메뉴 건너뛰기




Volumn 112, Issue 518, 2017, Pages 859-877

Variational Inference: A Review for Statisticians

Author keywords

Algorithms; Computationally intensive methods; Statistical computing

Indexed keywords


EID: 85023644081     PISSN: 01621459     EISSN: 1537274X     Source Type: Journal    
DOI: 10.1080/01621459.2017.1285773     Document Type: Review
Times cited : (4681)

References (167)
  • 3
    • 0000344740 scopus 로고
    • Differential Geometry of Curved Exponential Families-Curvatures and Information Loss
    • Amari, S., (1982), “Differential Geometry of Curved Exponential Families-Curvatures and Information Loss,” The Annals of Statistics, 10, 357–385.
    • (1982) The Annals of Statistics , vol.10 , pp. 357-385
    • Amari, S.1
  • 4
    • 0000396062 scopus 로고    scopus 로고
    • Natural Gradient Works Efficiently in Learning
    • ——— (1998), “Natural Gradient Works Efficiently in Learning,” Neural Computation, 10, 251–276.
    • (1998) Neural Computation , vol.10 , pp. 251-276
    • Amari, S.1
  • 8
    • 79956201651 scopus 로고    scopus 로고
    • Sparse Variational Analysis of Linear Mixed Models for Large Data Sets
    • Armagan, A., and Dunson, D., (2011), “Sparse Variational Analysis of Linear Mixed Models for Large Data Sets,” Statistics & Probability Letters, 81, 1056–1062.
    • (2011) Statistics & Probability Letters , vol.81 , pp. 1056-1062
    • Armagan, A.1    Dunson, D.2
  • 10
    • 0000065017 scopus 로고    scopus 로고
    • Ensemble Learning in Bayesian Neural Networks
    • ed. C. M. Bishop, New York: Springer Verlag
    • Barber, D., and Bishop, C. M., (1998), “Ensemble Learning in Bayesian Neural Networks,” in Generalization in Neural Networks and Machine Learning, ed. C. M. Bishop, New York:Springer Verlag, pp. 215–237.
    • (1998) Generalization in Neural Networks and Machine Learning , pp. 215-237
    • Barber, D.1    Bishop, C.M.2
  • 11
    • 60649095294 scopus 로고    scopus 로고
    • Unified Inference for Variational Bayesian Linear Gaussian State-Space Models
    • Barber, D., and Chiappa, S., (2006), “Unified Inference for Variational Bayesian Linear Gaussian State-Space Models,” in Neural Information Processing Systems, pp. 81–88.
    • (2006) Neural Information Processing Systems , pp. 81-88
    • Barber, D.1    Chiappa, S.2
  • 12
  • 13
    • 84899024135 scopus 로고    scopus 로고
    • Tractable Variational Structures for Approximating Graphical Models
    • Barber, D., and Wiegerinck, W., (1999), “Tractable Variational Structures for Approximating Graphical Models,” in Neural Information Processing Systems, pp. 183–189.
    • (1999) Neural Information Processing Systems , pp. 183-189
    • Barber, D.1    Wiegerinck, W.2
  • 14
    • 13844295342 scopus 로고    scopus 로고
    • The Variational Bayesian EM Algorithm for Incomplete Data: With Application to Scoring Graphical Model Structures
    • Bernardo J., Bayarri M., Berger J., Dawid A., Heckerman D., Smith A., West M., (eds), Oxford, UK: Oxford University Press
    • Beal, M., and Ghahramani, Z., (2003), “The Variational Bayesian EM Algorithm for Incomplete Data:With Application to Scoring Graphical Model Structures,” in Bayesian Statistics (Vol. 7), eds. J., Bernardo, M., Bayarri, J., Berger, A., Dawid, D., Heckerman, A., Smith, and M., West, Oxford, UK:Oxford University Press, pp. 453–464.
    • (2003) Bayesian Statistics , vol.7 , pp. 453-464
    • Beal, M.1    Ghahramani, Z.2
  • 16
    • 84907151164 scopus 로고    scopus 로고
    • Asymptotic Normality of Maximum Likelihood and its Variational Approximation for Stochastic Blockmodels
    • Bickel, P., Choi, D., Chang, X., and Zhang, H., (2013), “Asymptotic Normality of Maximum Likelihood and its Variational Approximation for Stochastic Blockmodels,” The Annals of Statistics, 41, 1922–1943.
    • (2013) The Annals of Statistics , vol.41 , pp. 1922-1943
    • Bickel, P.1    Choi, D.2    Chang, X.3    Zhang, H.4
  • 20
    • 84861170800 scopus 로고    scopus 로고
    • Probabilistic Topic Models
    • Blei, D., (2012), “Probabilistic Topic Models,” Communications of the ACM, 55, 77–84.
    • (2012) Communications of the ACM , vol.55 , pp. 77-84
    • Blei, D.1
  • 21
    • 84867186048 scopus 로고    scopus 로고
    • Variational Inference for Dirichlet Process Mixtures
    • Blei, D., and Jordan, M. I., (2006), “Variational Inference for Dirichlet Process Mixtures,” Journal of Bayesian Analysis, 1, 121–144.
