메뉴 건너뛰기




Volumn 1, Issue , 2017, Pages 670-681

End-to-end learning for structured prediction energy networks

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; IMAGE DENOISING; IMAGE ENHANCEMENT; LEARNING SYSTEMS; SEMANTICS;

EID: 85048667360     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (75)

References (66)
  • 1
    • 85047002128 scopus 로고    scopus 로고
    • Input-convex deep networks
    • Amos, Brandon, Xu, Lei, and Kolter, J Zico. Input-convex deep networks. ICML, 2017.
    • (2017) ICML
    • Amos, B.1    Xu, L.2    Kolter, J.Z.3
  • 3
    • 70350599323 scopus 로고    scopus 로고
    • Training an active random field for realtime image denoising
    • Barbu, Adrian. Training an active random field for realtime image denoising. IEEE Transactions on Image Processing, 18(11):2451-2462, 2009.
    • (2009) IEEE Transactions on Image Processing , vol.18 , Issue.11 , pp. 2451-2462
    • Barbu, A.1
  • 4
    • 0037403111 scopus 로고    scopus 로고
    • Mirror descent and nonlinear projected subgradient methods for convex optimization
    • Beck, Amir and Teboulle, Marc. Mirror descent and nonlinear projected subgradient methods for convex optimization. Operations Research Letters, 31(3), 2003.
    • (2003) Operations Research Letters , vol.31 , Issue.3
    • Beck, A.1    Teboulle, M.2
  • 5
    • 84998953764 scopus 로고    scopus 로고
    • Structured prediction energy networks
    • Bélanger, David and McCallum, Andrew. Structured prediction energy networks. In ICML, 2016.
    • (2016) ICML
    • Bélanger, D.1    McCallum, A.2
  • 6
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Bengio, Yoshua, Simard, Patrice, and Frasconi, Paolo. Learning long-term dependencies with gradient descent is difficult. IEEE transactions on neural networks, 5(2):157-166, 1994.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 7
    • 84885591253 scopus 로고    scopus 로고
    • Training energy-based models for time-series imputation
    • Brakel, Philemon, Stroobandt, Dirk, and Schrauwen, Benjamin. Training energy-based models for time-series imputation. JMLR, 14, 2013.
    • (2013) JMLR , pp. 14
    • Brakel, P.1    Stroobandt, D.2    Schrauwen, B.3
  • 8
    • 84862288194 scopus 로고    scopus 로고
    • Introduction to the conll-2005 shared task: Semantic role labeling
    • Carreras, Xavier and Márquez, Lluís. Introduction to the conll-2005 shared task: Semantic role labeling. In CoNLL, 2005.
    • (2005) CoNLL
    • Carreras, X.1    Márquez, L.2
  • 9
    • 85083954148 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected crfs
    • Chen, Liang-Chieh, Papandreou, George, Kokkinos, Iasonas, Murphy, Kevin, and Yuille, Alan L. Semantic image segmentation with deep convolutional nets and fully connected crfs. ICLR, 2015.
    • (2015) ICLR
    • Chen, L.-C.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 10
    • 34547760736 scopus 로고    scopus 로고
    • Image denoising by sparse 3-d transform-domain collaborative filtering
    • Dabov, Kostadin, Foi, Alcssandro, Katkovnik, Vladimir, and Egiazarian, Karen. Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Transactions on image processing, 16(8):2080-2095, 2007.
    • (2007) IEEE Transactions on Image Processing , vol.16 , Issue.8 , pp. 2080-2095
    • Dabov, K.1    Foi, A.2    Katkovnik, V.3    Egiazarian, K.4
  • 12
    • 84983107941 scopus 로고    scopus 로고
    • Generic methods for optimization-based modeling
    • Domke, Justin. Generic methods for optimization-based modeling. In AISTATS, 2012.
    • (2012) AISTATS
    • Domke, J.1
  • 13
    • 84883162364 scopus 로고    scopus 로고
    • Learning graphical model parameters with approximate marginal inference
    • Domke, Justin. Learning graphical model parameters with approximate marginal inference. Pattern Analysis and Machine Intelligence, 2013.
