-
1
-
-
84858012279
-
Scalable Inference in Latent Variable Models
-
Ahmed, A., Aly, M., Gonzalez, J., Narayanamurthy, S., and Smola, A., (2012), “Scalable Inference in Latent Variable Models,” in International Conference on Web Search and Data Mining, pp. 123–132.
-
(2012)
International Conference on Web Search and Data Mining
, pp. 123-132
-
-
Ahmed, A.1
Aly, M.2
Gonzalez, J.3
Narayanamurthy, S.4
Smola, A.5
-
2
-
-
54249110594
-
Mixed Membership Stochastic Blockmodels
-
Airoldi, E., Blei, D., Fienberg, S., and Xing, E., (2008), “Mixed Membership Stochastic Blockmodels,” Journal of Machine Learning Research, 9, 1981–2014.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 1981-2014
-
-
Airoldi, E.1
Blei, D.2
Fienberg, S.3
Xing, E.4
-
3
-
-
0000344740
-
Differential Geometry of Curved Exponential Families-Curvatures and Information Loss
-
Amari, S., (1982), “Differential Geometry of Curved Exponential Families-Curvatures and Information Loss,” The Annals of Statistics, 10, 357–385.
-
(1982)
The Annals of Statistics
, vol.10
, pp. 357-385
-
-
Amari, S.1
-
4
-
-
0000396062
-
Natural Gradient Works Efficiently in Learning
-
——— (1998), “Natural Gradient Works Efficiently in Learning,” Neural Computation, 10, 251–276.
-
(1998)
Neural Computation
, vol.10
, pp. 251-276
-
-
Amari, S.1
-
5
-
-
44449145192
-
Gaussian Process Approximations of Stochastic Differential Equations
-
Archambeau, C., Cornford, D., Opper, M., and Shawe-Taylor, J., (2007a), “Gaussian Process Approximations of Stochastic Differential Equations,” Workshop on Gaussian Processes in Practice, 1, 1–16.
-
(2007)
Workshop on Gaussian Processes in Practice
, vol.1
, pp. 1-16
-
-
Archambeau, C.1
Cornford, D.2
Opper, M.3
Shawe-Taylor, J.4
-
6
-
-
85161993754
-
Variational Inference for Diffusion Processes
-
Archambeau, C., Opper, M., Shen, Y., Cornford, D., and Shawe-Taylor, J., (2007b), “Variational Inference for Diffusion Processes,” in Neural Information Processing Systems, pp. 17–24.
-
(2007)
Neural Information Processing Systems
, pp. 17-24
-
-
Archambeau, C.1
Opper, M.2
Shen, Y.3
Cornford, D.4
Shawe-Taylor, J.5
-
7
-
-
85162499205
-
Generalized Beta Mixtures of Gaussians
-
Armagan, A., Clyde, M., and Dunson, D., (2011), “Generalized Beta Mixtures of Gaussians,” in Neural Information Processing Systems, pp. 523–531.
-
(2011)
Neural Information Processing Systems
, pp. 523-531
-
-
Armagan, A.1
Clyde, M.2
Dunson, D.3
-
8
-
-
79956201651
-
Sparse Variational Analysis of Linear Mixed Models for Large Data Sets
-
Armagan, A., and Dunson, D., (2011), “Sparse Variational Analysis of Linear Mixed Models for Large Data Sets,” Statistics & Probability Letters, 81, 1056–1062.
-
(2011)
Statistics & Probability Letters
, vol.81
, pp. 1056-1062
-
-
Armagan, A.1
Dunson, D.2
-
10
-
-
0000065017
-
Ensemble Learning in Bayesian Neural Networks
-
ed. C. M. Bishop, New York: Springer Verlag
-
Barber, D., and Bishop, C. M., (1998), “Ensemble Learning in Bayesian Neural Networks,” in Generalization in Neural Networks and Machine Learning, ed. C. M. Bishop, New York:Springer Verlag, pp. 215–237.
-
(1998)
Generalization in Neural Networks and Machine Learning
, pp. 215-237
-
-
Barber, D.1
Bishop, C.M.2
-
11
-
-
60649095294
-
Unified Inference for Variational Bayesian Linear Gaussian State-Space Models
-
Barber, D., and Chiappa, S., (2006), “Unified Inference for Variational Bayesian Linear Gaussian State-Space Models,” in Neural Information Processing Systems, pp. 81–88.
-
(2006)
Neural Information Processing Systems
, pp. 81-88
-
-
Barber, D.1
Chiappa, S.2
-
12
-
-
0033325295
-
Variational Cumulant Expansions for Intractable Distributions
-
Barber, D., and de van Laar, P., (1999), “Variational Cumulant Expansions for Intractable Distributions,” Journal of Artificial Intelligence Research, 10, 435–455.
-
(1999)
Journal of Artificial Intelligence Research
, vol.10
, pp. 435-455
-
-
Barber, D.1
de van Laar, P.2
-
13
-
-
84899024135
-
Tractable Variational Structures for Approximating Graphical Models
-
Barber, D., and Wiegerinck, W., (1999), “Tractable Variational Structures for Approximating Graphical Models,” in Neural Information Processing Systems, pp. 183–189.
-
(1999)
Neural Information Processing Systems
, pp. 183-189
-
-
Barber, D.1
Wiegerinck, W.2
-
14
-
-
13844295342
-
The Variational Bayesian EM Algorithm for Incomplete Data: With Application to Scoring Graphical Model Structures
-
Bernardo J., Bayarri M., Berger J., Dawid A., Heckerman D., Smith A., West M., (eds), Oxford, UK: Oxford University Press
-
Beal, M., and Ghahramani, Z., (2003), “The Variational Bayesian EM Algorithm for Incomplete Data:With Application to Scoring Graphical Model Structures,” in Bayesian Statistics (Vol. 7), eds. J., Bernardo, M., Bayarri, J., Berger, A., Dawid, D., Heckerman, A., Smith, and M., West, Oxford, UK:Oxford University Press, pp. 453–464.
-
(2003)
Bayesian Statistics
, vol.7
, pp. 453-464
-
-
Beal, M.1
Ghahramani, Z.2
-
15
-
-
84981748011
-
-
Chichester, UK: Wiley
-
Bernardo, J., and Smith, A., (1994), Bayesian Theory, Chichester, UK:Wiley.
-
(1994)
Bayesian Theory
-
-
Bernardo, J.1
Smith, A.2
-
16
-
-
84907151164
-
Asymptotic Normality of Maximum Likelihood and its Variational Approximation for Stochastic Blockmodels
-
Bickel, P., Choi, D., Chang, X., and Zhang, H., (2013), “Asymptotic Normality of Maximum Likelihood and its Variational Approximation for Stochastic Blockmodels,” The Annals of Statistics, 41, 1922–1943.
-
(2013)
The Annals of Statistics
, vol.41
, pp. 1922-1943
-
-
Bickel, P.1
Choi, D.2
Chang, X.3
Zhang, H.4
-
18
-
-
84898985963
-
Approximating Posterior Distributions in Belief Networks using Mixtures
-
Bishop, C., Lawrence, N., Jaakkola, T., and Jordan, M. I., (1998), “Approximating Posterior Distributions in Belief Networks using Mixtures,” in Neural Information Processing Systems, pp. 416–422.
-
(1998)
Neural Information Processing Systems
, pp. 416-422
-
-
Bishop, C.1
Lawrence, N.2
Jaakkola, T.3
Jordan, M.I.4
-
19
-
-
84944213380
-
Non-linear Bayesian Image Modelling
-
Bishop, C., and Winn, J., (2000), “Non-linear Bayesian Image Modelling,” in European Conference on Computer Vision, pp. 3–17.
-
(2000)
European Conference on Computer Vision
, pp. 3-17
-
-
Bishop, C.1
Winn, J.2
-
20
-
-
84861170800
-
Probabilistic Topic Models
-
Blei, D., (2012), “Probabilistic Topic Models,” Communications of the ACM, 55, 77–84.
-
(2012)
Communications of the ACM
, vol.55
, pp. 77-84
-
-
Blei, D.1
-
21
-
-
84867186048
-
Variational Inference for Dirichlet Process Mixtures
-
Blei, D., and Jordan, M. I., (2006), “Variational Inference for Dirichlet Process Mixtures,” Journal of Bayesian Analysis, 1, 121–144.
-
(2006)
Journal of Bayesian Analysis
, vol.1
, pp. 121-144
-
-
Blei, D.1
Jordan, M.I.2
-
22
-
-
52449116403
-
A Correlated Topic Model of Science
-
Blei, D., and Lafferty, J., (2007), “A Correlated Topic Model of Science,” Annals of Applied Statistics, 1, 17–35.