    • (2006) Journal of Bayesian Analysis , vol.1 , pp. 121-144
    • Blei, D.1    Jordan, M.I.2
  • 22
    • 52449116403 scopus 로고    scopus 로고
    • A Correlated Topic Model of Science
    • Blei, D., and Lafferty, J., (2007), “A Correlated Topic Model of Science,” Annals of Applied Statistics, 1, 17–35.
    • (2007) Annals of Applied Statistics , vol.1 , pp. 17-35
    • Blei, D.1    Lafferty, J.2
  • 24
    • 77952563025 scopus 로고    scopus 로고
    • Variational Inference for Large-Scale Models of Discrete Choice
    • Braun, M., and McAuliffe, J., (2010), “Variational Inference for Large-Scale Models of Discrete Choice,” Journal of the American Statistical Association, 105, 324–335.
    • (2010) Journal of the American Statistical Association , vol.105 , pp. 324-335
    • Braun, M.1    McAuliffe, J.2
  • 26
    • 84961253364 scopus 로고    scopus 로고
    • Laplace Variational Approximation for Semiparametric Regression in the Presence of Heteroscedastic Errors
    • Bugbee, B., Breidt, F., and van der Woerd, M., (2016), “Laplace Variational Approximation for Semiparametric Regression in the Presence of Heteroscedastic Errors,” Journal of Computational and Graphical Statistics, 25, 225–245.
    • (2016) Journal of Computational and Graphical Statistics , vol.25 , pp. 225-245
    • Bugbee, B.1    Breidt, F.2    van der Woerd, M.3
  • 27
    • 84860819981 scopus 로고    scopus 로고
    • Scalable Variational Inference for Bayesian Variable Selection in Regression, and its Accuracy in Genetic Association Studies
    • Carbonetto, P., and Stephens, M., (2012), “Scalable Variational Inference for Bayesian Variable Selection in Regression, and its Accuracy in Genetic Association Studies,” Bayesian Analysis, 7, 73–108.
    • (2012) Bayesian Analysis , vol.7 , pp. 73-108
    • Carbonetto, P.1    Stephens, M.2
  • 28
    • 84875385659 scopus 로고    scopus 로고
    • Consistency of Maximum-Likelihood and Variational Estimators in the Stochastic Block Model
    • Celisse, A., Daudin, J.-J., and Pierre, L., (2012), “Consistency of Maximum-Likelihood and Variational Estimators in the Stochastic Block Model,” Electronic Journal of Statistics, 6, 1847–1899.
    • (2012) Electronic Journal of Statistics , vol.6 , pp. 1847-1899
    • Celisse, A.1    Daudin, J.-J.2    Pierre, L.3
  • 31
    • 79551472048 scopus 로고    scopus 로고
    • Covariance in Unsupervised Learning of Probabilistic Grammars
    • Cohen, S., and Smith, N., (2010), “Covariance in Unsupervised Learning of Probabilistic Grammars,” The Journal of Machine Learning Research, 11, 3017–3051.
    • (2010) The Journal of Machine Learning Research , vol.11 , pp. 3017-3051
    • Cohen, S.1    Smith, N.2
  • 32
    • 44649180979 scopus 로고    scopus 로고
    • FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance
    • Cummins, M., and Newman, P., (2008), “FAB-MAP:Probabilistic Localization and Mapping in the Space of Appearance,” The International Journal of Robotics Research, 27, 647–665.
    • (2008) The International Journal of Robotics Research , vol.27 , pp. 647-665
    • Cummins, M.1    Newman, P.2
  • 35
    • 84896717406 scopus 로고    scopus 로고
    • VBA: A Probabilistic Treatment of Nonlinear Models for Neurobiological and Behavioural Data
    • Daunizeau, J., Adam, V., and Rigoux, L., (2014), “VBA:A Probabilistic Treatment of Nonlinear Models for Neurobiological and Behavioural Data,” PLoS Computational Biology, 10, e1003441.
    • (2014) PLoS Computational Biology , vol.10 , pp. e1003441
    • Daunizeau, J.1    Adam, V.2    Rigoux, L.3
  • 36
    • 0002629270 scopus 로고
    • Maximum Likelihood from Incomplete Data via the EM Algorithm
    • Series B
    • Dempster, A., Laird, N., and Rubin, D., (1977), “Maximum Likelihood from Incomplete Data via the EM Algorithm,” Journal of the Royal Statistical Society, Series B, 39, 1–38.
    • (1977) Journal of the Royal Statistical Society , vol.39 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 38
    • 0000811835 scopus 로고
    • Conjugate Priors for Exponential Families
    • Diaconis, P., and Ylvisaker, D., (1979), “Conjugate Priors for Exponential Families,” The Annals of Statistics, 7, 269–281.
    • (1979) The Annals of Statistics , vol.7 , pp. 269-281
    • Diaconis, P.1    Ylvisaker, D.2
  • 39
    • 77953583488 scopus 로고    scopus 로고
    • A Bayesian Model for Simultaneous Image Clustering, Annotation and Object Segmentation
    • Du, L., Lu, R., Carin, L., and Dunson, D., (2009), “A Bayesian Model for Simultaneous Image Clustering, Annotation and Object Segmentation,” in Neural Information Processing Systems, pp. 486–494.
