-
1
-
-
85018893666
-
-
arXiv preprint arXiv:1511.07367
-
Archer, E.; Park, I. M.; Buesing, L.; Cunningham, J.; and Paninski, L. 2015. Black box variational inference for state space models. arXiv preprint arXiv:1511.07367.
-
(2015)
Black Box Variational Inference for State Space Models
-
-
Archer, E.1
Park, I.M.2
Buesing, L.3
Cunningham, J.4
Paninski, L.5
-
3
-
-
84867129058
-
Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription
-
Boulanger-lewandowski, N.; Bengio, Y.; and Vincent, P. 2012. Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription. In ICML 2012.
-
(2012)
ICML 2012
-
-
Boulanger-Lewandowski, N.1
Bengio, Y.2
Vincent, P.3
-
4
-
-
3543070663
-
Fisher scoring and a mixture of modes approach for approximate inference and learning in nonlinear state space models
-
Briegel, T., and Tresp, V. 1999. Fisher scoring and a mixture of modes approach for approximate inference and learning in nonlinear state space models. In NIPS 1999.
-
(1999)
NIPS 1999
-
-
Briegel, T.1
Tresp, V.2
-
6
-
-
84965158187
-
A recurrent latent variable model for sequential data
-
Chung, J.; Kastner, K.; Dinh, L.; Goel, K.; Courville, A.; and Bengio, Y. 2015. A recurrent latent variable model for sequential data. In NIPS 2015.
-
(2015)
NIPS 2015
-
-
Chung, J.1
Kastner, K.2
Dinh, L.3
Goel, K.4
Courville, A.5
Bengio, Y.6
-
10
-
-
84965123118
-
Deep temporal sigmoid belief networks for sequence modeling
-
Gan, Z.; Li, C.; Henao, R.; Carlson, D. E.; and Carin, L. 2015. Deep temporal sigmoid belief networks for sequence modeling. In NIPS 2015.
-
(2015)
NIPS 2015
-
-
Gan, Z.1
Li, C.2
Henao, R.3
Carlson, D.E.4
Carin, L.5
-
11
-
-
85014678625
-
Linear dynamical neural population models through nonlinear embeddings
-
Gao, Y.; Archer, E.; Paninski, L.; and Cunningham, J. P. 2016. Linear dynamical neural population models through nonlinear embeddings. In NIPS 2016.
-
(2016)
NIPS 2016
-
-
Gao, Y.1
Archer, E.2
Paninski, L.3
Cunningham, J.P.4
-
12
-
-
84899008192
-
Learning nonlinear dynamical systems using an EM algorithm
-
Ghahramani, Z., and Roweis, S. T. 1999. Learning nonlinear dynamical systems using an EM algorithm. In NIPS 1999.
-
(1999)
NIPS 1999
-
-
Ghahramani, Z.1
Roweis, S.T.2
-
13
-
-
84983208884
-
DRAW: A recurrent neural network for image generation
-
Gregor, K.; Danihelka, I.; Graves, A.; Rezende, D. J.; and Wierstra, D. 2015. DRAW: A recurrent neural network for image generation. In ICML 2015.
-
(2015)
ICML 2015
-
-
Gregor, K.1
Danihelka, I.2
Graves, A.3
Rezende, D.J.4
Wierstra, D.5
-
15
-
-
0029652445
-
The "wake-sleep" algorithm for unsupervised neural networks
-
Hinton, G. E.; Dayan, P.; Frey, B. J.; and Neal, R. M. 1995. The "wake-sleep" algorithm for unsupervised neural networks. Science 268.
-
(1995)
Science
, vol.268
-
-
Hinton, G.E.1
Dayan, P.2
Frey, B.J.3
Neal, R.M.4
-
16
-
-
85030469301
-
Structured VAEs: Composing probabilistic graphical models and variational autoencoders
-
Johnson, M. J.; Duvenaud, D.; Wiltschko, A. B.; Datta, S. R.; and Adams, R. P. 2016. Structured VAEs: Composing probabilistic graphical models and variational autoencoders. In NIPS 2016.
-
(2016)
NIPS 2016
-
-
Johnson, M.J.1
Duvenaud, D.2
Wiltschko, A.B.3
Datta, S.R.4
Adams, R.P.5
-
17
-
-
85018887151
-
-
arXiv e-prints
-
Kaae Sønderby, C.; Raiko, T.; Maaløe, L.; Kaae Sønderby, S.; and Winther, O. 2016. How to Train Deep Variational Autoencoders and Probabilistic Ladder Networks. arXiv e-prints.