-
(2007)
Annals of Applied Statistics
, vol.1
, pp. 17-35
-
-
Blei, D.1
Lafferty, J.2
-
23
-
-
0141607824
-
Latent Dirichlet Allocation
-
Blei, D., Ng, A., and Jordan, M. I., (2003), “Latent Dirichlet Allocation,” Journal of Machine Learning Research, 3, 993–1022.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 993-1022
-
-
Blei, D.1
Ng, A.2
Jordan, M.I.3
-
24
-
-
77952563025
-
Variational Inference for Large-Scale Models of Discrete Choice
-
Braun, M., and McAuliffe, J., (2010), “Variational Inference for Large-Scale Models of Discrete Choice,” Journal of the American Statistical Association, 105, 324–335.
-
(2010)
Journal of the American Statistical Association
, vol.105
, pp. 324-335
-
-
Braun, M.1
McAuliffe, J.2
-
26
-
-
84961253364
-
Laplace Variational Approximation for Semiparametric Regression in the Presence of Heteroscedastic Errors
-
Bugbee, B., Breidt, F., and van der Woerd, M., (2016), “Laplace Variational Approximation for Semiparametric Regression in the Presence of Heteroscedastic Errors,” Journal of Computational and Graphical Statistics, 25, 225–245.
-
(2016)
Journal of Computational and Graphical Statistics
, vol.25
, pp. 225-245
-
-
Bugbee, B.1
Breidt, F.2
van der Woerd, M.3
-
27
-
-
84860819981
-
Scalable Variational Inference for Bayesian Variable Selection in Regression, and its Accuracy in Genetic Association Studies
-
Carbonetto, P., and Stephens, M., (2012), “Scalable Variational Inference for Bayesian Variable Selection in Regression, and its Accuracy in Genetic Association Studies,” Bayesian Analysis, 7, 73–108.
-
(2012)
Bayesian Analysis
, vol.7
, pp. 73-108
-
-
Carbonetto, P.1
Stephens, M.2
-
28
-
-
84875385659
-
Consistency of Maximum-Likelihood and Variational Estimators in the Stochastic Block Model
-
Celisse, A., Daudin, J.-J., and Pierre, L., (2012), “Consistency of Maximum-Likelihood and Variational Estimators in the Stochastic Block Model,” Electronic Journal of Statistics, 6, 1847–1899.
-
(2012)
Electronic Journal of Statistics
, vol.6
, pp. 1847-1899
-
-
Celisse, A.1
Daudin, J.-J.2
Pierre, L.3
-
29
-
-
84885597827
-
Gaussian Kullback-Leibler Approximate Inference
-
Challis, E., and Barber, D., (2013), “Gaussian Kullback-Leibler Approximate Inference,” The Journal of Machine Learning Research, 14, 2239–2286.
-
(2013)
The Journal of Machine Learning Research
, vol.14
, pp. 2239-2286
-
-
Challis, E.1
Barber, D.2
-
30
-
-
69549112749
-
Layered Dynamic Textures
-
Chan, A., and Vasconcelos, N., (2009), “Layered Dynamic Textures,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 31, 1862–1879.
-
(2009)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.31
, pp. 1862-1879
-
-
Chan, A.1
Vasconcelos, N.2
-
31
-
-
79551472048
-
Covariance in Unsupervised Learning of Probabilistic Grammars
-
Cohen, S., and Smith, N., (2010), “Covariance in Unsupervised Learning of Probabilistic Grammars,” The Journal of Machine Learning Research, 11, 3017–3051.
-
(2010)
The Journal of Machine Learning Research
, vol.11
, pp. 3017-3051
-
-
Cohen, S.1
Smith, N.2
-
32
-
-
44649180979
-
FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance
-
Cummins, M., and Newman, P., (2008), “FAB-MAP:Probabilistic Localization and Mapping in the Space of Appearance,” The International Journal of Robotics Research, 27, 647–665.
-
(2008)
The International Journal of Robotics Research
, vol.27
, pp. 647-665
-
-
Cummins, M.1
Newman, P.2
-
33
-
-
0013058634
-
Variational MCMC
-
de Freitas, N. D., Højen-Sørensen, P., Jordan, M., and Russell, S., (2001), “Variational MCMC,” in Uncertainty in Artificial Intelligence, pp. 120–127.
-
(2001)
Uncertainty in Artificial Intelligence
, pp. 120-127
-
-
de Freitas, N.D.1
Højen-Sørensen, P.2
Jordan, M.3
Russell, S.4
-
34
-
-
85162388879
-
Variational Gaussian Process Dynamical Systems
-
Damianou, A., Titsias, M., and Lawrence, N., (2011), “Variational Gaussian Process Dynamical Systems,” in Neural Information Processing Systems, pp. 2510–2518.
-
(2011)
Neural Information Processing Systems
, pp. 2510-2518
-
-
Damianou, A.1
Titsias, M.2
Lawrence, N.3
-
35
-
-
84896717406
-
VBA: A Probabilistic Treatment of Nonlinear Models for Neurobiological and Behavioural Data
-
Daunizeau, J., Adam, V., and Rigoux, L., (2014), “VBA:A Probabilistic Treatment of Nonlinear Models for Neurobiological and Behavioural Data,” PLoS Computational Biology, 10, e1003441.
-
(2014)
PLoS Computational Biology
, vol.10
, pp. e1003441
-
-
Daunizeau, J.1
Adam, V.2
Rigoux, L.3
-
36
-
-
0002629270
-
Maximum Likelihood from Incomplete Data via the EM Algorithm
-
Series B
-
Dempster, A., Laird, N., and Rubin, D., (1977), “Maximum Likelihood from Incomplete Data via the EM Algorithm,” Journal of the Royal Statistical Society, Series B, 39, 1–38.
-
(1977)
Journal of the Royal Statistical Society
, vol.39
, pp. 1-38
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
37
-
-
33744966595
-
Switching Dynamic System Models for Speech Articulation and Acoustics
-
New York: Springer
-
Deng, L., (2004), “Switching Dynamic System Models for Speech Articulation and Acoustics,” in Mathematical Foundations of Speech and Language Processing, eds. M. Johnson, S. P. Khudanpur, M. Ostendorf, and R. Rosenfeld, New York:Springer, pp. 115–133.
-
(2004)
Mathematical Foundations of Speech and Language Processing, eds. M. Johnson, S. P. Khudanpur, M. Ostendorf, and R. Rosenfeld
, pp. 115-133
-
-
Deng, L.1
-
38
-
-
0000811835
-
Conjugate Priors for Exponential Families
-
Diaconis, P., and Ylvisaker, D., (1979), “Conjugate Priors for Exponential Families,” The Annals of Statistics, 7, 269–281.
-
(1979)
The Annals of Statistics
, vol.7
, pp. 269-281
-
-
Diaconis, P.1
Ylvisaker, D.2
-
39
-
-
77953583488
-
A Bayesian Model for Simultaneous Image Clustering, Annotation and Object Segmentation
-
Du, L., Lu, R., Carin, L., and Dunson, D., (2009), “A Bayesian Model for Simultaneous Image Clustering, Annotation and Object Segmentation,” in Neural Information Processing Systems, pp. 486–494.
-
(2009)
Neural Information Processing Systems
, pp. 486-494
-
-
Du, L.1
Lu, R.2
Carin, L.3
Dunson, D.4
-
40
-
-
84923313033
-
Iterative Splits of Quadratic Bounds for Scalable Binary Tensor Factorization
-
Ermis, B., and Bouchard, G., (2014), “Iterative Splits of Quadratic Bounds for Scalable Binary Tensor Factorization,” in Uncertainty in Artificial Intelligence, pp. 192–199.
-
(2014)
Uncertainty in Artificial Intelligence
, pp. 192-199
-
-
Ermis, B.1
Bouchard, G.2
-
41
-
-
52949126188
-
Describing Disability through Individual-Level Mixture Models for Multivariate Binary Data
-
Erosheva, E. A., Fienberg, S. E., and Joutard, C., (2007), “Describing Disability through Individual-Level Mixture Models for Multivariate Binary Data,” The Annals of Applied Statistics, 1, 346–384.
-
(2007)
The Annals of Applied Statistics
, vol.1
, pp. 346-384
-
-
Erosheva, E.A.1
Fienberg, S.E.2
Joutard, C.3
-
42
-
-
33947179549
-
Bayesian fMRI Data Analysis with Sparse Spatial Basis Function Priors
-
Flandin, G., and Penny, W., (2007), “Bayesian fMRI Data Analysis with Sparse Spatial Basis Function Priors,” NeuroImage, 34, 1108–1125.
-
(2007)
NeuroImage
, vol.34
, pp. 1108-1125
-
-
Flandin, G.1
Penny, W.2
-
43
-
-
84937901904
-
Stochastic Variational Inference for Hidden Markov Models
-
Foti, N., Xu, J., Laird, D., and Fox, E., (2014), “Stochastic Variational Inference for Hidden Markov Models,” in Neural Information Processing Systems, pp. 3599–3607.