    • (2009) Neural Information Processing Systems , pp. 486-494
    • Du, L.1    Lu, R.2    Carin, L.3    Dunson, D.4
  • 40
    • 84923313033 scopus 로고    scopus 로고
    • Iterative Splits of Quadratic Bounds for Scalable Binary Tensor Factorization
    • Ermis, B., and Bouchard, G., (2014), “Iterative Splits of Quadratic Bounds for Scalable Binary Tensor Factorization,” in Uncertainty in Artificial Intelligence, pp. 192–199.
    • (2014) Uncertainty in Artificial Intelligence , pp. 192-199
    • Ermis, B.1    Bouchard, G.2
  • 41
    • 52949126188 scopus 로고    scopus 로고
    • Describing Disability through Individual-Level Mixture Models for Multivariate Binary Data
    • Erosheva, E. A., Fienberg, S. E., and Joutard, C., (2007), “Describing Disability through Individual-Level Mixture Models for Multivariate Binary Data,” The Annals of Applied Statistics, 1, 346–384.
    • (2007) The Annals of Applied Statistics , vol.1 , pp. 346-384
    • Erosheva, E.A.1    Fienberg, S.E.2    Joutard, C.3
  • 42
    • 33947179549 scopus 로고    scopus 로고
    • Bayesian fMRI Data Analysis with Sparse Spatial Basis Function Priors
    • Flandin, G., and Penny, W., (2007), “Bayesian fMRI Data Analysis with Sparse Spatial Basis Function Priors,” NeuroImage, 34, 1108–1125.
    • (2007) NeuroImage , vol.34 , pp. 1108-1125
    • Flandin, G.1    Penny, W.2
  • 43
    • 84937901904 scopus 로고    scopus 로고
    • Stochastic Variational Inference for Hidden Markov Models
    • Foti, N., Xu, J., Laird, D., and Fox, E., (2014), “Stochastic Variational Inference for Hidden Markov Models,” in Neural Information Processing Systems, pp. 3599–3607.
    • (2014) Neural Information Processing Systems , pp. 3599-3607
    • Foti, N.1    Xu, J.2    Laird, D.3    Fox, E.4
  • 45
  • 46
  • 47
    • 84904639201 scopus 로고    scopus 로고
    • Decomposing Spatiotemporal Brain Patterns into Topographic Latent Sources
    • Gershman, S. J., Blei, D. M., Norman, K. A., and Sederberg, P. B., (2014), “Decomposing Spatiotemporal Brain Patterns into Topographic Latent Sources,” NeuroImage, 98, 91–102.
    • (2014) NeuroImage , vol.98 , pp. 91-102
    • Gershman, S.J.1    Blei, D.M.2    Norman, K.A.3    Sederberg, P.B.4
  • 48
    • 0031268341 scopus 로고    scopus 로고
    • Factorial Hidden Markov Models
    • Ghahramani, Z., and Jordan, M. I., (1997), “Factorial Hidden Markov Models,” Machine Learning, 29, 245–273.
    • (1997) Machine Learning , vol.29 , pp. 245-273
    • Ghahramani, Z.1    Jordan, M.I.2
  • 49
    • 84965143892 scopus 로고    scopus 로고
    • Linear Response Methods for Accurate Covariance Estimates from Mean Field Variational Bayes
    • Giordano, R. J., Broderick, T., and Jordan, M. I., (2015), “Linear Response Methods for Accurate Covariance Estimates from Mean Field Variational Bayes,” in Neural Information Processing Systems, pp. 1441–1449.
    • (2015) Neural Information Processing Systems , pp. 1441-1449
    • Giordano, R.J.1    Broderick, T.2    Jordan, M.I.3
  • 50
    • 78651441268 scopus 로고    scopus 로고
    • An introduction to Bayesian Inference via Variational Approximations
    • Grimmer, J., (2011), “An introduction to Bayesian Inference via Variational Approximations,” Political Analysis, 19, 32–47.
    • (2011) Political Analysis , vol.19 , pp. 32-47
    • Grimmer, J.1
  • 51
    • 78650402025 scopus 로고    scopus 로고
    • Theory of Gaussian Variational Approximation for a Poisson Mixed Model
    • Hall, P., Ormerod, J., and Wand, M., (2011a), “Theory of Gaussian Variational Approximation for a Poisson Mixed Model,” Statistica Sinica, 21, 369–389.
    • (2011) Statistica Sinica , vol.21 , pp. 369-389
    • Hall, P.1    Ormerod, J.2    Wand, M.3
  • 52
    • 82655189993 scopus 로고    scopus 로고
    • Asymptotic Normality and Valid Inference for Gaussian Variational Approximation
    • Hall, P., Pham, T., Wand, M., and Wang, S., (2011b), “Asymptotic Normality and Valid Inference for Gaussian Variational Approximation,” Annals of Statistics, 39, 2502–2532.
    • (2011) Annals of Statistics , vol.39 , pp. 2502-2532
    • Hall, P.1    Pham, T.2    Wand, M.3    Wang, S.4
  • 53
    • 77549088909 scopus 로고    scopus 로고
    • A Bayesian Spatiotemporal Model for very Large Data Sets
    • Harrison, L., and Green, G., (2010), “A Bayesian Spatiotemporal Model for very Large Data Sets,” Neuroimage, 50, 1126–1141.