    • (2013) Pattern Analysis and Machine Intelligence
    • Domke, J.1
  • 14
    • 56449092085 scopus 로고    scopus 로고
    • Efficient projections onto the 1 1-ball for learning in high dimensions
    • Duchi, John, Shalev-Shwartz, Shai, Singer, Yoram, and Chandra, Tushar. Efficient projections onto the 1 1-ball for learning in high dimensions. In ICML, 2008.
    • (2008) ICML
    • Duchi, J.1    Shalev-Shwartz, S.2    Singer, Y.3    Chandra, T.4
  • 15
    • 84997600358 scopus 로고    scopus 로고
    • Early stopping as nonparametric variational inference
    • Duvenaud, David, Maclaurin, Dougal, and Adams, Ryan P. Early stopping as nonparametric variational inference. In AISTATS, 2016.
    • (2016) AISTATS
    • Duvenaud, D.1    Maclaurin, D.2    Adams, R.P.3
  • 17
    • 56449113929 scopus 로고    scopus 로고
    • Training structural svms when exact inference is intractable
    • Finley, Thomas and Joachims, Thorsten. Training structural svms when exact inference is intractable. In ICML, 2008.
    • (2008) ICML
    • Finley, T.1    Joachims, T.2
  • 18
    • 84959925712 scopus 로고    scopus 로고
    • Semantic role labeling with neural network factors
    • FitzGerald, Nicholas, Täckström, Oscar, Ganchev, Kuzman, and Das, Dipanjan. Semantic role labeling with neural network factors. In EMNLP, pp. 960-970, 2015.
    • (2015) EMNLP , pp. 960-970
    • FitzGerald, N.1    Täckström, O.2    Ganchev, K.3    Das, D.4
  • 19
    • 85161996864 scopus 로고    scopus 로고
    • Efficient multiple hyperparameter learning for log-linear models
    • Foo, Chuan-sheng, Do, Chuong B, and Ng, Andrew Y. Efficient multiple hyperparameter learning for log-linear models. In NIPS, 2008.
    • (2008) NIPS
    • Foo, C.-S.1    Do, C.B.2    Ng, A.Y.3
  • 21
    • 0040076126 scopus 로고    scopus 로고
    • Automatic labeling of semantic roles
    • Gildea, Daniel and Jurafsky, Daniel. Automatic labeling of semantic roles. Computational linguistics, 28(3):245-288, 2002.
    • (2002) Computational Linguistics , vol.28 , Issue.3 , pp. 245-288
    • Gildea, D.1    Jurafsky, D.2
  • 22
    • 85088229867 scopus 로고    scopus 로고
    • Highway and residual networks learn unrolled iterative estimation
    • Greff, Klaus, Srivastava, Rupesh K, and Schmidhuber, Jürgen. Highway and residual networks learn unrolled iterative estimation. ICLR, 2017.
    • (2017) ICLR
    • Greff, K.1    Srivastava, R.K.2    Schmidhuber, J.3
  • 23
    • 77956515664 scopus 로고    scopus 로고
    • Learning fast approximations of sparse coding
    • Gregor, Karol and LeCun, Yann. Learning fast approximations of sparse coding. In ICML, 2010.
    • (2010) ICML
    • Gregor, K.1    LeCun, Y.2
  • 24
    • 85048413750 scopus 로고    scopus 로고
    • Deep value networks learn to evaluate and iterativcly refine structured outputs
    • Gygli, M., Norouzi, M., and Angelova, A. Deep Value Networks Learn to Evaluate and Iterativcly Refine Structured Outputs. In ICML, 2017.
    • (2017) ICML
    • Gygli, M.1    Norouzi, M.2    Angelova, A.3
  • 25
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Deep residual learning for image recognition. In CVPR, 2016.
    • (2016) CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 27
    • 33748852900 scopus 로고    scopus 로고
    • Unsupervised discovery of nonlinear structure using contrastive backpropagation
    • Hinton, Geoffrey, Osindero, Simon, Welling, Max, and Teh, Yee-Whye. Unsupervised discovery of nonlinear structure using contrastive backpropagation. Cognitive science, 30(4):725-731, 2006.
    • (2006) Cognitive Science , vol.30 , Issue.4 , pp. 725-731
    • Hinton, G.1    Osindero, S.2    Welling, M.3    Teh, Y.-W.4
  • 30
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • Kingma, Diederik and Ba, Jimmy. Adam: A method for stochastic optimization. ICLR, 2015.
