메뉴 건너뛰기




Volumn , Issue , 2017, Pages 2101-2109

Structured inference networks for nonlinear state space models

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION ALGORITHMS; ARTIFICIAL INTELLIGENCE; DEEP LEARNING; DEEP NEURAL NETWORKS; INFERENCE ENGINES; RECURRENT NEURAL NETWORKS; STATE SPACE METHODS;

EID: 85030484471     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (462)

References (32)
  • 3
    • 84867129058 scopus 로고    scopus 로고
    • Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription
    • Boulanger-lewandowski, N.; Bengio, Y.; and Vincent, P. 2012. Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription. In ICML 2012.
    • (2012) ICML 2012
    • Boulanger-Lewandowski, N.1    Bengio, Y.2    Vincent, P.3
  • 4
    • 3543070663 scopus 로고    scopus 로고
    • Fisher scoring and a mixture of modes approach for approximate inference and learning in nonlinear state space models
    • Briegel, T., and Tresp, V. 1999. Fisher scoring and a mixture of modes approach for approximate inference and learning in nonlinear state space models. In NIPS 1999.
    • (1999) NIPS 1999
    • Briegel, T.1    Tresp, V.2
  • 10
    • 84965123118 scopus 로고    scopus 로고
    • Deep temporal sigmoid belief networks for sequence modeling
    • Gan, Z.; Li, C.; Henao, R.; Carlson, D. E.; and Carin, L. 2015. Deep temporal sigmoid belief networks for sequence modeling. In NIPS 2015.
    • (2015) NIPS 2015
    • Gan, Z.1    Li, C.2    Henao, R.3    Carlson, D.E.4    Carin, L.5
  • 11
    • 85014678625 scopus 로고    scopus 로고
    • Linear dynamical neural population models through nonlinear embeddings
    • Gao, Y.; Archer, E.; Paninski, L.; and Cunningham, J. P. 2016. Linear dynamical neural population models through nonlinear embeddings. In NIPS 2016.
    • (2016) NIPS 2016
    • Gao, Y.1    Archer, E.2    Paninski, L.3    Cunningham, J.P.4
  • 12
    • 84899008192 scopus 로고    scopus 로고
    • Learning nonlinear dynamical systems using an EM algorithm
    • Ghahramani, Z., and Roweis, S. T. 1999. Learning nonlinear dynamical systems using an EM algorithm. In NIPS 1999.
    • (1999) NIPS 1999
    • Ghahramani, Z.1    Roweis, S.T.2
  • 15
    • 0029652445 scopus 로고
    • The "wake-sleep" algorithm for unsupervised neural networks
    • Hinton, G. E.; Dayan, P.; Frey, B. J.; and Neal, R. M. 1995. The "wake-sleep" algorithm for unsupervised neural networks. Science 268.
    • (1995) Science , vol.268
    • Hinton, G.E.1    Dayan, P.2    Frey, B.J.3    Neal, R.M.4
  • 16
    • 85030469301 scopus 로고    scopus 로고
    • Structured VAEs: Composing probabilistic graphical models and variational autoencoders
    • Johnson, M. J.; Duvenaud, D.; Wiltschko, A. B.; Datta, S. R.; and Adams, R. P. 2016. Structured VAEs: Composing probabilistic graphical models and variational autoencoders. In NIPS 2016.
    • (2016) NIPS 2016
    • Johnson, M.J.1    Duvenaud, D.2    Wiltschko, A.B.3    Datta, S.R.4    Adams, R.P.5
  • 18
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • Kingma, D., and Ba, J. 2015. Adam: A method for stochastic optimization. In ICLR 2015.
    • (2015) ICLR 2015
    • Kingma, D.1    Ba, J.2
  • 19
    • 85083952489 scopus 로고    scopus 로고
    • Auto-encoding variational bayes
    • Kingma, D. P., and Welling, M. 2014. Auto-encoding variational bayes. In ICLR 2014.
    • (2014) ICLR 2014
