메뉴 건너뛰기




Volumn , Issue , 2017, Pages 3295-3301

A hierarchical latent variable encoder-decoder model for generating dialogues

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; EQUIVALENCE CLASSES; NEURAL NETWORKS; SIGNAL ENCODING; SPEECH RECOGNITION; STOCHASTIC MODELS; STOCHASTIC SYSTEMS;

EID: 85021671951     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1169)

References (43)
  • 3
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Bengio, Y.; Simard, P.; and Frasconi, P. 1994. Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks 5(2):157-166.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 4
    • 84867129058 scopus 로고    scopus 로고
    • Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription
    • Boulanger-Lewandowski, N.; Bengio, Y.; and Vincent, P. 2012. Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription. In ICML.
    • (2012) ICML
    • Boulanger-Lewandowski, N.1    Bengio, Y.2    Vincent, P.3
  • 7
    • 84961291190 scopus 로고    scopus 로고
    • Learning phrase representations using rnn encoder-decoder for statistical Machine translation
    • Cho, K., et al. 2014. Learning phrase representations using rnn encoder-decoder for statistical machine translation. In EMNLP.
    • (2014) EMNLP
    • Cho, K.1
  • 9
    • 80053996940 scopus 로고    scopus 로고
    • Unsupervised classification of dialogue acts using a dirichlet process mixture model
    • Crook, N.; Granell, R.; and Pulman, S. 2009. Unsupervised classification of dialogue acts using a dirichlet process mixture model. In SIGDIAL.
    • (2009) SIGDIAL
    • Crook, N.1    Granell, R.2    Pulman, S.3
  • 10
    • 84965143571 scopus 로고    scopus 로고
    • Deep generative image models using a laplacian pyramid of adversarial networks
    • Denton, E. L.; Chintala, S.; Szlam, A.; and Fergus, R. 2015. Deep generative image models using a laplacian pyramid of adversarial networks. In NIPS.
    • (2015) NIPS
    • Denton, E.L.1    Chintala, S.2    Szlam, A.3    Fergus, R.4
  • 13
    • 84944036795 scopus 로고    scopus 로고
    • deltaBLEU: A discriminative metric for generation tasks with intrinsically diverse targets
    • Galley, M., et al. 2015. deltaBLEU: A discriminative metric for generation tasks with intrinsically diverse targets. In ACL.
    • (2015) ACL
    • Galley, M.1
  • 17
    • 85030470748 scopus 로고    scopus 로고
    • DRAW: A recurrent neural network for image generation
    • Gregor, K.; Danihelka, I.; Graves, A.; and Wierstra, D. 2015. DRAW: A recurrent neural network for image generation. In ICLR.
    • (2015) ICLR
    • Gregor, K.1    Danihelka, I.2    Graves, A.3    Wierstra, D.4
  • 18
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
    • Hinton, G., et al. 2012. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. Signal Processing Magazine, IEEE 29(6):82-97.
    • (2012) Signal Processing Magazine, IEEE , vol.29 , Issue.6 , pp. 82-97
    • Hinton, G.1
  • 21
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • Kingma, D., and Ba, J. 2015. Adam: A method for stochastic optimization. In ICLR.
    • (2015) ICLR
    • Kingma, D.1    Ba, J.2
  • 22
    • 85083952489 scopus 로고    scopus 로고
    • Auto-encoding variational bayes
    • Kingma, D. P., and Welling, M. 2014. Auto-encoding variational bayes. In ICLR.
    • (2014) ICLR
    • Kingma, D.P.1    Welling, M.2
  • 23
    • 84994184277 scopus 로고    scopus 로고
    • A diversity-promoting objective function for neural conversation models
    • Li, J.; Galley, M.; Brockett, C.; Gao, J.; and Dolan, B. 2016. A diversity-promoting objective function for neural conversation models. In NAACL.
    • (2016) NAACL
    • Li, J.1    Galley, M.2    Brockett, C.3    Gao, J.4    Dolan, B.5
  • 24
    • 85072827450 scopus 로고    scopus 로고
    • How NOT to evaluate your dialogue system: An empirical study of unsupervised evaluation metrics for dialogue response generation
    • Liu, C.-W.; Lowe, R.; Serban, I. V.; Noseworthy, M.; Charlin, L.; and Pineau, J. 2016. How NOT to evaluate your dialogue system: An empirical study of unsupervised evaluation metrics for dialogue response generation. In EMNLP.
    • (2016) EMNLP
    • Liu, C.-W.1    Lowe, R.2    Serban, I.V.3    Noseworthy, M.4    Charlin, L.5    Pineau, J.6
  • 25
    • 84988430909 scopus 로고    scopus 로고
    • The ubuntu dialogue corpus: A large dataset for research in unstructured multi-turn dialogue systems
    • Lowe, R.; Pow, N.; Serban, I.; and Pineau, J. 2015. The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems. In SIGDIAL.
    • (2015) SIGDIAL