-
(2014)
Neural Information Processing Systems
, pp. 3599-3607
-
-
Foti, N.1
Xu, J.2
Laird, D.3
Fox, E.4
-
44
-
-
84862273812
-
Variational Methods for Reinforcement Learning
-
Furmston, T., and Barber, D., (2010), “Variational Methods for Reinforcement Learning,” Artificial Intelligence and Statistics, 9, 241–248.
-
(2010)
Artificial Intelligence and Statistics
, vol.9
, pp. 241-248
-
-
Furmston, T.1
Barber, D.2
-
45
-
-
84950453304
-
Sampling Based Approaches to Calculating Marginal Densities
-
Gelfand, A., and Smith, A., (1990), “Sampling Based Approaches to Calculating Marginal Densities,” Journal of the American Statistical Association, 85, 398–409.
-
(1990)
Journal of the American Statistical Association
, vol.85
, pp. 398-409
-
-
Gelfand, A.1
Smith, A.2
-
46
-
-
0021518209
-
Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images
-
Geman, S., and Geman, D., (1984), “Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.
-
(1984)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
47
-
-
84904639201
-
Decomposing Spatiotemporal Brain Patterns into Topographic Latent Sources
-
Gershman, S. J., Blei, D. M., Norman, K. A., and Sederberg, P. B., (2014), “Decomposing Spatiotemporal Brain Patterns into Topographic Latent Sources,” NeuroImage, 98, 91–102.
-
(2014)
NeuroImage
, vol.98
, pp. 91-102
-
-
Gershman, S.J.1
Blei, D.M.2
Norman, K.A.3
Sederberg, P.B.4
-
48
-
-
0031268341
-
Factorial Hidden Markov Models
-
Ghahramani, Z., and Jordan, M. I., (1997), “Factorial Hidden Markov Models,” Machine Learning, 29, 245–273.
-
(1997)
Machine Learning
, vol.29
, pp. 245-273
-
-
Ghahramani, Z.1
Jordan, M.I.2
-
49
-
-
84965143892
-
Linear Response Methods for Accurate Covariance Estimates from Mean Field Variational Bayes
-
Giordano, R. J., Broderick, T., and Jordan, M. I., (2015), “Linear Response Methods for Accurate Covariance Estimates from Mean Field Variational Bayes,” in Neural Information Processing Systems, pp. 1441–1449.
-
(2015)
Neural Information Processing Systems
, pp. 1441-1449
-
-
Giordano, R.J.1
Broderick, T.2
Jordan, M.I.3
-
50
-
-
78651441268
-
An introduction to Bayesian Inference via Variational Approximations
-
Grimmer, J., (2011), “An introduction to Bayesian Inference via Variational Approximations,” Political Analysis, 19, 32–47.
-
(2011)
Political Analysis
, vol.19
, pp. 32-47
-
-
Grimmer, J.1
-
51
-
-
78650402025
-
Theory of Gaussian Variational Approximation for a Poisson Mixed Model
-
Hall, P., Ormerod, J., and Wand, M., (2011a), “Theory of Gaussian Variational Approximation for a Poisson Mixed Model,” Statistica Sinica, 21, 369–389.
-
(2011)
Statistica Sinica
, vol.21
, pp. 369-389
-
-
Hall, P.1
Ormerod, J.2
Wand, M.3
-
52
-
-
82655189993
-
Asymptotic Normality and Valid Inference for Gaussian Variational Approximation
-
Hall, P., Pham, T., Wand, M., and Wang, S., (2011b), “Asymptotic Normality and Valid Inference for Gaussian Variational Approximation,” Annals of Statistics, 39, 2502–2532.
-
(2011)
Annals of Statistics
, vol.39
, pp. 2502-2532
-
-
Hall, P.1
Pham, T.2
Wand, M.3
Wang, S.4
-
53
-
-
77549088909
-
A Bayesian Spatiotemporal Model for very Large Data Sets
-
Harrison, L., and Green, G., (2010), “A Bayesian Spatiotemporal Model for very Large Data Sets,” Neuroimage, 50, 1126–1141.
-
(2010)
Neuroimage
, vol.50
, pp. 1126-1141
-
-
Harrison, L.1
Green, G.2
-
54
-
-
77956890234
-
Monte Carlo Sampling Methods using Markov Chains and their Applications
-
Hastings, W., (1970), “Monte Carlo Sampling Methods using Markov Chains and their Applications,” Biometrika, 57, 97–109.
-
(1970)
Biometrika
, vol.57
, pp. 97-109
-
-
Hastings, W.1
-
55
-
-
84888155846
-
Gaussian Processes for Big Data
-
Corvallis, OR: AUAI Press
-
Hensman, J., Fusi, N., and Lawrence, N., (2013), “Gaussian Processes for Big Data,” in Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, Corvallis, OR:AUAI Press, pp. 282–290.
-
(2013)
Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence
, pp. 282-290
-
-
Hensman, J.1
Fusi, N.2
Lawrence, N.3
-
56
-
-
84877726166
-
Fast Variational Inference in the Conjugate Exponential Family
-
Hensman, J., Rattray, M., and Lawrence, N., (2012), “Fast Variational Inference in the Conjugate Exponential Family,” in Neural Information Processing Systems, pp. 2888–2896.
-
(2012)
Neural Information Processing Systems
, pp. 2888-2896
-
-
Hensman, J.1
Rattray, M.2
Lawrence, N.3
-
57
-
-
0027803368
-
Keeping the Neural Networks Simple by Minimizing the Description Length of the Weights
-
Hinton, G., and Van Camp, D., (1993), “Keeping the Neural Networks Simple by Minimizing the Description Length of the Weights,” in Computational Learning Theory, pp. 5–13.
-
(1993)
Computational Learning Theory
, pp. 5-13
-
-
Hinton, G.1
Van Camp, D.2
-
58
-
-
84867121232
-
Sparse Stochastic Inference for Latent Dirichlet Allocation
-
Hoffman, M., Blei, D., and Mimno, D. M., (2012), “Sparse Stochastic Inference for Latent Dirichlet Allocation,” in Proceedings of the 29th International Conference on Machine Learning (ICML-12), eds. J. Langford and J. Pineau, New York:ACM, pp. 1599–1606.
-
(2012)
Proceedings of the 29th International Conference on Machine Learning (ICML-12), eds. J. Langford and J. Pineau, New York: ACM
, pp. 1599-1606
-
-
Hoffman, M.1
Blei, D.2
Mimno, D.M.3
-
59
-
-
84878919168
-
Stochastic Variational Inference
-
Hoffman, M. D., Blei, D., Wang, C., and Paisley, J., (2013), “Stochastic Variational Inference,” Journal of Machine Learning Research, 14, 1303–1347.
-
(2013)
Journal of Machine Learning Research
, vol.14
, pp. 1303-1347
-
-
Hoffman, M.D.1
Blei, D.2
Wang, C.3
Paisley, J.4
-
60
-
-
84954314905
-
Structured Stochastic Variational Inference
-
Hoffman, M. D., and Blei, D. M., (2015), “Structured Stochastic Variational Inference,” in Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics (Vol. 38), eds. G. Lebanon and S. V. N. Vishwanathan, San Diego, CA:Proceedings of Machine Learning Research, pp. 361–369.
-
(2015)
Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics (Vol. 38), eds. G. Lebanon and S. V. N. Vishwanathan, San Diego, CA: Proceedings of Machine Learning Research
, pp. 361-369
-
-
Hoffman, M.D.1
Blei, D.M.2
-
61
-
-
84901687683
-
The No-U-turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
-
Hoffman, M. D., and Gelman, A., (2014), “The No-U-turn Sampler:Adaptively Setting Path Lengths in Hamiltonian Monte Carlo,” The Journal of Machine Learning Research, 15, 1593–1623.
-
(2014)
The Journal of Machine Learning Research
, vol.15
, pp. 1593-1623
-
-
Hoffman, M.D.1
Gelman, A.2
-
62
-
-
54049158947
-
Natural Conjugate Gradient in Variational Inference
-
New York: Springer
-
Honkela, A., Tornio, M., Raiko, T., and Karhunen, J., (2008), “Natural Conjugate Gradient in Variational Inference,” in Neural Information Processing, eds. J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis, New York:Springer, pp. 305–314.
-
(2008)
Neural Information Processing, eds. J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis
, pp. 305-314
-
-
Honkela, A.1
Tornio, M.2
Raiko, T.3
Karhunen, J.4
-
63
-
-
0006489058
-
Computing Upper and Lower Bounds on Likelihoods in Intractable Networks
-
Jaakkola, T., and Jordan, M. I., (1996), “Computing Upper and Lower Bounds on Likelihoods in Intractable Networks,” in Uncertainty in Artificial Intelligence, pp. 340–348.