-
(2016)
How to Train Deep Variational Autoencoders and Probabilistic Ladder Networks
-
-
Kaae Sønderby, C.1
Raiko, T.2
Maaløe, L.3
Kaae Sønderby, S.4
Winther, O.5
-
18
-
-
85083951076
-
Adam: A method for stochastic optimization
-
Kingma, D., and Ba, J. 2015. Adam: A method for stochastic optimization. In ICLR 2015.
-
(2015)
ICLR 2015
-
-
Kingma, D.1
Ba, J.2
-
19
-
-
85083952489
-
Auto-encoding variational bayes
-
Kingma, D. P., and Welling, M. 2014. Auto-encoding variational bayes. In ICLR 2014.
-
(2014)
ICLR 2014
-
-
Kingma, D.P.1
Welling, M.2
-
20
-
-
84919786239
-
Neural variational inference and learning in belief networks
-
Mnih, A., and Gregor, K. 2014. Neural variational inference and learning in belief networks. In ICML 2014.
-
(2014)
ICML 2014
-
-
Mnih, A.1
Gregor, K.2
-
21
-
-
70349349170
-
-
Cambridge university press
-
Pearl, J. 2009. Causality. Cambridge university press.
-
(2009)
Causality
-
-
Pearl, J.1
-
22
-
-
69249203563
-
Variational Bayesian learning of nonlinear hidden state-space models for model predictive control
-
Raiko, T., and Tornio, M. 2009. Variational bayesian learning of nonlinear hidden state-space models for model predictive control. Neurocomputing 72(16):3704-3712.
-
(2009)
Neurocomputing
, vol.72
, Issue.16
, pp. 3704-3712
-
-
Raiko, T.1
Tornio, M.2
-
24
-
-
84969776493
-
Variational inference with normalizing flows
-
Rezende, D. J., and Mohamed, S. 2015. Variational inference with normalizing flows. In ICML 2015.
-
(2015)
ICML 2015
-
-
Rezende, D.J.1
Mohamed, S.2
-
25
-
-
84919796093
-
Stochastic backpropagation and approximate inference in deep generative models
-
Rezende, D. J.; Mohamed, S.; and Wierstra, D. 2014. Stochastic backpropagation and approximate inference in deep generative models. In ICML 2014.
-
(2014)
ICML 2014
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
26
-
-
78650803456
-
System identification of nonlinear state-space models
-
Schön, T. B.; Wills, A.; and Ninness, B. 2011. System identification of nonlinear state-space models. Automatica 47(1):39-49.
-
(2011)
Automatica
, vol.47
, Issue.1
, pp. 39-49
-
-
Schön, T.B.1
Wills, A.2
Ninness, B.3
-
29
-
-
0038132747
-
An unsupervised ensemble learning method for nonlinear dynamic state-space models
-
Valpola, H., and Karhunen, J. 2002. An unsupervised ensemble learning method for nonlinear dynamic state-space models. Neural computation 14(11):2647-2692.
-
(2002)
Neural Computation
, vol.14
, Issue.11
, pp. 2647-2692
-
-
Valpola, H.1
Karhunen, J.2
-
30
-
-
84898964547
-
Dual Kalman filtering methods for nonlinear prediction, smoothing and estimation
-
Wan, E. A., and Nelson, A. T. 1996. Dual kalman filtering methods for nonlinear prediction, smoothing and estimation. In NIPS 1996.
-
(1996)
NIPS 1996
-
-
Wan, E.A.1
Nelson, A.T.2
-
31
-
-
84962432583
-
The unscented Kalman filter for nonlinear estimation
-
Wan, E.; Van Der Merwe, R.; et al. 2000. The unscented kalman filter for nonlinear estimation. In AS-SPCC 2000.
-
(2000)
AS-SPCC 2000
-
-
Wan, E.1
Van Der Merwe, R.2
-
32
-
-
84965129327
-
Embed to control: A locally linear latent dynamics model for control from raw images
-
Watter, M.; Springenberg, J. T.; Boedecker, J.; and Riedmiller, M. 2015. Embed to control: A locally linear latent dynamics model for control from raw images. In NIPS 2015.
-
(2015)
NIPS 2015
-
-
Watter, M.1
Springenberg, J.T.2
Boedecker, J.3
Riedmiller, M.4
|