-
3
-
-
80052393597
-
-
Technical report, EECS Department, University of California, Berkeley
-
John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. Technical report, EECS Department, University of California, Berkeley, 2010.
-
(2010)
Adaptive Subgradient Methods for Online Learning and Stochastic Optimization
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
5
-
-
85031107033
-
-
arXiv: 1412.4869
-
Andrew Gelman, Aki Vehtari, Pasi Jylänki, Tuomas Sivula, Dustin Tran, Swupnil Sahai, Paul Blomstedt, John P. Cunningham, David Schiminovich, and Christian Robert. Expectation propagation as a way of life: A framework for bayesian inference on partitioned data. arXiv: 1412.4869, 2017.
-
(2017)
Expectation Propagation as a Way of Life: A Framework for Bayesian Inference on Partitioned Data
-
-
Gelman, A.1
Vehtari, A.2
Jylänki, P.3
Sivula, T.4
Tran, D.5
Sahai, S.6
Blomstedt, P.7
Cunningham, J.P.8
Schiminovich, D.9
Robert, C.10
-
7
-
-
0033225865
-
An introduction to variational methods for graphical models
-
Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul. An introduction to variational methods for graphical models. Machine Learning, 37(2), 1999.
-
(1999)
Machine Learning
, vol.37
, pp. 2
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
10
-
-
85018920337
-
Improving variational autoencoders with inverse autoregressive flow
-
Diederik P. Kingma, Tim Salimans, Rafal Józefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Improving variational autoencoders with inverse autoregressive flow. In Advances in Neural Information Processing Systems, 2016.
-
(2016)
Advances in Neural Information Processing Systems
-
-
Kingma, D.P.1
Salimans, T.2
Józefowicz, R.3
Xi Chen4
Sutskever, I.5
Welling, M.6
-
12
-
-
85016397096
-
Automatic differentiation variational inference
-
Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M. Blei. Automatic differentiation variational inference. Journal of Machine Learning Research, 18(14): 1-45, 2017.
-
(2017)
Journal of Machine Learning Research
, vol.18
, Issue.14
, pp. 1-45
-
-
Kucukelbir, A.1
Tran, D.2
Ranganath, R.3
Gelman, A.4
Blei, D.M.5
-
14
-
-
63249135864
-
The variational Gaussian approximation revisited
-
Manfred Opper and Cedric Archambeau. The variational Gaussian approximation revisited. Neural computation, 21(3), 2009.
-
(2009)
Neural computation
, vol.21
, pp. 3
-
-
Opper, M.1
Archambeau, C.2
-
20
-
-
84891700107
-
Fixed-form variational posterior approximation through stochastic linear regression
-
Tim Salimans and David A. Knowles. Fixed-form variational posterior approximation through stochastic linear regression. Bayesian Analysis, 8(4), 2013.
-
(2013)
Bayesian Analysis
, vol.8
, pp. 4
-
-
Salimans, T.1
Knowles, D.A.2
-
22
-
-
84910048096
-
Evaluating speech features with the minimalpair ABX task (II): Resistance to noise
-
Thomas Schatz, Vijayaditya Peddinti, Xuan-Nga Cao, Francis R. Bach, Hynek Hermansky, and Emmanuel Dupoux. Evaluating speech features with the minimalpair ABX task (II): Resistance to noise. In Annual Conference of the International Speech Communication Association, 2014.
-
(2014)
Annual Conference of the International Speech Communication Association
-
-
Schatz, T.1
Peddinti, V.2
Cao, X.-N.3
Bach, F.R.4
Hermansky, H.5
Dupoux, E.6
-
23
-
-
84974777235
-
Minimizing finite sums with the stochastic average gradient
-
Mark W. Schmidt, Nicolas Le Roux, and Francis R. Bach. Minimizing finite sums with the stochastic average gradient. Mathematical Programming, 162: 83, 2017. doi: 10.1007/s10107-016-1030-6.
-
(2017)
Mathematical Programming
, vol.162
, pp. 83
-
-
Schmidt, M.W.1
Le Roux, N.2
Bach, F.R.3
-
25
-
-
84997848955
-
-
arXiv: 1610.09787
-
Dustin Tran, Alp Kucukelbir, Adji B. Dieng, Maja Rudolph, Dawen Liang, and David M. Blei. Edward: A library for probabilistic modeling, inference, and criticism. arXiv: 1610.09787, 2016.
-
(2016)
Edward: A Library for Probabilistic Modeling, Inference, and Criticism
-
-
Tran, D.1
Kucukelbir, A.2
Dieng, A.B.3
Rudolph, M.4
Liang, D.5
Blei, D.M.6
|