-
(1996)
Uncertainty in Artificial Intelligence
, pp. 340-348
-
-
Jaakkola, T.1
Jordan, M.I.2
-
64
-
-
33749044832
-
A Variational Approach to Bayesian Logistic Regression Models and their Extensions
-
——— (1997), “A Variational Approach to Bayesian Logistic Regression Models and their Extensions,” in Artificial Intelligence and Statistics, pp. 1–12.
-
(1997)
Artificial Intelligence and Statistics
, pp. 1-12
-
-
Jaakkola, T.1
Jordan, M.I.2
-
65
-
-
0042685161
-
Bayesian Parameter Estimation via Variational Methods
-
——— (2000), “Bayesian Parameter Estimation via Variational Methods,” Statistics and Computing, 10, 25–37.
-
(2000)
Statistics and Computing
, vol.10
, pp. 25-37
-
-
Jaakkola, T.1
Jordan, M.I.2
-
66
-
-
84865370735
-
-
Technical Report, Duke University
-
Ji, C., Shen, H., and West, M., (2010), “Bounded Approximations for Marginal Likelihoods,” Technical Report, Duke University.
-
(2010)
Bounded Approximations for Marginal Likelihoods
-
-
Ji, C.1
Shen, H.2
West, M.3
-
67
-
-
84919788452
-
Stochastic Variational Inference for Bayesian Time Series Models
-
Johnson, M., and Willsky, A., (2014), “Stochastic Variational Inference for Bayesian Time Series Models,” in International Conference on Machine Learning, pp. 1854–1862.
-
(2014)
International Conference on Machine Learning
, pp. 1854-1862
-
-
Johnson, M.1
Willsky, A.2
-
68
-
-
0035686705
-
Learning Flexible Sprites in Video Layers
-
Jojic, N., and Frey, B., (2001), “Learning Flexible Sprites in Video Layers,” in Computer Vision and Pattern Recognition, pp. 1–8.
-
(2001)
Computer Vision and Pattern Recognition
, pp. 1-8
-
-
Jojic, N.1
Frey, B.2
-
69
-
-
24744445362
-
Efficient Approximations for Learning Phylogenetic HMM Models from Data
-
Jojic, V., Jojic, N., Meek, C., Geiger, D., Siepel, A., Haussler, D., and Heckerman, D., (2004), “Efficient Approximations for Learning Phylogenetic HMM Models from Data,” Bioinformatics, 20, 161–168.
-
(2004)
Bioinformatics
, vol.20
, pp. 161-168
-
-
Jojic, V.1
Jojic, N.2
Meek, C.3
Geiger, D.4
Siepel, A.5
Haussler, D.6
Heckerman, D.7
-
70
-
-
0033225865
-
Introduction to Variational Methods for Graphical Models
-
Jordan, M. I., Ghahramani, Z., Jaakkola, T., and Saul, L., (1999), “Introduction to Variational Methods for Graphical Models,” Machine Learning, 37, 183–233.
-
(1999)
Machine Learning
, vol.37
, pp. 183-233
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.3
Saul, L.4
-
71
-
-
85162389868
-
Variational Bounds for Mixed-Data Factor Analysis
-
Khan, M. E., Bouchard, G., Murphy, K. P., and Marlin, B. M., (2010), “Variational Bounds for Mixed-Data Factor Analysis,” in Neural Information Processing Systems, pp. 1108–1116.
-
(2010)
Neural Information Processing Systems
, pp. 1108-1116
-
-
Khan, M.E.1
Bouchard, G.2
Murphy, K.P.3
Marlin, B.M.4
-
72
-
-
36148984293
-
Variational Bayesian Inversion of the Equivalent Current Dipole Model in EEG/MEG
-
Kiebel, S., Daunizeau, J., Phillips, C., and Friston, K., (2008), “Variational Bayesian Inversion of the Equivalent Current Dipole Model in EEG/MEG,” NeuroImage, 39, 728–741.
-
(2008)
NeuroImage
, vol.39
, pp. 728-741
-
-
Kiebel, S.1
Daunizeau, J.2
Phillips, C.3
Friston, K.4
-
74
-
-
85162453650
-
Non-Conjugate Variational Message Passing for Multinomial and Binary Regression
-
Knowles, D., and Minka, T., (2011), “Non-Conjugate Variational Message Passing for Multinomial and Binary Regression,” in Neural Information Processing Systems, pp. 1701–1709.
-
(2011)
Neural Information Processing Systems
, pp. 1701-1709
-
-
Knowles, D.1
Minka, T.2
-
75
-
-
84965158671
-
Automatic Variational Inference in Stan
-
Kucukelbir, A., Ranganath, R., Gelman, A., and Blei, D., (2015), “Automatic Variational Inference in Stan,” in Neural Information Processing Systems, pp. 568–576.
-
(2015)
Neural Information Processing Systems
, pp. 568-576
-
-
Kucukelbir, A.1
Ranganath, R.2
Gelman, A.3
Blei, D.4
-
76
-
-
85016397096
-
-
Journal of Machine Learning Research
-
Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., and Blei, D. M., (2017), “Automatic Differentiation Variational Inference,” Journal of Machine Learning Research, 18, 1–45.
-
(2017)
Automatic Differentiation Variational Inference
, vol.18
, pp. 1-45
-
-
Kucukelbir, A.1
Tran, D.2
Ranganath, R.3
Gelman, A.4
Blei, D.M.5
-
77
-
-
0001927585
-
On Information and Sufficiency
-
Kullback, S., and Leibler, R., (1951), “On Information and Sufficiency,” The Annals of Mathematical Statistics, 22, 79–86.
-
(1951)
The Annals of Mathematical Statistics
, vol.22
, pp. 79-86
-
-
Kullback, S.1
Leibler, R.2
-
78
-
-
33750292464
-
Variational Bayesian Grammar Induction for Natural Language
-
New York: Springer
-
Kurihara, K., and Sato, T., (2006), “Variational Bayesian Grammar Induction for Natural Language,” in Grammatical Inference:Algorithms and Applications, New York:Springer, pp. 84–96.
-
(2006)
Grammatical Inference: Algorithms and Applications
, pp. 84-96
-
-
Kurihara, K.1
Sato, T.2
-
79
-
-
0004066022
-
-
New York: Springer
-
Kushner, H., and Yin, G., (1997), Stochastic Approximation Algorithms and Applications, eds. Y. Sakakibara, S. Kobayashi, K. Sato, T. Nishino, and E. Tomita, New York:Springer.
-
(1997)
Stochastic Approximation Algorithms and Applications, eds. Y. Sakakibara, S. Kobayashi, K. Sato, T. Nishino, and E. Tomita
-
-
Kushner, H.1
Yin, G.2
-
80
-
-
83055184786
-
Search for Patterns of Functional Specificity in the Brain: A Nonparametric Hierarchical Bayesian Model for Group fMRI Data
-
Lashkari, D., Sridharan, R., Vul, E., Hsieh, P., Kanwisher, N., and Golland, P., (2012), “Search for Patterns of Functional Specificity in the Brain:A Nonparametric Hierarchical Bayesian Model for Group fMRI Data,” Neuroimage, 59, 1348–1368.
-
(2012)
Neuroimage
, vol.59
, pp. 1348-1368
-
-
Lashkari, D.1
Sridharan, R.2
Vul, E.3
Hsieh, P.4
Kanwisher, N.5
Golland, P.6
-
81
-
-
0001006209
-
Local Computations with Probabilities on Graphical Structures and their Application to Expert Systems
-
Series B
-
Lauritzen, S., and Spiegelhalter, D., (1988), “Local Computations with Probabilities on Graphical Structures and their Application to Expert Systems,” Journal of the Royal Statistical Society, Series B, 50, 157–224.
-
(1988)
Journal of the Royal Statistical Society
, vol.50
, pp. 157-224
-
-
Lauritzen, S.1
Spiegelhalter, D.2
-
82
-
-
84899022736
-
Large Scale Online Learning
-
Le Cun, Y., and Bottou, L., (2004), “Large Scale Online Learning,” in Neural Information Processing Systems, pp. 217–224.
-
(2004)
Neural Information Processing Systems
, pp. 217-224
-
-
Le Cun, Y.1
Bottou, L.2
-
83
-
-
0035461422
-
A Tighter Bound for Graphical Models
-
Leisink, M., and Kappen, H., (2001), “A Tighter Bound for Graphical Models,” Neural Computation, 13, 2149–2171.