    • (2010) Neuroimage , vol.50 , pp. 1126-1141
    • Harrison, L.1    Green, G.2
  • 54
    • 77956890234 scopus 로고
    • Monte Carlo Sampling Methods using Markov Chains and their Applications
    • Hastings, W., (1970), “Monte Carlo Sampling Methods using Markov Chains and their Applications,” Biometrika, 57, 97–109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.1
  • 57
    • 0027803368 scopus 로고
    • Keeping the Neural Networks Simple by Minimizing the Description Length of the Weights
    • Hinton, G., and Van Camp, D., (1993), “Keeping the Neural Networks Simple by Minimizing the Description Length of the Weights,” in Computational Learning Theory, pp. 5–13.
    • (1993) Computational Learning Theory , pp. 5-13
    • Hinton, G.1    Van Camp, D.2
  • 61
    • 84901687683 scopus 로고    scopus 로고
    • The No-U-turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
    • Hoffman, M. D., and Gelman, A., (2014), “The No-U-turn Sampler:Adaptively Setting Path Lengths in Hamiltonian Monte Carlo,” The Journal of Machine Learning Research, 15, 1593–1623.
    • (2014) The Journal of Machine Learning Research , vol.15 , pp. 1593-1623
    • Hoffman, M.D.1    Gelman, A.2
  • 63
    • 0006489058 scopus 로고    scopus 로고
    • Computing Upper and Lower Bounds on Likelihoods in Intractable Networks
    • Jaakkola, T., and Jordan, M. I., (1996), “Computing Upper and Lower Bounds on Likelihoods in Intractable Networks,” in Uncertainty in Artificial Intelligence, pp. 340–348.
    • (1996) Uncertainty in Artificial Intelligence , pp. 340-348
    • Jaakkola, T.1    Jordan, M.I.2
  • 64
    • 33749044832 scopus 로고    scopus 로고
    • A Variational Approach to Bayesian Logistic Regression Models and their Extensions
    • ——— (1997), “A Variational Approach to Bayesian Logistic Regression Models and their Extensions,” in Artificial Intelligence and Statistics, pp. 1–12.
    • (1997) Artificial Intelligence and Statistics , pp. 1-12
    • Jaakkola, T.1    Jordan, M.I.2
  • 65
    • 0042685161 scopus 로고    scopus 로고
    • Bayesian Parameter Estimation via Variational Methods
    • ——— (2000), “Bayesian Parameter Estimation via Variational Methods,” Statistics and Computing, 10, 25–37.
    • (2000) Statistics and Computing , vol.10 , pp. 25-37
    • Jaakkola, T.1    Jordan, M.I.2
  • 67
    • 84919788452 scopus 로고    scopus 로고
    • Stochastic Variational Inference for Bayesian Time Series Models
    • Johnson, M., and Willsky, A., (2014), “Stochastic Variational Inference for Bayesian Time Series Models,” in International Conference on Machine Learning, pp. 1854–1862.
    • (2014) International Conference on Machine Learning , pp. 1854-1862
    • Johnson, M.1    Willsky, A.2
  • 70
    • 0033225865 scopus 로고    scopus 로고
    • Introduction to Variational Methods for Graphical Models
    • Jordan, M. I., Ghahramani, Z., Jaakkola, T., and Saul, L., (1999), “Introduction to Variational Methods for Graphical Models,” Machine Learning, 37, 183–233.
    • (1999) Machine Learning , vol.37 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.3    Saul, L.4
  • 72
    • 36148984293 scopus 로고    scopus 로고
    • Variational Bayesian Inversion of the Equivalent Current Dipole Model in EEG/MEG
    • Kiebel, S., Daunizeau, J., Phillips, C., and Friston, K., (2008), “Variational Bayesian Inversion of the Equivalent Current Dipole Model in EEG/MEG,” NeuroImage, 39, 728–741.
    • (2008) NeuroImage , vol.39 , pp. 728-741
    • Kiebel, S.1    Daunizeau, J.2    Phillips, C.3    Friston, K.4
  • 74
    • 85162453650 scopus 로고    scopus 로고
    • Non-Conjugate Variational Message Passing for Multinomial and Binary Regression
    • Knowles, D., and Minka, T., (2011), “Non-Conjugate Variational Message Passing for Multinomial and Binary Regression,” in Neural Information Processing Systems, pp. 1701–1709.
    • (2011) Neural Information Processing Systems , pp. 1701-1709
    • Knowles, D.1    Minka, T.2
  • 78
    • 33750292464 scopus 로고    scopus 로고
    • Variational Bayesian Grammar Induction for Natural Language
    • New York: Springer
    • Kurihara, K., and Sato, T., (2006), “Variational Bayesian Grammar Induction for Natural Language,” in Grammatical Inference:Algorithms and Applications, New York:Springer, pp. 84–96.
    • (2006) Grammatical Inference: Algorithms and Applications , pp. 84-96
    • Kurihara, K.1    Sato, T.2
  • 80
    • 83055184786 scopus 로고    scopus 로고
    • Search for Patterns of Functional Specificity in the Brain: A Nonparametric Hierarchical Bayesian Model for Group fMRI Data
    • Lashkari, D., Sridharan, R., Vul, E., Hsieh, P., Kanwisher, N., and Golland, P., (2012), “Search for Patterns of Functional Specificity in the Brain:A Nonparametric Hierarchical Bayesian Model for Group fMRI Data,” Neuroimage, 59, 1348–1368.