    • (2015) ICLR
    • Kingma, D.1    Ba, J.2
  • 34
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • Lafferty, John, McCallum, Andrew, and Pereira, Fernando. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, 2001.
    • (2001) ICML
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 38
    • 33646887390 scopus 로고
    • On the limited memory bfgs method for large scale optimization
    • Liu, Dong C and Nocedal, Jorge. On the limited memory bfgs method for large scale optimization. Mathematical programming, 45(1):503-528, 1989.
    • (1989) Mathematical Programming , vol.45 , Issue.1 , pp. 503-528
    • Liu, D.C.1    Nocedal, J.2
  • 39
    • 84989338543 scopus 로고    scopus 로고
    • Gradient-based hyperparameter optimization through reversible learning
    • Maclaurin, Dougal, Duvenaud, David, and Adams, Ryan P. Gradient-based hyperparameter optimization through reversible learning. In ICML, 2015.
    • (2015) ICML
    • Maclaurin, D.1    Duvenaud, D.2    Adams, R.P.3
  • 42
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • Mikolov, Tomas, Sutskever, Ilya, Chen, Kai, Corrado, Greg S, and Dean, Jeff. Distributed representations of words and phrases and their compositionality. In NIPS, 2013.
    • (2013) NIPS
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 43
    • 33745932881 scopus 로고    scopus 로고
    • Learning nonlinear constraints with contrastive backpropagation
    • Mnih, Andriy and Hinton, Geoffrey. Learning nonlinear constraints with contrastive backpropagation. In IJCNN, 2005.
    • (2005) IJCNN
    • Mnih, A.1    Hinton, G.2
  • 45
    • 80053445973 scopus 로고    scopus 로고
    • Learning deep energy models
    • Ngiam, Jiquan, Chen, Zhenghao, Koh, Pang W, and Ng, Andrew Y. Learning deep energy models. In ICML, 2011.
    • (2011) ICML
    • Ngiam, J.1    Chen, Z.2    Koh, P.W.3    Ng, A.Y.4
  • 46
    • 0000255539 scopus 로고
    • Fast exact multiplication by the hessian
    • Pearlmutter, Barak A. Fast exact multiplication by the hessian. Neural computation, 6(1):147-160, 1994.
    • (1994) Neural Computation , vol.6 , Issue.1 , pp. 147-160
    • Pearlmutter, B.A.1
  • 47
    • 45749086553 scopus 로고    scopus 로고
    • The importance of syntactic parsing and inference in semantic role labeling
    • Punyakanok, Vasin, Roth, Dan, and Yih, Wen-tau. The importance of syntactic parsing and inference in semantic role labeling. Computational Linguistics, 34, 2008.
    • (2008) Computational Linguistics , pp. 34
    • Punyakanok, V.1    Roth, D.2    Yih, W.-T.3
  • 48
    • 24644467818 scopus 로고    scopus 로고
    • Fields of experts: A framework for learning image priors
    • Roth, Stefan and Black, Michael J. Fields of experts: A framework for learning image priors. In CVPR, 2005.
    • (2005) CVPR
    • Roth, S.1    Black, M.J.2
  • 49
    • 70450207702 scopus 로고    scopus 로고
    • Learning optimized map estimates in continuously-valued mrf models
    • Samuel, Kegan GG and Tappen, Marshall F. Learning optimized map estimates in continuously-valued mrf models. In CVPR, 2009.
    • (2009) CVPR
    • Samuel, K.G.G.1    Tappen, M.F.2
  • 50
    • 77955989583 scopus 로고    scopus 로고
    • A generative perspective on mrfs in low-level vision
    • Schmidt, Uwe, Gao, Qi, and Roth, Stefan. A generative perspective on mrfs in low-level vision. In CVPR, 2010.
    • (2010) CVPR
    • Schmidt, U.1    Gao, Q.2    Roth, S.3
  • 52
    • 84883148756 scopus 로고    scopus 로고
    • Empirical risk minimization of graphical model parameters given approximate inference, decoding, and model structure
    • Stoyanov, Veselin, Ropson, Alexander, and Eisner, Jason. Empirical risk minimization of graphical model parameters given approximate inference, decoding, and model structure. In AISTATS, 2011.