-
(2001)
Neural Computation
, vol.13
, pp. 2149-2171
-
-
Leisink, M.1
Kappen, H.2
-
84
-
-
80053285082
-
Probabilistic Grammars and Hierarchical Dirichlet Processes
-
O’Hagan T., West M., (eds), New York: Oxford University Press
-
Liang, P., Jordan, M. I., and Klein, D., (2009), “Probabilistic Grammars and Hierarchical Dirichlet Processes,” in The Handbook of Applied Bayesian Analysis, eds. T., O’Hagan, and M., West, New York:Oxford University Press, pp. 776–819.
-
(2009)
The Handbook of Applied Bayesian Analysis
, pp. 776-819
-
-
Liang, P.1
Jordan, M.I.2
Klein, D.3
-
85
-
-
80053356136
-
The Infinite PCFG using Hierarchical Dirichlet Processes
-
Liang, P., Petrov, S., Klein, D., and Jordan, M. I., (2007), “The Infinite PCFG using Hierarchical Dirichlet Processes,” in Empirical Methods in Natural Language Processing, pp. 688–697.
-
(2007)
Empirical Methods in Natural Language Processing
, pp. 688-697
-
-
Liang, P.1
Petrov, S.2
Klein, D.3
Jordan, M.I.4
-
86
-
-
3543127719
-
A Variational Approach for Bayesian Blind Image Deconvolution
-
Likas, A., and Galatsanos, N., (2004), “A Variational Approach for Bayesian Blind Image Deconvolution,” IEEE Transactions on Signal Processing, 52, 2222–2233.
-
(2004)
IEEE Transactions on Signal Processing
, vol.52
, pp. 2222-2233
-
-
Likas, A.1
Galatsanos, N.2
-
87
-
-
77349109776
-
A Variational Bayes Algorithm for Fast and Accurate Multiple Locus Genome-Wide Association Analysis
-
Logsdon, B., Hoffman, G., and Mezey, J., (2010), “A Variational Bayes Algorithm for Fast and Accurate Multiple Locus Genome-Wide Association Analysis,” BMC Bioinformatics, 11, 58.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 58
-
-
Logsdon, B.1
Hoffman, G.2
Mezey, J.3
-
88
-
-
0003598536
-
-
MacKay, D. J, unpublished manuscript
-
MacKay, D. J. (1997), “Ensemble Learning for Hidden Markov Models,” unpublished manuscript, available at http://www.inference.eng.cam.ac.uk/mackay/ensemblePaper.pdf.
-
(1997)
Ensemble Learning for Hidden Markov Models
-
-
-
89
-
-
84900525659
-
Topographic Factor Analysis: A Bayesian Model for Inferring Brain Networks from Neural Data
-
Manning, J. R., Ranganath, R., Norman, K. A., and Blei, D. M., (2014), “Topographic Factor Analysis:A Bayesian Model for Inferring Brain Networks from Neural Data,” PloS one, 9, e94914.
-
(2014)
PloS one
, vol.9
, pp. e94914
-
-
Manning, J.R.1
Ranganath, R.2
Norman, K.A.3
Blei, D.M.4
-
90
-
-
80053441013
-
Piecewise Bounds for Estimating Bernoulli-Logistic Latent Gaussian Models
-
Marlin, B. M., Khan, M. E., and Murphy, K. P., (2011), “Piecewise Bounds for Estimating Bernoulli-Logistic Latent Gaussian Models,” in International Conference on Machine Learning, pp. 633–640.
-
(2011)
International Conference on Machine Learning
, pp. 633-640
-
-
Marlin, B.M.1
Khan, M.E.2
Murphy, K.P.3
-
91
-
-
34247869715
-
Variational Approximations in Bayesian Model Selection for Finite Mixture Distributions
-
McGrory, C. A., and Titterington, D. M., (2007), “Variational Approximations in Bayesian Model Selection for Finite Mixture Distributions,” Computational Statistics and Data Analysis, 51, 5352–5367.
-
(2007)
Computational Statistics and Data Analysis
, vol.51
, pp. 5352-5367
-
-
McGrory, C.A.1
Titterington, D.M.2
-
92
-
-
5744249209
-
Equations of State Calculations by Fast Computing Machines
-
Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, M., and Teller, E., (1953), “Equations of State Calculations by Fast Computing Machines,” Journal of Chemical Physics, 21, 1087–1092.
-
(1953)
Journal of Chemical Physics
, vol.21
, pp. 1087-1092
-
-
Metropolis, N.1
Rosenbluth, A.2
Rosenbluth, M.3
Teller, M.4
Teller, E.5
-
93
-
-
0345978970
-
Expectation Propagation for Approximate Bayesian Inference
-
Minka, T. P., (2001), “Expectation Propagation for Approximate Bayesian Inference,” in Uncertainty in Artificial Intelligence, pp. 362–369.
-
(2001)
Uncertainty in Artificial Intelligence
, pp. 362-369
-
-
Minka, T.P.1
-
95
-
-
85023629319
-
-
Minka, T., Winn, J., Guiver, J., Webster, S., Zaykov, Y., Yangel, B., Spengler, A., and Bronskill, J., (2014), Infer.NET 2.6. Cambridge, MA:Microsoft Research.
-
(2014)
Infer.NET 2.6. Cambridge, MA: Microsoft Research.
-
-
Minka, T.1
Winn, J.2
Guiver, J.3
Webster, S.4
Zaykov, Y.5
Yangel, B.6
Spengler, A.7
Bronskill, J.8
-
96
-
-
80053240894
-
Using Universal Linguistic Knowledge to Guide Grammar Induction
-
Naseem, T., Chen, H., Barzilay, R., and Johnson, M., (2010), “Using Universal Linguistic Knowledge to Guide Grammar Induction,” in Empirical Methods in Natural Language Processing, pp. 1234–1244.
-
(2010)
Empirical Methods in Natural Language Processing
, pp. 1234-1244
-
-
Naseem, T.1
Chen, H.2
Barzilay, R.3
Johnson, M.4
-
97
-
-
84895870175
-
A Variational Bayes Spatiotemporal Model for Electromagnetic Brain Mapping
-
Nathoo, F., Babul, A., Moiseev, A., Virji-Babul, N., and Beg, M., (2014), “A Variational Bayes Spatiotemporal Model for Electromagnetic Brain Mapping,” Biometrics, 70, 132–143.
-
(2014)
Biometrics
, vol.70
, pp. 132-143
-
-
Nathoo, F.1
Babul, A.2
Moiseev, A.3
Virji-Babul, N.4
Beg, M.5
-
98
-
-
0002788893
-
A View of the EM Algorithm that Justifies Incremental, Sparse, and other Variants
-
New York: Springer
-
Neal, R. M., and Hinton, G. E., (1998), “A View of the EM Algorithm that Justifies Incremental, Sparse, and other Variants,” in Learning in Graphical Models, New York:Springer, pp. 355–368.
-
(1998)
Learning in Graphical Models
, pp. 355-368
-
-
Neal, R.M.1
Hinton, G.E.2
-
99
-
-
84938886140
-
Mean Field Variational Bayes for Continuous Sparse Signal Shrinkage: Pitfalls and Remedies
-
Neville, S., Ormerod, J., and Wand, M., (2014), “Mean Field Variational Bayes for Continuous Sparse Signal Shrinkage:Pitfalls and Remedies,” Electronic Journal of Statistics, 8, 1113–1151.
-
(2014)
Electronic Journal of Statistics
, vol.8
, pp. 1113-1151
-
-
Neville, S.1
Ormerod, J.2
Wand, M.3
-
100
-
-
84865363413
-
Regression Density Estimation with Variational Methods and Stochastic Approximation
-
Nott, D. J., Tan, S. L., Villani, M., and Kohn, R., (2012), “Regression Density Estimation with Variational Methods and Stochastic Approximation,” Journal of Computational and Graphical Statistics, 21, 797–820.
-
(2012)
Journal of Computational and Graphical Statistics
, vol.21
, pp. 797-820
-
-
Nott, D.J.1
Tan, S.L.2
Villani, M.3
Kohn, R.4
-
101
-
-
29244438430
-
Expectation Consistent Approximate Inference
-
Opper, M., and Winther, O., (2005), “Expectation Consistent Approximate Inference,” The Journal of Machine Learning Research, 6, 2177–2204.
-
(2005)
The Journal of Machine Learning Research
, vol.6
, pp. 2177-2204
-
-
Opper, M.1
Winther, O.2
-
102
-
-
85023639417
-
-
unpublished manuscript
-
Ormerod, J., You, C., and Muller, S., (2014), “A Variational Bayes Approach to Variable Selection,” unpublished manuscript, available at http://www.maths.usyd.edu.au/u/jormerod/JTOpapers/Variab-leSelectionFinal.pdf.
