
-
(2001)
IEEE Transactions on Information Theory
, vol.47
, Issue.2
, pp. 498-519
-
-
Kschischang, F.R.1
Frey, B.J.2
Loeliger, H.-A.3
-
33
-
-
84875152270
-
-
Lacoste-Julien, Simon, Jaggi, Martin, Schmidt, Mark, and Pletscher, Patrick. Block-coordinate frank-wolfe optimization for structural svms. arXiv preprint arXiv:1207.4747, 2012.
-
(2012)
Block-coordinate Frank-wolfe Optimization for Structural Svms
-
-
Lacoste-Julien, S.1
Jaggi, M.2
Schmidt, M.3
Pletscher, P.4
-
34
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
Lafferty, John, McCallum, Andrew, and Pereira, Fernando. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, 2001.
-
(2001)
ICML
-
-
Lafferty, J.1
McCallum, A.2
Pereira, F.3
-
35
-
-
35148893484
-
A tutorial on energy-based learning
-
LeCun, Yann, Chopra, Sumit, Hadsell, Raia, Ranzato, M, and Huang, F. A tutorial on energy-based learning. Predicting Structured Data, 1, 2006.
-
(2006)
Predicting Structured Data
, pp. 1
-
-
LeCun, Y.1
Chopra, S.2
Hadsell, R.3
Ranzato, M.4
Huang, F.5
-
38
-
-
33646887390
-
On the limited memory bfgs method for large scale optimization
-
Liu, Dong C and Nocedal, Jorge. On the limited memory bfgs method for large scale optimization. Mathematical programming, 45(1):503-528, 1989.
-
(1989)
Mathematical Programming
, vol.45
, Issue.1
, pp. 503-528
-
-
Liu, D.C.1
Nocedal, J.2
-
39
-
-
84989338543
-
Gradient-based hyperparameter optimization through reversible learning
-
Maclaurin, Dougal, Duvenaud, David, and Adams, Ryan P. Gradient-based hyperparameter optimization through reversible learning. In ICML, 2015.
-
(2015)
ICML
-
-
Maclaurin, D.1
Duvenaud, D.2
Adams, R.P.3
-
40
-
-
80053435175
-
An augmented lagrangian approach to constrained map inference
-
Martins, André FT, Figeuiredo, Mario AT, Aguiar, Pedro MQ, Smith, Noah A, and Xing, Eric P. An augmented lagrangian approach to constrained map inference. In ICML, 2011.
-
(2011)
ICML
-
-
Martins, A.F.T.1
Figeuiredo, M.A.T.2
Aguiar, P.M.Q.3
Smith, N.A.4
Xing, E.P.5
-
41
-
-
85076805510
-
Unrolled generative adversarial networks
-
Metz, Luke, Poole, Ben, Pfau, David, and Sohl-Dickstein, Jascha. Unrolled generative adversarial networks. ICLR, 2017.
-
(2017)
ICLR
-
-
Metz, L.1
Poole, B.2
Pfau, D.3
Sohl-Dickstein, J.4
-
42
-
-
84898956512
-
Distributed representations of words and phrases and their compositionality
-
Mikolov, Tomas, Sutskever, Ilya, Chen, Kai, Corrado, Greg S, and Dean, Jeff. Distributed representations of words and phrases and their compositionality. In NIPS, 2013.
-
(2013)
NIPS
-
-
Mikolov, T.1
Sutskever, I.2
Chen, K.3
Corrado, G.S.4
Dean, J.5
-
43
-
-
33745932881
-
Learning nonlinear constraints with contrastive backpropagation
-
Mnih, Andriy and Hinton, Geoffrey. Learning nonlinear constraints with contrastive backpropagation. In IJCNN, 2005.
-
(2005)
IJCNN
-
-
Mnih, A.1
Hinton, G.2
-
44
-
-
84055199652
-
Kinectfusion: Real-time dense surface mapping and tracking
-
Newcombe, Richard A, Izadi, Shahram, Hilliges, Otmar, Molyneaux, David, Kim, David, Davison, Andrew J, Kohi, Pushmeet, Shotton, Jamie, Hodges, Steve, and Fitzgibbon, Andrew. Kinectfusion: Real-time dense surface mapping and tracking. In IEEE international symposium on Mixed and augmented reality, 2011.