    • (2012) Neuroimage , vol.59 , pp. 1348-1368
    • Lashkari, D.1    Sridharan, R.2    Vul, E.3    Hsieh, P.4    Kanwisher, N.5    Golland, P.6
  • 81
    • 0001006209 scopus 로고
    • Local Computations with Probabilities on Graphical Structures and their Application to Expert Systems
    • Series B
    • Lauritzen, S., and Spiegelhalter, D., (1988), “Local Computations with Probabilities on Graphical Structures and their Application to Expert Systems,” Journal of the Royal Statistical Society, Series B, 50, 157–224.
    • (1988) Journal of the Royal Statistical Society , vol.50 , pp. 157-224
    • Lauritzen, S.1    Spiegelhalter, D.2
  • 83
    • 0035461422 scopus 로고    scopus 로고
    • A Tighter Bound for Graphical Models
    • Leisink, M., and Kappen, H., (2001), “A Tighter Bound for Graphical Models,” Neural Computation, 13, 2149–2171.
    • (2001) Neural Computation , vol.13 , pp. 2149-2171
    • Leisink, M.1    Kappen, H.2
  • 84
    • 80053285082 scopus 로고    scopus 로고
    • Probabilistic Grammars and Hierarchical Dirichlet Processes
    • O’Hagan T., West M., (eds), New York: Oxford University Press
    • Liang, P., Jordan, M. I., and Klein, D., (2009), “Probabilistic Grammars and Hierarchical Dirichlet Processes,” in The Handbook of Applied Bayesian Analysis, eds. T., O’Hagan, and M., West, New York:Oxford University Press, pp. 776–819.
    • (2009) The Handbook of Applied Bayesian Analysis , pp. 776-819
    • Liang, P.1    Jordan, M.I.2    Klein, D.3
  • 86
    • 3543127719 scopus 로고    scopus 로고
    • A Variational Approach for Bayesian Blind Image Deconvolution
    • Likas, A., and Galatsanos, N., (2004), “A Variational Approach for Bayesian Blind Image Deconvolution,” IEEE Transactions on Signal Processing, 52, 2222–2233.
    • (2004) IEEE Transactions on Signal Processing , vol.52 , pp. 2222-2233
    • Likas, A.1    Galatsanos, N.2
  • 87
    • 77349109776 scopus 로고    scopus 로고
    • A Variational Bayes Algorithm for Fast and Accurate Multiple Locus Genome-Wide Association Analysis
    • Logsdon, B., Hoffman, G., and Mezey, J., (2010), “A Variational Bayes Algorithm for Fast and Accurate Multiple Locus Genome-Wide Association Analysis,” BMC Bioinformatics, 11, 58.
    • (2010) BMC Bioinformatics , vol.11 , pp. 58
    • Logsdon, B.1    Hoffman, G.2    Mezey, J.3
  • 88
    • 0003598536 scopus 로고    scopus 로고
    • MacKay, D. J, unpublished manuscript
    • MacKay, D. J. (1997), “Ensemble Learning for Hidden Markov Models,” unpublished manuscript, available at http://www.inference.eng.cam.ac.uk/mackay/ensemblePaper.pdf.
    • (1997) Ensemble Learning for Hidden Markov Models
  • 89
    • 84900525659 scopus 로고    scopus 로고
    • Topographic Factor Analysis: A Bayesian Model for Inferring Brain Networks from Neural Data
    • Manning, J. R., Ranganath, R., Norman, K. A., and Blei, D. M., (2014), “Topographic Factor Analysis:A Bayesian Model for Inferring Brain Networks from Neural Data,” PloS one, 9, e94914.
    • (2014) PloS one , vol.9 , pp. e94914
    • Manning, J.R.1    Ranganath, R.2    Norman, K.A.3    Blei, D.M.4
  • 91
    • 34247869715 scopus 로고    scopus 로고
    • Variational Approximations in Bayesian Model Selection for Finite Mixture Distributions
    • McGrory, C. A., and Titterington, D. M., (2007), “Variational Approximations in Bayesian Model Selection for Finite Mixture Distributions,” Computational Statistics and Data Analysis, 51, 5352–5367.
    • (2007) Computational Statistics and Data Analysis , vol.51 , pp. 5352-5367
    • McGrory, C.A.1    Titterington, D.M.2
  • 93
    • 0345978970 scopus 로고    scopus 로고
    • Expectation Propagation for Approximate Bayesian Inference
    • Minka, T. P., (2001), “Expectation Propagation for Approximate Bayesian Inference,” in Uncertainty in Artificial Intelligence, pp. 362–369.
    • (2001) Uncertainty in Artificial Intelligence , pp. 362-369
    • Minka, T.P.1
  • 97
    • 84895870175 scopus 로고    scopus 로고
    • A Variational Bayes Spatiotemporal Model for Electromagnetic Brain Mapping
    • Nathoo, F., Babul, A., Moiseev, A., Virji-Babul, N., and Beg, M., (2014), “A Variational Bayes Spatiotemporal Model for Electromagnetic Brain Mapping,” Biometrics, 70, 132–143.
    • (2014) Biometrics , vol.70 , pp. 132-143
    • Nathoo, F.1    Babul, A.2    Moiseev, A.3    Virji-Babul, N.4    Beg, M.5
  • 98
    • 0002788893 scopus 로고    scopus 로고
    • A View of the EM Algorithm that Justifies Incremental, Sparse, and other Variants
    • New York: Springer
    • Neal, R. M., and Hinton, G. E., (1998), “A View of the EM Algorithm that Justifies Incremental, Sparse, and other Variants,” in Learning in Graphical Models, New York:Springer, pp. 355–368.
