-
1
-
-
84867125855
-
Bayesian posterior sampling via stochastic gradient Fisher scoring
-
Ahn, S., Korattikara, A., and Welling, M. Bayesian posterior sampling via stochastic gradient Fisher scoring. In ICML, 2012.
-
(2012)
ICML
-
-
Ahn, S.1
Korattikara, A.2
Welling, M.3
-
2
-
-
33745942703
-
One-step neural network inversion with PDF learning and emulation
-
IEEE
-
Baird, L., Smalenberger, D., and Ingkiriwang, S. One-step neural network inversion with PDF learning and emulation. In IJCNN, volume 2, pp. 966-971. IEEE, 2005.
-
(2005)
IJCNN
, vol.2
, pp. 966-971
-
-
Baird, L.1
Smalenberger, D.2
Ingkiriwang, S.3
-
4
-
-
84877742737
-
Affine independent variational inference
-
Challis, E. and Barber, D. Affine independent variational inference. In NIPS, 2012.
-
(2012)
NIPS
-
-
Challis, E.1
Barber, D.2
-
5
-
-
10944265561
-
Helmholtz machines and wake-sleep learning
-
MIT Press, Cambridge, MA, (0)
-
Dayan, P. Helmholtz machines and wake-sleep learning. Handbook of Brain Theory and Neural Network. MIT Press, Cambridge, MA, 44(0), 2000.
-
(2000)
Handbook of Brain Theory and Neural Network
, vol.44
-
-
Dayan, P.1
-
7
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12:2121-2159, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.12
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
11
-
-
84897543523
-
Maxout networks
-
Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y. Maxout networks. ICML, 2013.
-
(2013)
ICML
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Mirza, M.3
Courville, A.4
Bengio, Y.5
-
13
-
-
84878919168
-
Stochastic variational inference
-
Hoffman, M. D., Blei, D. M, Wang, C., and Paisley, J. Stochastic variational inference. The Journal of Machine Learning Research, 14(1):1303-1347, 2013.
-
(2013)
The Journal of Machine Learning Research
, vol.14
, Issue.1
, pp. 1303-1347
-
-
Hoffman, M.D.1
Blei, D.M.2
Wang, C.3
Paisley, J.4
-
14
-
-
0001837853
-
Improving the mean field approximation via the use of mixture distributions
-
Jaakkola, T. S. and Jordan, M. I. Improving the mean field approximation via the use of mixture distributions. In Learning in graphical models, pp. 163-173. 1998.
-
(1998)
Learning in Graphical Models
, pp. 163-173
-
-
Jaakkola, T.S.1
Jordan, M.I.2
-
15
-
-
0033225865
-
An introduction to variational methods for graphical models
-
Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. An introduction to variational methods for graphical models. Machine learning, 37(2): 183-233, 1999.
-
(1999)
Machine Learning
, vol.37
, Issue.2
, pp. 183-233
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
16
-
-
85083952489
-
Auto-encoding variational Bayes
-
Kingma, D. P. and Welling, M. Auto-encoding variational Bayes. In ICLR, 2014.
-
(2014)
ICLR
-
-
Kingma, D.P.1
Welling, M.2
-
17
-
-
84930643107
-
Semi-supervised learning with deep generative models
-
Kingma, D. P., Mohamed, S., Rezende, D. J., and Welling, M. Semi-supervised learning with deep generative models. In NIPS, pp. 3581-3589, 2014.
-
(2014)
NIPS
, pp. 3581-3589
-
-
Kingma, D.P.1
Mohamed, S.2
Rezende, D.J.3
Welling, M.4
-
20
-
-
84919786239
-
Neural variational inference and learning in belief networks
-
Mnih, A. and Gregor, K. Neural variational inference and learning in belief networks. In ICML, 2014.