-
(2014)
A Variational Bayes Approach to Variable Selection
-
-
Ormerod, J.1
You, C.2
Muller, S.3
-
103
-
-
84867133463
-
Variational Bayesian Inference with Stochastic Search
-
Madison, WI: Omnipress
-
Paisley, J., Blei, D., and Jordan, M. I., (2012), “Variational Bayesian Inference with Stochastic Search,” in Proceedings of the 29th International Conference on International Conference on Machine Learning, Madison, WI:Omnipress, pp. 1363–1370.
-
(2012)
Proceedings of the 29th International Conference on International Conference on Machine Learning
, pp. 1363-1370
-
-
Paisley, J.1
Blei, D.2
Jordan, M.I.3
-
106
-
-
0042671302
-
Variational Bayesian Inference for fMRI Time Series
-
Penny, W., Kiebel, S., and Friston, K., (2003), “Variational Bayesian Inference for fMRI Time Series,” NeuroImage, 19, 727–741.
-
(2003)
NeuroImage
, vol.19
, pp. 727-741
-
-
Penny, W.1
Kiebel, S.2
Friston, K.3
-
107
-
-
16244387927
-
Bayesian fMRI Time Series Analysis with Spatial Priors
-
Penny, W., Trujillo-Barreto, N., and Friston, K., (2005), “Bayesian fMRI Time Series Analysis with Spatial Priors,” Neuroimage, 24, 350–362.
-
(2005)
Neuroimage
, vol.24
, pp. 350-362
-
-
Penny, W.1
Trujillo-Barreto, N.2
Friston, K.3
-
108
-
-
0001406440
-
A Mean Field Theory Learning Algorithm for Neural Networks
-
Peterson, C., and Anderson, J., (1987), “A Mean Field Theory Learning Algorithm for Neural Networks,” Complex Systems, 1, 995–1019.
-
(1987)
Complex Systems
, vol.1
, pp. 995-1019
-
-
Peterson, C.1
Anderson, J.2
-
109
-
-
84902485214
-
fastSTRUCTURE: Variational Inference of Population Structure in Large SNP Data Sets
-
Raj, A., Stephens, M., and Pritchard, J., (2014), “fastSTRUCTURE:Variational Inference of Population Structure in Large SNP Data Sets,” Genetics, 197, 573–589.
-
(2014)
Genetics
, vol.197
, pp. 573-589
-
-
Raj, A.1
Stephens, M.2
Pritchard, J.3
-
110
-
-
84857061518
-
A Bayesian Approach for Place Recognition
-
Ramos, F., Upcroft, B., Kumar, S., and Durrant-Whyte, H., (2012), “A Bayesian Approach for Place Recognition,” Robotics and Autonomous Systems, 60, 487–497.
-
(2012)
Robotics and Autonomous Systems
, vol.60
, pp. 487-497
-
-
Ramos, F.1
Upcroft, B.2
Kumar, S.3
Durrant-Whyte, H.4
-
111
-
-
84955506831
-
Black Box Variational Inference
-
Ranganath, R., Gerrish, S., and Blei, D., (2014), “Black Box Variational Inference,” in Artificial Intelligence and Statistics, pp. 814–822.
-
(2014)
Artificial Intelligence and Statistics
, pp. 814-822
-
-
Ranganath, R.1
Gerrish, S.2
Blei, D.3
-
112
-
-
84997769529
-
Hierarchical Variational Models
-
Ranganath, R., Tran, D., and Blei, D., (2016), “Hierarchical Variational Models,” in International Conference on Machine Learning, pp. 324–333.
-
(2016)
International Conference on Machine Learning
, pp. 324-333
-
-
Ranganath, R.1
Tran, D.2
Blei, D.3
-
113
-
-
84970028519
-
Celeste: Variational Inference for a Generative Model of Astronomical Images
-
Regier, J., Miller, A., McAuliffe, J., Adams, R., Hoffman, M., Lang, D., Schlegel, D., and Prabhat (2015), “Celeste:Variational Inference for a Generative Model of Astronomical Images,” in International Conference on Machine Learning, pp. 2095–2103.
-
(2015)
International Conference on Machine Learning
, pp. 2095-2103
-
-
Regier, J.1
Miller, A.2
McAuliffe, J.3
Adams, R.4
Hoffman, M.5
Lang, D.6
Schlegel, D.7
-
114
-
-
4544247508
-
Multiband Audio Modeling for Single-Channel Acoustic Source Separation
-
Reyes-Gomez, M., Ellis, D., and Jojic, N., (2004), “Multiband Audio Modeling for Single-Channel Acoustic Source Separation,” in Acoustics, Speech, and Signal Processing, pp. 641–644.
-
(2004)
Acoustics, Speech, and Signal Processing
, pp. 641-644
-
-
Reyes-Gomez, M.1
Ellis, D.2
Jojic, N.3
-
115
-
-
84919908080
-
Stochastic Backpropagation and Approximate Inference in Deep Generative Models
-
Rezende, D. J., Mohamed, S., and Wierstra, D., (2014), “Stochastic Backpropagation and Approximate Inference in Deep Generative Models,” in Proceedings of the 31st International Conference on Machine Learning (Vol. 32), eds. E. P. Xing and T. Jebara, Beijing, China:Proceedings of Machine Learning Research, pp. 1278–1286.
-
(2014)
Proceedings of the 31st International Conference on Machine Learning (Vol. 32), eds. E. P. Xing and T. Jebara, Beijing, China: Proceedings of Machine Learning Research
, pp. 1278-1286
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
116
-
-
0000016172
-
A Stochastic Approximation Method
-
Robbins, H., and Monro, S., (1951), “A Stochastic Approximation Method,” The Annals of Mathematical Statistics, 22, 400–407.
-
(1951)
The Annals of Mathematical Statistics
, vol.22
, pp. 400-407
-
-
Robbins, H.1
Monro, S.2
-
118
-
-
1142285282
-
Positional Entropy During Pigeon Homing I: Application of Bayesian Latent State Modelling
-
Roberts, S., Guilford, T., Rezek, I., and Biro, D., (2004), “Positional Entropy During Pigeon Homing I:Application of Bayesian Latent State Modelling,” Journal of Theoretical Biology, 227, 39–50.
-
(2004)
Journal of Theoretical Biology
, vol.227
, pp. 39-50
-
-
Roberts, S.1
Guilford, T.2
Rezek, I.3
Biro, D.4
-
119
-
-
0036729732
-
Variational Bayes for Generalized Autoregressive Models
-
Roberts, S., and Penny, W., (2002), “Variational Bayes for Generalized Autoregressive Models,” IEEE Transactions on Signal Processing, 50, 2245–2257.
-
(2002)
IEEE Transactions on Signal Processing
, vol.50
, pp. 2245-2257
-
-
Roberts, S.1
Penny, W.2
-
120
-
-
84995444661
-
-
Journal of Machine Learning Research
-
Rohde, D., and Wand, M., (2016), “Semiparametric Mean Field Variational Bayes:General Principles and Numerical Issues,” Journal of Machine Learning Research, 17, 1–47.
-
(2016)
Semiparametric Mean Field Variational Bayes: General Principles and Numerical Issues
, vol.17
, pp. 1-47
-
-
Rohde, D.1
Wand, M.2
-
121
-
-
84969835291
-
Markov Chain Monte Carlo and Variational Inference: Bridging the Gap
-
Salimans, T., Kingma, D., and Welling, M., (2015), “Markov Chain Monte Carlo and Variational Inference:Bridging the Gap,” in International Conference on Machine Learning, pp. 1218–1226.
-
(2015)
International Conference on Machine Learning
, pp. 1218-1226
-
-
Salimans, T.1
Kingma, D.2
Welling, M.3
-
122
-
-
84965159569
-
-
arXiv preprint, arXiv:1401.1022
-
Salimans, T., and Knowles, D., (2014), “On using Control Variates with Stochastic Approximation for Variational Bayes,” arXiv preprint, arXiv:1401.1022. Available at https://arxiv.org/abs/1401.1022
-
(2014)
On using Control Variates with Stochastic Approximation for Variational Bayes
-
-
Salimans, T.1
Knowles, D.2
-
123
-
-
33751008680
-
Probabilistic Inference of Transcription Factor Concentrations and Gene-Specific Regulatory Activities
-
Sanguinetti, G., Lawrence, N., and Rattray, M., (2006), “Probabilistic Inference of Transcription Factor Concentrations and Gene-Specific Regulatory Activities,” Bioinformatics, 22, 2775–2781.
-
(2006)
Bioinformatics
, vol.22
, pp. 2775-2781
-
-
Sanguinetti, G.1
Lawrence, N.2
Rattray, M.3
-
124
-
-
0000147488
-
Online Model Selection Based on the Variational Bayes
-
Sato, M., (2001), “Online Model Selection Based on the Variational Bayes,” Neural Computation, 13, 1649–1681.
