메뉴 건너뛰기




Volumn 2, Issue , 2015, Pages 1530-1538

Variational inference with normalizing flows

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE;

EID: 84969776493     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (3313)

References (37)
  • 1
    • 84867125855 scopus 로고    scopus 로고
    • Bayesian posterior sampling via stochastic gradient Fisher scoring
    • Ahn, S., Korattikara, A., and Welling, M. Bayesian posterior sampling via stochastic gradient Fisher scoring. In ICML, 2012.
    • (2012) ICML
    • Ahn, S.1    Korattikara, A.2    Welling, M.3
  • 2
    • 33745942703 scopus 로고    scopus 로고
    • One-step neural network inversion with PDF learning and emulation
    • IEEE
    • Baird, L., Smalenberger, D., and Ingkiriwang, S. One-step neural network inversion with PDF learning and emulation. In IJCNN, volume 2, pp. 966-971. IEEE, 2005.
    • (2005) IJCNN , vol.2 , pp. 966-971
    • Baird, L.1    Smalenberger, D.2    Ingkiriwang, S.3
  • 4
    • 84877742737 scopus 로고    scopus 로고
    • Affine independent variational inference
    • Challis, E. and Barber, D. Affine independent variational inference. In NIPS, 2012.
    • (2012) NIPS
    • Challis, E.1    Barber, D.2
  • 5
    • 10944265561 scopus 로고    scopus 로고
    • Helmholtz machines and wake-sleep learning
    • MIT Press, Cambridge, MA, (0)
    • Dayan, P. Helmholtz machines and wake-sleep learning. Handbook of Brain Theory and Neural Network. MIT Press, Cambridge, MA, 44(0), 2000.
    • (2000) Handbook of Brain Theory and Neural Network , vol.44
    • Dayan, P.1
  • 7
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12:2121-2159, 2010.
    • (2010) Journal of Machine Learning Research , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 9
    • 84867112898 scopus 로고    scopus 로고
    • Nonparametric variational inference
    • Gershman, S., Hoffman, M., and Blei, D. Nonparametric variational inference. In ICML, 2012.
    • (2012) ICML
    • Gershman, S.1    Hoffman, M.2    Blei, D.3
  • 14
    • 0001837853 scopus 로고    scopus 로고
    • Improving the mean field approximation via the use of mixture distributions
    • Jaakkola, T. S. and Jordan, M. I. Improving the mean field approximation via the use of mixture distributions. In Learning in graphical models, pp. 163-173. 1998.
    • (1998) Learning in Graphical Models , pp. 163-173
    • Jaakkola, T.S.1    Jordan, M.I.2
  • 15
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. An introduction to variational methods for graphical models. Machine learning, 37(2): 183-233, 1999.
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 16
    • 85083952489 scopus 로고    scopus 로고
    • Auto-encoding variational Bayes
    • Kingma, D. P. and Welling, M. Auto-encoding variational Bayes. In ICLR, 2014.
    • (2014) ICLR
    • Kingma, D.P.1    Welling, M.2
  • 17
    • 84930643107 scopus 로고    scopus 로고
    • Semi-supervised learning with deep generative models
    • Kingma, D. P., Mohamed, S., Rezende, D. J., and Welling, M. Semi-supervised learning with deep generative models. In NIPS, pp. 3581-3589, 2014.
    • (2014) NIPS , pp. 3581-3589
    • Kingma, D.P.1    Mohamed, S.2    Rezende, D.J.3    Welling, M.4
  • 20
    • 84919786239 scopus 로고    scopus 로고
    • Neural variational inference and learning in belief networks
    • Mnih, A. and Gregor, K. Neural variational inference and learning in belief networks. In ICML, 2014.
    • (2014) ICML
    • Mnih, A.1    Gregor, K.2
  • 22
    • 2442627902 scopus 로고    scopus 로고
    • Non-centered parameterisations for hierarchical models and data augmentation
    • Papaspiliopoulos, O., Roberts, G. O., and Sköld, M. Non-centered parameterisations for hierarchical models and data augmentation. In Bayesian Statistics 7, 2003.
    • (2003) Bayesian Statistics , vol.7
    • Papaspiliopoulos, O.1    Roberts, G.O.2    Sköld, M.3
  • 24
    • 84919796093 scopus 로고    scopus 로고
    • Stochastic backpropagation and approximate inference in deep generative models
    • Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic backpropagation and approximate inference in deep generative models. In ICML, 2014.
    • (2014) ICML
    • Rezende, D.J.1    Mohamed, S.2    Wierstra, D.3
  • 26
    • 84969835291 scopus 로고    scopus 로고
    • Markov chain Monte Carlo and variational inference: Bridging the gap
    • Salimans, T., Kingma, D. P., and Welling, M. Markov chain Monte Carlo and variational inference: Bridging the gap. In ICML, 2015.
    • (2015) ICML
    • Salimans, T.1    Kingma, D.P.2    Welling, M.3
  • 27
    • 84898928896 scopus 로고    scopus 로고
    • Learning stochastic inverses
    • Stuhlmüller, A., Taylor, J., and Goodman, N. Learning stochastic inverses. In MPS, pp. 3048-3056, 2013.
    • (2013) MPS , pp. 3048-3056
    • Stuhlmüller, A.1    Taylor, J.2    Goodman, N.3
  • 31
    • 84919786928 scopus 로고    scopus 로고
    • Doubly stochastic variational Bayes for non-conjugate inference
    • Titsias, M. and Lazaro-Gredilla, M. Doubly stochastic variational Bayes for non-conjugate inference. In ICML, 2014.
    • (2014) ICML
    • Titsias, M.1    Lazaro-Gredilla, M.2
  • 32
    • 84923421297 scopus 로고    scopus 로고
    • Two problems with variational expectation maximisation for time-series models
    • Barber, D., Cemgil, T., and Chiappa, S. (eds.), chapter 5, Cambridge University Press
    • Turner, R. E. and Sahani, M. Two problems with variational expectation maximisation for time-series models. In Barber, D., Cemgil, T., and Chiappa, S. (eds.), Bayesian Time series models, chapter 5, pp. 109-130. Cambridge University Press, 2011.
    • (2011) Bayesian Time Series Models , pp. 109-130
    • Turner, R.E.1    Sahani, M.2
  • 33
    • 84919786489 scopus 로고    scopus 로고
    • A deep and tractable density estimator
    • Uria, B., Murray, I., and Larochelle, H. A deep and tractable density estimator. In ICML, 2014.
    • (2014) ICML
    • Uria, B.1    Murray, I.2    Larochelle, H.3
  • 34
    • 33646014240 scopus 로고    scopus 로고
    • Convergence and asymptotic normality of variational Bayesian approximations for exponential family models with missing values
    • Wang, B. and Titterington, D. M. Convergence and asymptotic normality of variational Bayesian approximations for exponential family models with missing values. In UAI, 2004.
    • (2004) UAI
    • Wang, B.1    Titterington, D.M.2
  • 35
    • 80053452150 scopus 로고    scopus 로고
    • Bayesian learning via stochastic gradient Langevin dynamics
    • Welling, M. and Teh, Y. W. Bayesian learning via stochastic gradient Langevin dynamics. In ICML, 2011.
    • (2011) ICML
    • Welling, M.1    Teh, Y.W.2
  • 36
    • 0000337576 scopus 로고
    • Simple statistical gradient-following algorithms for connectionist reinforcement learning
    • Williams, Ronald J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning, 8(3-4):229-256, 1992.
    • (1992) Machine Learning , vol.8 , Issue.3-4 , pp. 229-256
    • Williams, R.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.