    • Lowe, R.1    Pow, N.2    Serban, I.3    Pineau, J.4
  • 26
    • 85021954040 scopus 로고    scopus 로고
    • For sympathetic ear, more Chinese turn to smartphone program
    • Markoff, J., and Mozur, P. 2015. For sympathetic ear, more chinese turn to smartphone program. NY Times.
    • (2015) NY Times
    • Markoff, J.1    Mozur, P.2
  • 27
    • 79959829092 scopus 로고    scopus 로고
    • Recurrent neural network based language model
    • Mikolov, T., et al. 2010. Recurrent neural network based language model. In INTERSPEECH.
    • (2010) INTERSPEECH
    • Mikolov, T.1
  • 28
    • 84859927665 scopus 로고    scopus 로고
    • Vector-based models of semantic composition
    • Mitchell, J., and Lapata, M. 2008. Vector-based models of semantic composition. In ACL, 236-244.
    • (2008) ACL , pp. 236-244
    • Mitchell, J.1    Lapata, M.2
  • 29
    • 84874127849 scopus 로고    scopus 로고
    • A survey on metrics for the evaluation of user simulations
    • Pietquin, O., and Hastie, H. 2013. A survey on metrics for the evaluation of user simulations. The knowledge engineering review 28(01):59-73.
    • (2013) The Knowledge Engineering Review , vol.28 , Issue.1 , pp. 59-73
    • Pietquin, O.1    Hastie, H.2
  • 30
    • 84919796093 scopus 로고    scopus 로고
    • Stochastic backpropagation and approximate inference in deep generative models
    • Rezende, D. J.; Mohamed, S.; and Wierstra, D. 2014. Stochastic backpropagation and approximate inference in deep generative models. In ICML.
    • (2014) ICML
    • Rezende, D.J.1    Mohamed, S.2    Wierstra, D.3
  • 31
    • 80053292690 scopus 로고    scopus 로고
    • Data-driven response generation in social media
    • Ritter, A.; Cherry, C.; and Dolan, W. B. 2011. Data-driven response generation in social media. In EMNLP.
    • (2011) EMNLP
    • Ritter, A.1    Cherry, C.2    Dolan, W.B.3
  • 32
    • 85036049150 scopus 로고    scopus 로고
    • A comparison of greedy and optimal assessment of natural language student input using word-to-word similarity metrics
    • Rus, V., and Lintean, M. 2012. A comparison of greedy and optimal assessment of natural language student input using word-to-word similarity metrics. In ACL, Building Educational Applications Workshop.
    • (2012) ACL, Building Educational Applications Workshop
    • Rus, V.1    Lintean, M.2
  • 33
    • 84980367197 scopus 로고    scopus 로고
    • Building end-to-end dialogue systems using generative hierarchical neural network models
    • Serban, I. V.; Sordoni, A.; Bengio, Y.; Courville, A. C.; and Pineau, J. 2016. Building end-to-end dialogue systems using generative hierarchical neural network models. In AAAI.
    • (2016) AAAI
    • Serban, I.V.1    Sordoni, A.2    Bengio, Y.3    Courville, A.C.4    Pineau, J.5
  • 35
    • 0037841376 scopus 로고    scopus 로고
    • Optimizing dialogue management with reinforcement learning: Experiments with the NJFun system
    • Singh, S.; Litman, D.; Kearns, M.; and Walker, M. 2002. Optimizing dialogue management with reinforcement learning: Experiments with the NJFun system. JAIR 16:105-133.
    • (2002) JAIR , vol.16 , pp. 105-133
    • Singh, S.1    Litman, D.2    Kearns, M.3    Walker, M.4
  • 36
    • 84958256008 scopus 로고    scopus 로고
    • A hierarchical recurrent encoder-decoder for generative context-aware query suggestion
    • Sordoni, A.; Bengio, Y.; Vahabi, H.; Lioma, C.; Simonsen, J. G.; and Nie, J.-Y. 2015a. A hierarchical recurrent encoder-decoder for generative context-aware query suggestion. In CIKM.
    • (2015) CIKM
    • Sordoni, A.1    Bengio, Y.2    Vahabi, H.3    Lioma, C.4    Simonsen, J.G.5    Nie, J.-Y.6
  • 38
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to sequence learning with neural networks. In NIPS.
    • (2014) NIPS
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.3
  • 41
    • 84876682878 scopus 로고    scopus 로고
    • POMDP-based statistical spoken dialog systems: A review
    • Young, S.; Gasic, M.; Thomson, B.; and Williams, J. D. 2013. POMDP-based statistical spoken dialog systems: A review. Proceedings of the IEEE 101(5):1160-1179.
    • (2013) Proceedings of the IEEE , vol.101 , Issue.5 , pp. 1160-1179
    • Young, S.1    Gasic, M.2    Thomson, B.3    Williams, J.D.4
  • 43
    • 84906925486 scopus 로고    scopus 로고
    • Discovering latent structure in task-oriented dialogues
    • Zhai, K., and Williams, J. D. 2014. Discovering latent structure in task-oriented dialogues. In ACL.
    • (2014) ACL
    • Zhai, K.1    Williams, J.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.