    • Kingma, D.P.1    Welling, M.2
  • 20
    • 84919786239 scopus 로고    scopus 로고
    • Neural variational inference and learning in belief networks
    • Mnih, A., and Gregor, K. 2014. Neural variational inference and learning in belief networks. In ICML 2014.
    • (2014) ICML 2014
    • Mnih, A.1    Gregor, K.2
  • 21
    • 70349349170 scopus 로고    scopus 로고
    • Cambridge university press
    • Pearl, J. 2009. Causality. Cambridge university press.
    • (2009) Causality
    • Pearl, J.1
  • 22
    • 69249203563 scopus 로고    scopus 로고
    • Variational Bayesian learning of nonlinear hidden state-space models for model predictive control
    • Raiko, T., and Tornio, M. 2009. Variational bayesian learning of nonlinear hidden state-space models for model predictive control. Neurocomputing 72(16):3704-3712.
    • (2009) Neurocomputing , vol.72 , Issue.16 , pp. 3704-3712
    • Raiko, T.1    Tornio, M.2
  • 24
    • 84969776493 scopus 로고    scopus 로고
    • Variational inference with normalizing flows
    • Rezende, D. J., and Mohamed, S. 2015. Variational inference with normalizing flows. In ICML 2015.
    • (2015) ICML 2015
    • Rezende, D.J.1    Mohamed, S.2
  • 25
    • 84919796093 scopus 로고    scopus 로고
    • Stochastic backpropagation and approximate inference in deep generative models
    • Rezende, D. J.; Mohamed, S.; and Wierstra, D. 2014. Stochastic backpropagation and approximate inference in deep generative models. In ICML 2014.
    • (2014) ICML 2014
    • Rezende, D.J.1    Mohamed, S.2    Wierstra, D.3
  • 26
    • 78650803456 scopus 로고    scopus 로고
    • System identification of nonlinear state-space models
    • Schön, T. B.; Wills, A.; and Ninness, B. 2011. System identification of nonlinear state-space models. Automatica 47(1):39-49.
    • (2011) Automatica , vol.47 , Issue.1 , pp. 39-49
    • Schön, T.B.1    Wills, A.2    Ninness, B.3
  • 29
    • 0038132747 scopus 로고    scopus 로고
    • An unsupervised ensemble learning method for nonlinear dynamic state-space models
    • Valpola, H., and Karhunen, J. 2002. An unsupervised ensemble learning method for nonlinear dynamic state-space models. Neural computation 14(11):2647-2692.
    • (2002) Neural Computation , vol.14 , Issue.11 , pp. 2647-2692
    • Valpola, H.1    Karhunen, J.2
  • 30
    • 84898964547 scopus 로고    scopus 로고
    • Dual Kalman filtering methods for nonlinear prediction, smoothing and estimation
    • Wan, E. A., and Nelson, A. T. 1996. Dual kalman filtering methods for nonlinear prediction, smoothing and estimation. In NIPS 1996.
    • (1996) NIPS 1996
    • Wan, E.A.1    Nelson, A.T.2
  • 31
    • 84962432583 scopus 로고    scopus 로고
    • The unscented Kalman filter for nonlinear estimation
    • Wan, E.; Van Der Merwe, R.; et al. 2000. The unscented kalman filter for nonlinear estimation. In AS-SPCC 2000.
    • (2000) AS-SPCC 2000
    • Wan, E.1    Van Der Merwe, R.2
  • 32
    • 84965129327 scopus 로고    scopus 로고
    • Embed to control: A locally linear latent dynamics model for control from raw images
    • Watter, M.; Springenberg, J. T.; Boedecker, J.; and Riedmiller, M. 2015. Embed to control: A locally linear latent dynamics model for control from raw images. In NIPS 2015.
    • (2015) NIPS 2015
    • Watter, M.1    Springenberg, J.T.2    Boedecker, J.3    Riedmiller, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.