-
(2014)
ICML
-
-
Mnih, A.1
Gregor, K.2
-
22
-
-
2442627902
-
Non-centered parameterisations for hierarchical models and data augmentation
-
Papaspiliopoulos, O., Roberts, G. O., and Sköld, M. Non-centered parameterisations for hierarchical models and data augmentation. In Bayesian Statistics 7, 2003.
-
(2003)
Bayesian Statistics
, vol.7
-
-
Papaspiliopoulos, O.1
Roberts, G.O.2
Sköld, M.3
-
24
-
-
84919796093
-
Stochastic backpropagation and approximate inference in deep generative models
-
Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic backpropagation and approximate inference in deep generative models. In ICML, 2014.
-
(2014)
ICML
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
26
-
-
84969835291
-
Markov chain Monte Carlo and variational inference: Bridging the gap
-
Salimans, T., Kingma, D. P., and Welling, M. Markov chain Monte Carlo and variational inference: Bridging the gap. In ICML, 2015.
-
(2015)
ICML
-
-
Salimans, T.1
Kingma, D.P.2
Welling, M.3
-
27
-
-
84898928896
-
Learning stochastic inverses
-
Stuhlmüller, A., Taylor, J., and Goodman, N. Learning stochastic inverses. In MPS, pp. 3048-3056, 2013.
-
(2013)
MPS
, pp. 3048-3056
-
-
Stuhlmüller, A.1
Taylor, J.2
Goodman, N.3
-
28
-
-
0032050471
-
Online learning Fokker-Planck machine
-
Suykens, J. A. K., Verrelst, H., and Vandewalle, J. Online learning Fokker-Planck machine. Neural processing letters, 7(2):81-89, 1998.
-
(1998)
Neural Processing Letters
, vol.7
, Issue.2
, pp. 81-89
-
-
Suykens, J.A.K.1
Verrelst, H.2
Vandewalle, J.3
-
31
-
-
84919786928
-
Doubly stochastic variational Bayes for non-conjugate inference
-
Titsias, M. and Lazaro-Gredilla, M. Doubly stochastic variational Bayes for non-conjugate inference. In ICML, 2014.
-
(2014)
ICML
-
-
Titsias, M.1
Lazaro-Gredilla, M.2
-
32
-
-
84923421297
-
Two problems with variational expectation maximisation for time-series models
-
Barber, D., Cemgil, T., and Chiappa, S. (eds.), chapter 5, Cambridge University Press
-
Turner, R. E. and Sahani, M. Two problems with variational expectation maximisation for time-series models. In Barber, D., Cemgil, T., and Chiappa, S. (eds.), Bayesian Time series models, chapter 5, pp. 109-130. Cambridge University Press, 2011.
-
(2011)
Bayesian Time Series Models
, pp. 109-130
-
-
Turner, R.E.1
Sahani, M.2
-
33
-
-
84919786489
-
A deep and tractable density estimator
-
Uria, B., Murray, I., and Larochelle, H. A deep and tractable density estimator. In ICML, 2014.
-
(2014)
ICML
-
-
Uria, B.1
Murray, I.2
Larochelle, H.3
-
34
-
-
33646014240
-
Convergence and asymptotic normality of variational Bayesian approximations for exponential family models with missing values
-
Wang, B. and Titterington, D. M. Convergence and asymptotic normality of variational Bayesian approximations for exponential family models with missing values. In UAI, 2004.
-
(2004)
UAI
-
-
Wang, B.1
Titterington, D.M.2
-
35
-
-
80053452150
-
Bayesian learning via stochastic gradient Langevin dynamics
-
Welling, M. and Teh, Y. W. Bayesian learning via stochastic gradient Langevin dynamics. In ICML, 2011.
-
(2011)
ICML
-
-
Welling, M.1
Teh, Y.W.2
-
36
-
-
0000337576
-
Simple statistical gradient-following algorithms for connectionist reinforcement learning
-
Williams, Ronald J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning, 8(3-4):229-256, 1992.
-
(1992)
Machine Learning
, vol.8
, Issue.3-4
, pp. 229-256
-
-
Williams, R.J.1
|