    • (1998) Learning in Graphical Models , pp. 355-368
    • Neal, R.M.1    Hinton, G.E.2
  • 99
    • 84938886140 scopus 로고    scopus 로고
    • Mean Field Variational Bayes for Continuous Sparse Signal Shrinkage: Pitfalls and Remedies
    • Neville, S., Ormerod, J., and Wand, M., (2014), “Mean Field Variational Bayes for Continuous Sparse Signal Shrinkage:Pitfalls and Remedies,” Electronic Journal of Statistics, 8, 1113–1151.
    • (2014) Electronic Journal of Statistics , vol.8 , pp. 1113-1151
    • Neville, S.1    Ormerod, J.2    Wand, M.3
  • 100
  • 106
    • 0042671302 scopus 로고    scopus 로고
    • Variational Bayesian Inference for fMRI Time Series
    • Penny, W., Kiebel, S., and Friston, K., (2003), “Variational Bayesian Inference for fMRI Time Series,” NeuroImage, 19, 727–741.
    • (2003) NeuroImage , vol.19 , pp. 727-741
    • Penny, W.1    Kiebel, S.2    Friston, K.3
  • 107
    • 16244387927 scopus 로고    scopus 로고
    • Bayesian fMRI Time Series Analysis with Spatial Priors
    • Penny, W., Trujillo-Barreto, N., and Friston, K., (2005), “Bayesian fMRI Time Series Analysis with Spatial Priors,” Neuroimage, 24, 350–362.
    • (2005) Neuroimage , vol.24 , pp. 350-362
    • Penny, W.1    Trujillo-Barreto, N.2    Friston, K.3
  • 108
    • 0001406440 scopus 로고
    • A Mean Field Theory Learning Algorithm for Neural Networks
    • Peterson, C., and Anderson, J., (1987), “A Mean Field Theory Learning Algorithm for Neural Networks,” Complex Systems, 1, 995–1019.
    • (1987) Complex Systems , vol.1 , pp. 995-1019
    • Peterson, C.1    Anderson, J.2
  • 109
    • 84902485214 scopus 로고    scopus 로고
    • fastSTRUCTURE: Variational Inference of Population Structure in Large SNP Data Sets
    • Raj, A., Stephens, M., and Pritchard, J., (2014), “fastSTRUCTURE:Variational Inference of Population Structure in Large SNP Data Sets,” Genetics, 197, 573–589.
    • (2014) Genetics , vol.197 , pp. 573-589
    • Raj, A.1    Stephens, M.2    Pritchard, J.3
  • 114
  • 118
    • 1142285282 scopus 로고    scopus 로고
    • Positional Entropy During Pigeon Homing I: Application of Bayesian Latent State Modelling
    • Roberts, S., Guilford, T., Rezek, I., and Biro, D., (2004), “Positional Entropy During Pigeon Homing I:Application of Bayesian Latent State Modelling,” Journal of Theoretical Biology, 227, 39–50.
    • (2004) Journal of Theoretical Biology , vol.227 , pp. 39-50
    • Roberts, S.1    Guilford, T.2    Rezek, I.3    Biro, D.4
  • 119
    • 0036729732 scopus 로고    scopus 로고
    • Variational Bayes for Generalized Autoregressive Models
    • Roberts, S., and Penny, W., (2002), “Variational Bayes for Generalized Autoregressive Models,” IEEE Transactions on Signal Processing, 50, 2245–2257.
    • (2002) IEEE Transactions on Signal Processing , vol.50 , pp. 2245-2257
    • Roberts, S.1    Penny, W.2
  • 123
    • 33751008680 scopus 로고    scopus 로고
    • Probabilistic Inference of Transcription Factor Concentrations and Gene-Specific Regulatory Activities
    • Sanguinetti, G., Lawrence, N., and Rattray, M., (2006), “Probabilistic Inference of Transcription Factor Concentrations and Gene-Specific Regulatory Activities,” Bioinformatics, 22, 2775–2781.
    • (2006) Bioinformatics , vol.22 , pp. 2775-2781
    • Sanguinetti, G.1    Lawrence, N.2    Rattray, M.3
  • 124
    • 0000147488 scopus 로고    scopus 로고
    • Online Model Selection Based on the Variational Bayes
    • Sato, M., (2001), “Online Model Selection Based on the Variational Bayes,” Neural Computation, 13, 1649–1681.
    • (2001) Neural Computation , vol.13 , pp. 1649-1681
    • Sato, M.1
  • 126
    • 85156241149 scopus 로고    scopus 로고
    • Exploiting Tractable Substructures in Intractable Networks
    • Saul, L., and Jordan, M. I., (1996), “Exploiting Tractable Substructures in Intractable Networks,” in Neural Information Processing Systems, pp. 486–492.
