-
3
-
-
0029372831
-
The helmholtz machine
-
Peter Dayan, Geoffrey E Hinton, Radford M Neal, and Richard S Zemel. The helmholtz machine. Neural computation, 7(5):889-904, 1995.
-
(1995)
Neural Computation
, vol.7
, Issue.5
, pp. 889-904
-
-
Dayan, P.1
Hinton, G.E.2
Neal, R.M.3
Zemel, R.S.4
-
6
-
-
0027580559
-
Novel approach to nonlinear/non-Gaussian Bayesian state estimation
-
IET
-
Neil J Gordon, David J Salmond, and Adrian FM Smith. Novel approach to nonlinear/non-gaussian bayesian state estimation. In Radar and Signal Processing, IEE Proceedings F, Volume 140, pages 107-113. IET, 1993.
-
(1993)
Radar and Signal Processing, IEE Proceedings F
, vol.140
, pp. 107-113
-
-
Gordon, N.J.1
Salmond, D.J.2
Smith, A.F.M.3
-
7
-
-
84919810318
-
-
arXiv preprint arXiv:1310.8499
-
Karol Gregor, Ivo Danihelka, Andriy Mnih, Charles Blundell, and Daan Wierstra. Deep autoregressive networks. arXiv preprint arXiv:1310.8499, 2013.
-
(2013)
Deep Autoregressive Networks
-
-
Gregor, K.1
Danihelka, I.2
Mnih, A.3
Blundell, C.4
Wierstra, D.5
-
11
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief nets. Neural computation, 18(7):1527-1554, 2006.
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
15
-
-
44049116681
-
Connectionist learning of belief networks
-
Radford M Neal. Connectionist learning of belief networks. Artificial intelligence, 56(1), 1992.
-
(1992)
Artificial Intelligence
, vol.56
, Issue.1
-
-
Neal, R.M.1
-
16
-
-
0002788893
-
A view of the em algorithm that justifies incremental, sparse, and other variants
-
Springer
-
Radford M Neal and Geoffrey E Hinton. A view of the em algorithm that justifies incremental, sparse, and other variants. In Learning in graphical models, pages 355-368. Springer, 1998.
-
(1998)
Learning in Graphical Models
, pp. 355-368
-
-
Neal, R.M.1
Hinton, G.E.2
-
24
-
-
84969835291
-
Markov chain monte Carlo and variational inference: Bridging the gap
-
David Blei and Francis Bach, editors JMLR Workshop and Conference Proceedings
-
Tim Salimans, Diederik Kingma, and Max Welling. Markov chain monte carlo and variational inference: Bridging the gap. In David Blei and Francis Bach, editors, Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pages 1218-1226. JMLR Workshop and Conference Proceedings, 2015. URL http://jmlr.org/proceedings/papers/v37/salimans15.pdf.
-
(2015)
Proceedings of the 32nd International Conference on Machine Learning (ICML-15)
, pp. 1218-1226
-
-
Salimans, T.1
Kingma, D.2
Welling, M.3
-
25
-
-
0029679189
-
Mean field theory for sigmoid belief networks
-
Lawrence K Saul, Tommi Jaakkola, and Michael I Jordan. Mean field theory for sigmoid belief networks. Journal of artificial intelligence research, 4(1):61-76, 1996.
-
(1996)
Journal of Artificial Intelligence Research
, vol.4
, Issue.1
, pp. 61-76
-
-
Saul, L.K.1
Jaakkola, T.2
Jordan, M.I.3
|