    • (2011) AISTATS
    • Stoyanov, V.1    Ropson, A.2    Eisner, J.3
  • 53
    • 80052904726 scopus 로고    scopus 로고
    • Learning non-local range markov random field for image restoration
    • Sun, Jian and Tappen, Marshall F. Learning non-local range markov random field for image restoration. In CVPR, 2011.
    • (2011) CVPR
    • Sun, J.1    Tappen, M.F.2
  • 54
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • Sutskever, Ilya, Vinyals, Oriol, and Le, Quoc V. Sequence to sequence learning with neural networks. In NIPS, 2014.
    • (2014) NIPS
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.3
  • 55
    • 84943795710 scopus 로고    scopus 로고
    • Efficient inference and structured learning for semantic role labeling
    • Täckström, Oscar, Ganchev, Kuzman, and Das, Dipanjan. Efficient inference and structured learning for semantic role labeling. TACL, 2015.
    • (2015) TACL
    • Täckström, O.1    Ganchev, K.2    Das, D.3
  • 56
    • 34948821220 scopus 로고    scopus 로고
    • Learning Gaussian conditional random fields for low-level vision
    • Tappen, Marshall F, Liu, Ce, Adelson, Edward H, and Freeman, William T. Learning gaussian conditional random fields for low-level vision. In CVPR, 2007.
    • (2007) CVPR
    • Tappen, M.F.1    Liu, C.2    Adelson, E.H.3    Freeman, W.T.4
  • 58
    • 84930634156 scopus 로고    scopus 로고
    • Joint training of a convolutional network and a graphical model for human pose estimation
    • Tompson, Jonathan J, Jain, Arjun, LeCun, Yann, and Bregler, Christoph. Joint training of a convolutional network and a graphical model for human pose estimation. In Advances in neural information processing systems, pp. 1799-1807, 2014.
    • (2014) Advances in Neural Information Processing Systems , pp. 1799-1807
    • Tompson, J.J.1    Jain, A.2    LeCun, Y.3    Bregler, C.4
  • 59
    • 14344250451 scopus 로고    scopus 로고
    • Support vector machine learning for interdependent and structured output spaces
    • Tsochantaridis, Ioannis, Hofmann, Thomas, Joachims, Thorsten, and Altun, Yasemin. Support vector machine learning for interdependent and structured output spaces. In ICML, 2004.
    • (2004) ICML
    • Tsochantaridis, I.1    Hofmann, T.2    Joachims, T.3    Altun, Y.4
  • 61
    • 79959575293 scopus 로고    scopus 로고
    • A connection between score matching and denoising autoencoders
    • Vincent, Pascal. A connection between score matching and denoising autoencoders. Neural Computation, 2011.
    • (2011) Neural Computation
    • Vincent, P.1
  • 62
    • 84922968183 scopus 로고    scopus 로고
    • Efficient inference of continuous markov random fields with polynomial potentials
    • Wang, Shenlong, Schwing, Alex, and Urtasun, Raquel. Efficient inference of continuous markov random fields with polynomial potentials. In NIPS, 2014.
    • (2014) NIPS
    • Wang, S.1    Schwing, A.2    Urtasun, R.3
  • 63
    • 85019203971 scopus 로고    scopus 로고
    • Proximal deep structured models
    • Wang, Shenlong, Fidler, Sanja, and Urtasun, Raquel. Proximal deep structured models. In NIPS, 2016.
    • (2016) NIPS
    • Wang, S.1    Fidler, S.2    Urtasun, R.3
  • 64
    • 84998865604 scopus 로고    scopus 로고
    • Deep structured energy based models for anomaly detection
    • Zhai, Shuangfci, Cheng, Yu, Lu, Wcining, and Zhang, Zhongfci. Deep structured energy based models for anomaly detection. In ICML, 2016.
    • (2016) ICML
    • Zhai, S.1    Cheng, Y.2    Lu, W.3    Zhang, Z.4
  • 66
    • 84943737769 scopus 로고    scopus 로고
    • End-to-end learning of semantic role labeling using recurrent neural networks
    • Zhou, Jie and Xu, Wei. End-to-end learning of semantic role labeling using recurrent neural networks. In ACL, 2015.
    • (2015) ACL
    • Zhou, J.1    Xu, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.