    • (1996) Neural Information Processing Systems , pp. 486-492
    • Saul, L.1    Jordan, M.I.2
  • 130
    • 77955505742 scopus 로고    scopus 로고
    • A Bayesian Framework to Account for Complex Non-Genetic Factors in Gene Expression Levels Greatly Increases Power in eqtl Studies
    • Stegle, O., Parts, L., Durbin, R., and Winn, J., (2010), “A Bayesian Framework to Account for Complex Non-Genetic Factors in Gene Expression Levels Greatly Increases Power in eqtl Studies,” PLoS Computational Biology, 6, e1000770.
    • (2010) PLoS Computational Biology , vol.6 , pp. e1000770
    • Stegle, O.1    Parts, L.2    Durbin, R.3    Winn, J.4
  • 131
    • 72149090968 scopus 로고    scopus 로고
    • Shared Segmentation of Natural Scenes using Dependent Pitman-Yor Processes
    • Sudderth, E. B., and Jordan, M. I., (2009), “Shared Segmentation of Natural Scenes using Dependent Pitman-Yor Processes,” in Neural Information Processing Systems, pp. 1585–1592.
    • (2009) Neural Information Processing Systems , pp. 1585-1592
    • Sudderth, E.B.1    Jordan, M.I.2
  • 133
    • 1942489160 scopus 로고    scopus 로고
    • Adaptive BCI Based on Variational Bayesian Kalman Filtering: An Empirical Evaluation
    • Sykacek, P., Roberts, S., and Stokes, M., (2004), “Adaptive BCI Based on Variational Bayesian Kalman Filtering:An Empirical Evaluation,” IEEE Transactions on Biomedical Engineering, 51, 719–727.
    • (2004) IEEE Transactions on Biomedical Engineering , vol.51 , pp. 719-727
    • Sykacek, P.1    Roberts, S.2    Stokes, M.3
  • 134
    • 84878988007 scopus 로고    scopus 로고
    • Variational Inference for Generalized Linear Mixed Models using Partially Noncentered Parametrizations
    • Tan, L., and Nott, D., (2013), “Variational Inference for Generalized Linear Mixed Models using Partially Noncentered Parametrizations,” Statistical Science, 28, 168–188.
    • (2013) Statistical Science , vol.28 , pp. 168-188
    • Tan, L.1    Nott, D.2
  • 135
    • 84920271265 scopus 로고    scopus 로고
    • A Stochastic Variational Framework for Fitting and Diagnosing Generalized Linear Mixed Models
    • ——— (2014), “A Stochastic Variational Framework for Fitting and Diagnosing Generalized Linear Mixed Models,” Bayesian Analysis, 9, 963–1004.
    • (2014) Bayesian Analysis , vol.9 , pp. 963-1004
    • Tan, L.1    Nott, D.2
  • 137
    • 27844592624 scopus 로고    scopus 로고
    • Variational Inference for Student-t models: Robust Bayesian Interpolation and Generalised Component Analysis
    • Tipping, M., and Lawrence, N., (2005), “Variational Inference for Student-t models:Robust Bayesian Interpolation and Generalised Component Analysis,” Neurocomputing, 69, 123–141.
    • (2005) Neurocomputing , vol.69 , pp. 123-141
    • Tipping, M.1    Lawrence, N.2
  • 141
    • 0036887504 scopus 로고    scopus 로고
    • Bayesian Model Search for Mixture Models Based on Optimizing Variational Bounds
    • Ueda, N., and Ghahramani, Z., (2002), “Bayesian Model Search for Mixture Models Based on Optimizing Variational Bounds,” Neural Networks, 15, 1223–1241.
    • (2002) Neural Networks , vol.15 , pp. 1223-1241
    • Ueda, N.1    Ghahramani, Z.2
  • 144
    • 84981186713 scopus 로고    scopus 로고
    • Overview of the ImageCLEF 2013 Scalable Concept Image Annotation Subtask
    • Villegas, M., Paredes, R., and Thomee, B., (2013), “Overview of the ImageCLEF 2013 Scalable Concept Image Annotation Subtask,” in CLEF Evaluation Labs and Workshop, pp. 308–328.
    • (2013) CLEF Evaluation Labs and Workshop , pp. 308-328
    • Villegas, M.1    Paredes, R.2    Thomee, B.3
  • 145
  • 146
    • 84901597335 scopus 로고    scopus 로고
    • Fully Simplified Multivariate Normal Updates in Non-Conjugate Variational Message Passing
    • Wand, M., (2014), “Fully Simplified Multivariate Normal Updates in Non-Conjugate Variational Message Passing,” Journal of Machine Learning Research, 15, 1351–1369.
    • (2014) Journal of Machine Learning Research , vol.15 , pp. 1351-1369
    • Wand, M.1
  • 147
    • 84856958759 scopus 로고    scopus 로고
    • Mean Field Variational Bayes for Elaborate Distributions
    • Wand, M., Ormerod, J., Padoan, S., and Fuhrwirth, R., (2011), “Mean Field Variational Bayes for Elaborate Distributions,” Bayesian Analysis, 6, 847–900.
    • (2011) Bayesian Analysis , vol.6 , pp. 847-900
    • Wand, M.1    Ormerod, J.2    Padoan, S.3    Fuhrwirth, R.4
  • 148
    • 62149086004 scopus 로고    scopus 로고
    • Inadequacy of Interval Estimates Corresponding to Variational Bayesian Approximations
    • Wang, B., and Titterington, D., (2005), “Inadequacy of Interval Estimates Corresponding to Variational Bayesian Approximations,” in Artificial Intelligence and Statistics, pp. 373–380.