-
(2011)
IEEE International Symposium on Mixed and Augmented Reality
-
-
Newcombe, R.A.1
Izadi, S.2
Hilliges, O.3
Molyneaux, D.4
Kim, D.5
Davison, A.J.6
Kohi, P.7
Shotton, J.8
Hodges, S.9
Fitzgibbon, A.10
-
45
-
-
80053445973
-
Learning deep energy models
-
Ngiam, Jiquan, Chen, Zhenghao, Koh, Pang W, and Ng, Andrew Y. Learning deep energy models. In ICML, 2011.
-
(2011)
ICML
-
-
Ngiam, J.1
Chen, Z.2
Koh, P.W.3
Ng, A.Y.4
-
46
-
-
0000255539
-
Fast exact multiplication by the hessian
-
Pearlmutter, Barak A. Fast exact multiplication by the hessian. Neural computation, 6(1):147-160, 1994.
-
(1994)
Neural Computation
, vol.6
, Issue.1
, pp. 147-160
-
-
Pearlmutter, B.A.1
-
47
-
-
45749086553
-
The importance of syntactic parsing and inference in semantic role labeling
-
Punyakanok, Vasin, Roth, Dan, and Yih, Wen-tau. The importance of syntactic parsing and inference in semantic role labeling. Computational Linguistics, 34, 2008.
-
(2008)
Computational Linguistics
, pp. 34
-
-
Punyakanok, V.1
Roth, D.2
Yih, W.-T.3
-
48
-
-
24644467818
-
Fields of experts: A framework for learning image priors
-
Roth, Stefan and Black, Michael J. Fields of experts: A framework for learning image priors. In CVPR, 2005.
-
(2005)
CVPR
-
-
Roth, S.1
Black, M.J.2
-
49
-
-
70450207702
-
Learning optimized map estimates in continuously-valued mrf models
-
Samuel, Kegan GG and Tappen, Marshall F. Learning optimized map estimates in continuously-valued mrf models. In CVPR, 2009.
-
(2009)
CVPR
-
-
Samuel, K.G.G.1
Tappen, M.F.2
-
50
-
-
77955989583
-
A generative perspective on mrfs in low-level vision
-
Schmidt, Uwe, Gao, Qi, and Roth, Stefan. A generative perspective on mrfs in low-level vision. In CVPR, 2010.
-
(2010)
CVPR
-
-
Schmidt, U.1
Gao, Q.2
Roth, S.3
-
52
-
-
84883148756
-
Empirical risk minimization of graphical model parameters given approximate inference, decoding, and model structure
-
Stoyanov, Veselin, Ropson, Alexander, and Eisner, Jason. Empirical risk minimization of graphical model parameters given approximate inference, decoding, and model structure. In AISTATS, 2011.
-
(2011)
AISTATS
-
-
Stoyanov, V.1
Ropson, A.2
Eisner, J.3
-
53
-
-
80052904726
-
Learning non-local range markov random field for image restoration
-
Sun, Jian and Tappen, Marshall F. Learning non-local range markov random field for image restoration. In CVPR, 2011.
-
(2011)
CVPR
-
-
Sun, J.1
Tappen, M.F.2
-
54
-
-
84928547704
-
Sequence to sequence learning with neural networks
-
Sutskever, Ilya, Vinyals, Oriol, and Le, Quoc V. Sequence to sequence learning with neural networks. In NIPS, 2014.
-
(2014)
NIPS
-
-
Sutskever, I.1
Vinyals, O.2
Le, Q.V.3
-
55
-
-
84943795710
-
Efficient inference and structured learning for semantic role labeling
-
Täckström, Oscar, Ganchev, Kuzman, and Das, Dipanjan. Efficient inference and structured learning for semantic role labeling. TACL, 2015.