-
(2001)
Neural Computation
, vol.13
, pp. 1649-1681
-
-
Sato, M.1
-
125
-
-
7444245570
-
Hierarchical Bayesian Estimation for MEG Inverse Problem
-
Sato, M., Yoshioka, T., Kajihara, S., Toyama, K., Goda, N., Doya, K., and Kawato, M., (2004), “Hierarchical Bayesian Estimation for MEG Inverse Problem,” NeuroImage, 23, 806–826.
-
(2004)
NeuroImage
, vol.23
, pp. 806-826
-
-
Sato, M.1
Yoshioka, T.2
Kajihara, S.3
Toyama, K.4
Goda, N.5
Doya, K.6
Kawato, M.7
-
126
-
-
85156241149
-
Exploiting Tractable Substructures in Intractable Networks
-
Saul, L., and Jordan, M. I., (1996), “Exploiting Tractable Substructures in Intractable Networks,” in Neural Information Processing Systems, pp. 486–492.
-
(1996)
Neural Information Processing Systems
, pp. 486-492
-
-
Saul, L.1
Jordan, M.I.2
-
127
-
-
0029679189
-
Mean Field Theory for Sigmoid Belief Networks
-
Saul, L. K., Jaakkola, T., and Jordan, M. I., (1996), “Mean Field Theory for Sigmoid Belief Networks,” Journal of Artificial Intelligence Research, 4, 61–76.
-
(1996)
Journal of Artificial Intelligence Research
, vol.4
, pp. 61-76
-
-
Saul, L.K.1
Jaakkola, T.2
Jordan, M.I.3
-
130
-
-
77955505742
-
A Bayesian Framework to Account for Complex Non-Genetic Factors in Gene Expression Levels Greatly Increases Power in eqtl Studies
-
Stegle, O., Parts, L., Durbin, R., and Winn, J., (2010), “A Bayesian Framework to Account for Complex Non-Genetic Factors in Gene Expression Levels Greatly Increases Power in eqtl Studies,” PLoS Computational Biology, 6, e1000770.
-
(2010)
PLoS Computational Biology
, vol.6
, pp. e1000770
-
-
Stegle, O.1
Parts, L.2
Durbin, R.3
Winn, J.4
-
131
-
-
72149090968
-
Shared Segmentation of Natural Scenes using Dependent Pitman-Yor Processes
-
Sudderth, E. B., and Jordan, M. I., (2009), “Shared Segmentation of Natural Scenes using Dependent Pitman-Yor Processes,” in Neural Information Processing Systems, pp. 1585–1592.
-
(2009)
Neural Information Processing Systems
, pp. 1585-1592
-
-
Sudderth, E.B.1
Jordan, M.I.2
-
132
-
-
56549085814
-
Latent-Space Variational Bayes
-
Sung, J., Ghahramani, Z., and Bang, Y., (2008), “Latent-Space Variational Bayes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 30, 2236–2242.
-
(2008)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.30
, pp. 2236-2242
-
-
Sung, J.1
Ghahramani, Z.2
Bang, Y.3
-
133
-
-
1942489160
-
Adaptive BCI Based on Variational Bayesian Kalman Filtering: An Empirical Evaluation
-
Sykacek, P., Roberts, S., and Stokes, M., (2004), “Adaptive BCI Based on Variational Bayesian Kalman Filtering:An Empirical Evaluation,” IEEE Transactions on Biomedical Engineering, 51, 719–727.
-
(2004)
IEEE Transactions on Biomedical Engineering
, vol.51
, pp. 719-727
-
-
Sykacek, P.1
Roberts, S.2
Stokes, M.3
-
134
-
-
84878988007
-
Variational Inference for Generalized Linear Mixed Models using Partially Noncentered Parametrizations
-
Tan, L., and Nott, D., (2013), “Variational Inference for Generalized Linear Mixed Models using Partially Noncentered Parametrizations,” Statistical Science, 28, 168–188.
-
(2013)
Statistical Science
, vol.28
, pp. 168-188
-
-
Tan, L.1
Nott, D.2
-
135
-
-
84920271265
-
A Stochastic Variational Framework for Fitting and Diagnosing Generalized Linear Mixed Models
-
——— (2014), “A Stochastic Variational Framework for Fitting and Diagnosing Generalized Linear Mixed Models,” Bayesian Analysis, 9, 963–1004.
-
(2014)
Bayesian Analysis
, vol.9
, pp. 963-1004
-
-
Tan, L.1
Nott, D.2
-
137
-
-
27844592624
-
Variational Inference for Student-t models: Robust Bayesian Interpolation and Generalised Component Analysis
-
Tipping, M., and Lawrence, N., (2005), “Variational Inference for Student-t models:Robust Bayesian Interpolation and Generalised Component Analysis,” Neurocomputing, 69, 123–141.
-
(2005)
Neurocomputing
, vol.69
, pp. 123-141
-
-
Tipping, M.1
Lawrence, N.2
-
138
-
-
84862302424
-
Bayesian Gaussian Process Latent Variable Model
-
Titsias, M., and Lawrence, N., (2010), “Bayesian Gaussian Process Latent Variable Model,” in Artificial Intelligence and Statistics, pp. 844–851.
-
(2010)
Artificial Intelligence and Statistics
, pp. 844-851
-
-
Titsias, M.1
Lawrence, N.2
-
139
-
-
84919786928
-
Doubly Stochastic Variational Bayes for Non-Conjugate Inference
-
Titsias, M., and Lázaro-Gredilla, M., (2014), “Doubly Stochastic Variational Bayes for Non-Conjugate Inference,” in International Conference on Machine Learning, pp. 1971–1979.
-
(2014)
International Conference on Machine Learning
, pp. 1971-1979
-
-
Titsias, M.1
Lázaro-Gredilla, M.2
-
140
-
-
85083953522
-
The Variational Gaussian Process
-
Tran, D., Ranganath, R., and Blei, D. M., (2016), “The Variational Gaussian Process,” in International Conference on Learning Representations, pp. 1–4.
-
(2016)
International Conference on Learning Representations
, pp. 1-4
-
-
Tran, D.1
Ranganath, R.2
Blei, D.M.3
-
141
-
-
0036887504
-
Bayesian Model Search for Mixture Models Based on Optimizing Variational Bounds
-
Ueda, N., and Ghahramani, Z., (2002), “Bayesian Model Search for Mixture Models Based on Optimizing Variational Bounds,” Neural Networks, 15, 1223–1241.
-
(2002)
Neural Networks
, vol.15
, pp. 1223-1241
-
-
Ueda, N.1
Ghahramani, Z.2
-
142
-
-
52249107868
-
Graphical Model Inference in Optimal Control of Stochastic Multi-Agent Systems
-
Van Den Broek, B., Wiegerinck, W., and Kappen, B., (2008), “Graphical Model Inference in Optimal Control of Stochastic Multi-Agent Systems,” Journal of Artificial Intelligence Research, 32, 95–122.
-
(2008)
Journal of Artificial Intelligence Research
, vol.32
, pp. 95-122
-
-
Van Den Broek, B.1
Wiegerinck, W.2
Kappen, B.3
-
143
-
-
17644441141
-
Variational Inference for Visual Tracking
-
Vermaak, J., Lawrence, N. D., and Pérez, P., (2003), “Variational Inference for Visual Tracking,” in Computer Vision and Pattern Recognition, pp. 1–8.
-
(2003)
Computer Vision and Pattern Recognition
, pp. 1-8
-
-
Vermaak, J.1
Lawrence, N.D.2
Pérez, P.3
-
144
-
-
84981186713
-
Overview of the ImageCLEF 2013 Scalable Concept Image Annotation Subtask
-
Villegas, M., Paredes, R., and Thomee, B., (2013), “Overview of the ImageCLEF 2013 Scalable Concept Image Annotation Subtask,” in CLEF Evaluation Labs and Workshop, pp. 308–328.
-
(2013)
CLEF Evaluation Labs and Workshop
, pp. 308-328
-
-
Villegas, M.1
Paredes, R.2
Thomee, B.3
-
145
-
-
65749118363
-
Graphical Models, Exponential Families, and Variational Inference
-
Wainwright, M. J., and Jordan, M. I., (2008), “Graphical Models, Exponential Families, and Variational Inference,” Foundations and Trends in Machine Learning, 1, 1–305.
-
(2008)
Foundations and Trends in Machine Learning
, vol.1
, pp. 1-305
-
-
Wainwright, M.J.1
Jordan, M.I.2
-
146
-
-
84901597335
-
Fully Simplified Multivariate Normal Updates in Non-Conjugate Variational Message Passing
-
Wand, M., (2014), “Fully Simplified Multivariate Normal Updates in Non-Conjugate Variational Message Passing,” Journal of Machine Learning Research, 15, 1351–1369.