    • (2005) Artificial Intelligence and Statistics , pp. 373-380
    • Wang, B.1    Titterington, D.2
  • 149
    • 33745841556 scopus 로고    scopus 로고
    • Convergence Properties of a General Algorithm for Calculating Variational Bayesian Estimates for a Normal Mixture Model
    • ——— (2006), “Convergence Properties of a General Algorithm for Calculating Variational Bayesian Estimates for a Normal Mixture Model,” Bayesian Analysis, 1, 625–650.
    • (2006) Bayesian Analysis , vol.1 , pp. 625-650
    • Wang, B.1    Titterington, D.2
  • 150
    • 84877630966 scopus 로고    scopus 로고
    • Variational Inference in Nonconjugate Models
    • Wang, C., and Blei, D., (2013), “Variational Inference in Nonconjugate Models,” Journal of Machine Learning Research, 14, 1005–1031.
    • (2013) Journal of Machine Learning Research , vol.14 , pp. 1005-1031
    • Wang, C.1    Blei, D.2
  • 151
    • 85023605370 scopus 로고    scopus 로고
    • A General Method for Robust Bayesian Modeling
    • ——— (2015), “A General Method for Robust Bayesian Modeling,” Journal of Machine Learning Research, 14, 1005–1031.
    • (2015) Journal of Machine Learning Research , vol.14 , pp. 1005-1031
    • Wang, C.1    Blei, D.2
  • 152
    • 84905702716 scopus 로고    scopus 로고
    • Collapsed Variational Bayesian Inference for Hidden Markov Models
    • Wang, P., and Blunsom, P., (2013), “Collapsed Variational Bayesian Inference for Hidden Markov Models,” in Artificial Intelligence and Statistics, pp. 599–607.
    • (2013) Artificial Intelligence and Statistics , pp. 599-607
    • Wang, P.1    Blunsom, P.2
  • 155
    • 80053452150 scopus 로고    scopus 로고
    • Bayesian Learning via Stochastic Gradient Langevin Dynamics
    • Welling, M., and Teh, Y., (2011), “Bayesian Learning via Stochastic Gradient Langevin Dynamics,” in International Conference on Machine Learning, pp. 681–688.
    • (2011) International Conference on Machine Learning , pp. 681-688
    • Welling, M.1    Teh, Y.2
  • 157
    • 45749117949 scopus 로고    scopus 로고
    • Bayesian Approach to Network Modularity
    • Wiggins, C., and Hofman, J., (2008), “Bayesian Approach to Network Modularity,” Physical Review Letters, 100, 258701.
    • (2008) Physical Review Letters , vol.100 , pp. 258701
    • Wiggins, C.1    Hofman, J.2
  • 160
    • 57649220812 scopus 로고    scopus 로고
    • A Unified Bayesian Framework for MEG/EEG Source Imaging
    • Wipf, D., and Nagarajan, S., (2009), “A Unified Bayesian Framework for MEG/EEG Source Imaging,” NeuroImage, 44, 947–966.
    • (2009) NeuroImage , vol.44 , pp. 947-966
    • Wipf, D.1    Nagarajan, S.2
  • 161
    • 1842452778 scopus 로고    scopus 로고
    • Multilevel Linear Modeling for fMRI Group Analysis using Bayesian Inference
    • Woolrich, M., Behrens, T., Beckmann, C., Jenkinson, M., and Smith, S., (2004), “Multilevel Linear Modeling for fMRI Group Analysis using Bayesian Inference,” Neuroimage, 21, 1732–1747.
    • (2004) Neuroimage , vol.21 , pp. 1732-1747
    • Woolrich, M.1    Behrens, T.2    Beckmann, C.3    Jenkinson, M.4    Smith, S.5
  • 165
    • 84899129730 scopus 로고    scopus 로고
    • On Variational Bayes Estimation and Variational Information Criteria for Linear Regression Models
    • You, C., Ormerod, J., and Muller, S., (2014), “On Variational Bayes Estimation and Variational Information Criteria for Linear Regression Models,” Australian & New Zealand Journal of Statistics, 56, 73–87.
    • (2014) Australian & New Zealand Journal of Statistics , vol.56 , pp. 73-87
    • You, C.1    Ormerod, J.2    Muller, S.3
  • 166
    • 33745178491 scopus 로고    scopus 로고
    • Decentralized Multiple Target Tracking using Netted Collaborative Autonomous Trackers
    • Yu, T., and Wu, Y., (2005), “Decentralized Multiple Target Tracking using Netted Collaborative Autonomous Trackers,” in Computer Vision and Pattern Recognition, pp. 939–946.
    • (2005) Computer Vision and Pattern Recognition , pp. 939-946
    • Yu, T.1    Wu, Y.2
  • 167
    • 34447576745 scopus 로고    scopus 로고
    • A Probabilistic Algorithm Integrating Source Localization and Noise Suppression for MEG and EEG Data
    • Zumer, J., Attias, H., Sekihara, K., and Nagarajan, S., (2007), “A Probabilistic Algorithm Integrating Source Localization and Noise Suppression for MEG and EEG Data,” NeuroImage, 37, 102–115.
    • (2007) NeuroImage , vol.37 , pp. 102-115
    • Zumer, J.1    Attias, H.2    Sekihara, K.3    Nagarajan, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.