-
(2015)
TACL
-
-
Täckström, O.1
Ganchev, K.2
Das, D.3
-
56
-
-
34948821220
-
Learning Gaussian conditional random fields for low-level vision
-
Tappen, Marshall F, Liu, Ce, Adelson, Edward H, and Freeman, William T. Learning gaussian conditional random fields for low-level vision. In CVPR, 2007.
-
(2007)
CVPR
-
-
Tappen, M.F.1
Liu, C.2
Adelson, E.H.3
Freeman, W.T.4
-
58
-
-
84930634156
-
Joint training of a convolutional network and a graphical model for human pose estimation
-
Tompson, Jonathan J, Jain, Arjun, LeCun, Yann, and Bregler, Christoph. Joint training of a convolutional network and a graphical model for human pose estimation. In Advances in neural information processing systems, pp. 1799-1807, 2014.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 1799-1807
-
-
Tompson, J.J.1
Jain, A.2
LeCun, Y.3
Bregler, C.4
-
59
-
-
14344250451
-
Support vector machine learning for interdependent and structured output spaces
-
Tsochantaridis, Ioannis, Hofmann, Thomas, Joachims, Thorsten, and Altun, Yasemin. Support vector machine learning for interdependent and structured output spaces. In ICML, 2004.
-
(2004)
ICML
-
-
Tsochantaridis, I.1
Hofmann, T.2
Joachims, T.3
Altun, Y.4
-
60
-
-
84983135336
-
Bethe projections for non-local inference
-
Vilnis, Luke, Belanger, David, Sheldon, Daniel, and McCallum, Andrew. Bethe projections for non-local inference. UAI, 2015.
-
(2015)
UAI
-
-
Vilnis, L.1
Belanger, D.2
Sheldon, D.3
McCallum, A.4
-
61
-
-
79959575293
-
A connection between score matching and denoising autoencoders
-
Vincent, Pascal. A connection between score matching and denoising autoencoders. Neural Computation, 2011.
-
(2011)
Neural Computation
-
-
Vincent, P.1
-
62
-
-
84922968183
-
Efficient inference of continuous markov random fields with polynomial potentials
-
Wang, Shenlong, Schwing, Alex, and Urtasun, Raquel. Efficient inference of continuous markov random fields with polynomial potentials. In NIPS, 2014.
-
(2014)
NIPS
-
-
Wang, S.1
Schwing, A.2
Urtasun, R.3
-
63
-
-
85019203971
-
Proximal deep structured models
-
Wang, Shenlong, Fidler, Sanja, and Urtasun, Raquel. Proximal deep structured models. In NIPS, 2016.
-
(2016)
NIPS
-
-
Wang, S.1
Fidler, S.2
Urtasun, R.3
-
64
-
-
84998865604
-
Deep structured energy based models for anomaly detection
-
Zhai, Shuangfci, Cheng, Yu, Lu, Wcining, and Zhang, Zhongfci. Deep structured energy based models for anomaly detection. In ICML, 2016.
-
(2016)
ICML
-
-
Zhai, S.1
Cheng, Y.2
Lu, W.3
Zhang, Z.4
-
65
-
-
84973861983
-
Conditional random fields as recurrent neural networks
-
Zheng, Shuai, Jayasumana, Sadeep, Romera-Paredes, Bernardino, Vineet, Vibhav, Su, Zhizhong, Du, Dalong, Huang, Chang, and Torr, Philip HS. Conditional random fields as recurrent neural networks. In ICCV, 2015.
-
(2015)
ICCV
-
-
Zheng, S.1
Jayasumana, S.2
Romera-Paredes, B.3
Vineet, V.4
Su, Z.5
Du, D.6
Huang, C.7
Torr, P.H.S.8
-
66
-
-
84943737769
-
End-to-end learning of semantic role labeling using recurrent neural networks
-
Zhou, Jie and Xu, Wei. End-to-end learning of semantic role labeling using recurrent neural networks. In ACL, 2015.
-
(2015)
ACL
-
-
Zhou, J.1
Xu, W.2
|