-
(2014)
Journal of Machine Learning Research
, vol.15
, pp. 1351-1369
-
-
Wand, M.1
-
147
-
-
84856958759
-
Mean Field Variational Bayes for Elaborate Distributions
-
Wand, M., Ormerod, J., Padoan, S., and Fuhrwirth, R., (2011), “Mean Field Variational Bayes for Elaborate Distributions,” Bayesian Analysis, 6, 847–900.
-
(2011)
Bayesian Analysis
, vol.6
, pp. 847-900
-
-
Wand, M.1
Ormerod, J.2
Padoan, S.3
Fuhrwirth, R.4
-
148
-
-
62149086004
-
Inadequacy of Interval Estimates Corresponding to Variational Bayesian Approximations
-
Wang, B., and Titterington, D., (2005), “Inadequacy of Interval Estimates Corresponding to Variational Bayesian Approximations,” in Artificial Intelligence and Statistics, pp. 373–380.
-
(2005)
Artificial Intelligence and Statistics
, pp. 373-380
-
-
Wang, B.1
Titterington, D.2
-
149
-
-
33745841556
-
Convergence Properties of a General Algorithm for Calculating Variational Bayesian Estimates for a Normal Mixture Model
-
——— (2006), “Convergence Properties of a General Algorithm for Calculating Variational Bayesian Estimates for a Normal Mixture Model,” Bayesian Analysis, 1, 625–650.
-
(2006)
Bayesian Analysis
, vol.1
, pp. 625-650
-
-
Wang, B.1
Titterington, D.2
-
150
-
-
84877630966
-
Variational Inference in Nonconjugate Models
-
Wang, C., and Blei, D., (2013), “Variational Inference in Nonconjugate Models,” Journal of Machine Learning Research, 14, 1005–1031.
-
(2013)
Journal of Machine Learning Research
, vol.14
, pp. 1005-1031
-
-
Wang, C.1
Blei, D.2
-
152
-
-
84905702716
-
Collapsed Variational Bayesian Inference for Hidden Markov Models
-
Wang, P., and Blunsom, P., (2013), “Collapsed Variational Bayesian Inference for Hidden Markov Models,” in Artificial Intelligence and Statistics, pp. 599–607.
-
(2013)
Artificial Intelligence and Statistics
, pp. 599-607
-
-
Wang, P.1
Blunsom, P.2
-
153
-
-
69549129405
-
Human Action Recognition by Semilatent Topic Models
-
Wang, Y., and Mori, G., (2009), “Human Action Recognition by Semilatent Topic Models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 31, 1762–1774.
-
(2009)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.31
, pp. 1762-1774
-
-
Wang, Y.1
Mori, G.2
-
154
-
-
85156191859
-
Bayesian Methods for Mixtures of Experts
-
Waterhouse, S., MacKay, D., and Robinson, T., (1996), “Bayesian Methods for Mixtures of Experts,” in Neural Information Processing Systems, pp. 351–357.
-
(1996)
Neural Information Processing Systems
, pp. 351-357
-
-
Waterhouse, S.1
MacKay, D.2
Robinson, T.3
-
155
-
-
80053452150
-
Bayesian Learning via Stochastic Gradient Langevin Dynamics
-
Welling, M., and Teh, Y., (2011), “Bayesian Learning via Stochastic Gradient Langevin Dynamics,” in International Conference on Machine Learning, pp. 681–688.
-
(2011)
International Conference on Machine Learning
, pp. 681-688
-
-
Welling, M.1
Teh, Y.2
-
156
-
-
85023640506
-
-
arXiv preprint, arXiv:1510.08151
-
Westling, T., and McCormick, T. H., (2015), “Establishing Consistency and Improving Uncertainty Estimates of Variational Inference Through M-estimation,” arXiv preprint, arXiv:1510.08151. Available at https://arxiv.org/abs/1510.08151
-
(2015)
Establishing Consistency and Improving Uncertainty Estimates of Variational Inference Through M-estimation
-
-
Westling, T.1
McCormick, T.H.2
-
157
-
-
45749117949
-
Bayesian Approach to Network Modularity
-
Wiggins, C., and Hofman, J., (2008), “Bayesian Approach to Network Modularity,” Physical Review Letters, 100, 258701.
-
(2008)
Physical Review Letters
, vol.100
, pp. 258701
-
-
Wiggins, C.1
Hofman, J.2
-
158
-
-
84899011066
-
-
arXiv preprint, arXiv:1301.1299
-
Wingate, D., and Weber, T., (2013), “Automated Variational Inference in Probabilistic Programming,” arXiv preprint, arXiv:1301.1299. Available at https://arxiv.org/abs/1301.1299
-
(2013)
Automated Variational Inference in Probabilistic Programming
-
-
Wingate, D.1
Weber, T.2
-
159
-
-
21844450606
-
Variational Message Passing
-
Winn, J., and Bishop, C., (2005), “Variational Message Passing,” Journal of Machine Learning Research, 6, 661–694.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 661-694
-
-
Winn, J.1
Bishop, C.2
-
160
-
-
57649220812
-
A Unified Bayesian Framework for MEG/EEG Source Imaging
-
Wipf, D., and Nagarajan, S., (2009), “A Unified Bayesian Framework for MEG/EEG Source Imaging,” NeuroImage, 44, 947–966.
-
(2009)
NeuroImage
, vol.44
, pp. 947-966
-
-
Wipf, D.1
Nagarajan, S.2
-
161
-
-
1842452778
-
Multilevel Linear Modeling for fMRI Group Analysis using Bayesian Inference
-
Woolrich, M., Behrens, T., Beckmann, C., Jenkinson, M., and Smith, S., (2004), “Multilevel Linear Modeling for fMRI Group Analysis using Bayesian Inference,” Neuroimage, 21, 1732–1747.
-
(2004)
Neuroimage
, vol.21
, pp. 1732-1747
-
-
Woolrich, M.1
Behrens, T.2
Beckmann, C.3
Jenkinson, M.4
Smith, S.5
-
162
-
-
3242687409
-
Logos: A Modular Bayesian Model for de novo motif Detection
-
Xing, E., Wu, W., Jordan, M. I., and Karp, R., (2004), “Logos:A Modular Bayesian Model for de novo motif Detection,” Journal of Bioinformatics and Computational Biology, 2, 127–154.
-
(2004)
Journal of Bioinformatics and Computational Biology
, vol.2
, pp. 127-154
-
-
Xing, E.1
Wu, W.2
Jordan, M.I.3
Karp, R.4
-
163
-
-
84898975095
-
Generalized Belief Propagation
-
Yedidia, J. S., Freeman, W. T., and Weiss, Y., (2001), “Generalized Belief Propagation,” in Neural Information Processing Systems, pp. 689–695.
-
(2001)
Neural Information Processing Systems
, pp. 689-695
-
-
Yedidia, J.S.1
Freeman, W.T.2
Weiss, Y.3
-
164
-
-
84964423932
-
Dynamic Language Models for Streaming Text
-
Yogatama, D., Wang, C., Routledge, B., Smith, N. A., and Xing, E., (2014), “Dynamic Language Models for Streaming Text,” Transactions of the Association for Computational Linguistics, 2, 181–192.
-
(2014)
Transactions of the Association for Computational Linguistics
, vol.2
, pp. 181-192
-
-
Yogatama, D.1
Wang, C.2
Routledge, B.3
Smith, N.A.4
Xing, E.5
-
165
-
-
84899129730
-
On Variational Bayes Estimation and Variational Information Criteria for Linear Regression Models
-
You, C., Ormerod, J., and Muller, S., (2014), “On Variational Bayes Estimation and Variational Information Criteria for Linear Regression Models,” Australian & New Zealand Journal of Statistics, 56, 73–87.
-
(2014)
Australian & New Zealand Journal of Statistics
, vol.56
, pp. 73-87
-
-
You, C.1
Ormerod, J.2
Muller, S.3
-
166
-
-
33745178491
-
Decentralized Multiple Target Tracking using Netted Collaborative Autonomous Trackers
-
Yu, T., and Wu, Y., (2005), “Decentralized Multiple Target Tracking using Netted Collaborative Autonomous Trackers,” in Computer Vision and Pattern Recognition, pp. 939–946.
-
(2005)
Computer Vision and Pattern Recognition
, pp. 939-946
-
-
Yu, T.1
Wu, Y.2
-
167
-
-
34447576745
-
A Probabilistic Algorithm Integrating Source Localization and Noise Suppression for MEG and EEG Data
-
Zumer, J., Attias, H., Sekihara, K., and Nagarajan, S., (2007), “A Probabilistic Algorithm Integrating Source Localization and Noise Suppression for MEG and EEG Data,” NeuroImage, 37, 102–115.
-
(2007)
NeuroImage
, vol.37
, pp. 102-115
-
-
Zumer, J.1
Attias, H.2
Sekihara, K.3
Nagarajan, S.4
|